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• Speaker recognition systems 

 Human-crafted acoustic features (e.g. MFCC) 

 Statistical models (e.g. GMM-UBM (Reynolds 2000), JFA/i-vector (Kenny 2007)) 

• Discriminative models 

 SVM for GMM-UBM (Campbell 2006)  

 PLDA for i-vector (Ioffe 2006) 
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• Deep feature learning (Ehsan 2014)  
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 Drawbacks of d-vector on text-Dep. 

 Simple input feature 

o No phone content information 

 Simple average scoring 

o Ignoring the temporal constraint 
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• Phone-depedent training 
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• Segment pooling and dynamic time warping (DTW) (Berndt 1994)  
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• Database 

 100 speakers, 10 short phrases. Each phrase has 150 utterances per speaker. 

 Dev. Set: 80 speakers and 12000 utterances.  training DNN model / UBM / T matrix / LDA / PLDA. 

 Eva. Set: 20 speakers, 2100 target trials and 42750 non-target trials for each phrase. 

• Experimental Setup 

 i-vector system 

 39-dims MFCCs, 128-components UBM, 200-dims i-vector. 

 d-vector system 

 40-dims Fbanks, 10 left and right frames, 200-dims of each hidden layer. 

 

8 



• Baseline 
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 Observations 

 The i-vector outperforms the d-vector. 

 LDA/PLDA is suitable for i-vector, while 

has no effect on d-vector. 

 The d-vector is a ‘discriminative’ vector. 



• Phone-dependent learning 
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 Descriptions 

A DNN model was trained for ASR with a 

Chinese database consisting of 6000h. 

The phone set consists of 66 initial and 

finals in Chinese. 

The ‘DNN+PT’ leads to marginal but 

consistent performance improvement. 



• Segment pooling and DTW 
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 Illustrations 

The segment pooling(DNN+PT+seg-n) 

generally outperforms the ‘DNN+PT’.  

The ‘DNN+PT+DTW’ offers clear 

performance improvement than the 

segment pooling. 



• System combination 
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 Descriptions 

Combine the best i-vector(PLDA) and the best d-

vector (DNN+PT+DTW) from the score-level.  

    where     is the interpolation factor. 

The combination leads to the best performance. 
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• A phone-dependent DNN structure. 

• Two scoring strategies 

 Segment pooling 

 Dynamic time warping 

•  System combination 
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