

## Improved Deep Speaker Feature Learning for Text-Dependent Speaker Recognition

## Dong Wang

CSLT / RIIT, Tsinghua University

wangdong99@mails.tsinghua.edu.cn

Co-work with *Lantian Li, Yiye Lin and Zhiyong Zhang IEEE APSIPA* 2015, *Hong Kong, Dec.* 16-19, 2015



- Introduction
- Improved Deep Feature Learning
- Experiments
- Conclusions



## Introduction

- Speaker recognition systems
  - ♦ Human-crafted acoustic features (e.g. *MFCC*)
  - ♦ Statistical models (e.g. GMM-UBM (Reynolds 2000), JFA/i-vector (Kenny 2007))
- Discriminative models
  - $\diamond$  SVM for GMM-UBM (Campbell 2006)
  - $\diamond$  PLDA for i-vector (loffe 2006)



## Introduction

#### • Deep feature learning (Ehsan 2014)



#### Orawbacks of d-vector on text-Dep.

#### ✓ Simple input *feature*

 $\circ~$  No phone content information

#### ✓ Simple average *scoring*

 $\circ~$  Ignoring the temporal constraint



- Introduction
- Improved Deep Feature Learning
- Experiments
- Conclusions



## **Improved Deep Feature Learning**

• Phone-depedent training





## Improved Deep Feature Learning

• Segment pooling and dynamic time warping (DTW) (Berndt 1994)





- Introduction
- Improved Deep Feature Learning
- Experiments
- Conclusions



#### • Database

 $\diamond$  100 speakers, 10 short phrases. Each phrase has 150 utterances per speaker.

✓ Dev. Set: 80 speakers and 12000 utterances. → training DNN model / UBM / T matrix / LDA / PLDA.

✓ Eva. Set: 20 speakers, 2100 target trials and 42750 non-target trials for each phrase.

#### • Experimental Setup

 $\diamond$  i-vector system

✓ 39-dims MFCCs, 128-components UBM, 200-dims i-vector.

#### $\diamond$ d-vector system

✓ 40-dims Fbanks, 10 left and right frames, 200-dims of each hidden layer.



#### • Baseline

| TABLE I                         |
|---------------------------------|
| PERFORMANCE OF BASELINE SYSTEMS |

|          |        |        | EER%  |       |
|----------|--------|--------|-------|-------|
|          | Phrase | cosine | LDA   | PLDA  |
| i-vector | P1     | 2.86   | 1.81  | 1.71  |
|          | P2     | 1.52   | 2.29  | 1.57  |
|          | P3     | 3.43   | 3.05  | 3.05  |
|          | P4     | 3.19   | 2.86  | 2.71  |
|          | P5     | 3.57   | 3.00  | 2.67  |
| d-vector | P1     | 10.29  | 9.81  | 12.67 |
|          | P2     | 10.52  | 10.57 | 12.29 |
|          | P3     | 10.10  | 9.33  | 10.48 |
|          | P4     | 10.38  | 9.95  | 11.10 |
|          | P5     | 9.14   | 9.29  | 11.10 |

#### $\diamond$ Observations

- ✓ The i-vector *outperform*s the d-vector.
- ✓ LDA/PLDA is suitable for i-vector, while has no effect on d-vector.
- ✓ The d-vector is a '*discriminative*' vector.



## • Phone-dependent learning



#### $\diamond$ Descriptions

- ✓ A DNN model was trained for ASR with a Chinese database consisting of 6000h.
- ✓ The phone set consists of *66* initial and finals in Chinese.
- ✓ The 'DNN+PT' leads to marginal but consistent performance improvement.



### • Segment pooling and DTW



#### $\diamond$ Illustrations

✓ The segment pooling(*DNN+PT+seg-n*)

generally outperforms the 'DNN+PT'.

✓ The 'DNN+PT+DTW' offers clear

performance improvement than the

segment pooling.



#### • System combination

#### $\diamond$ Descriptions

 TABLE II

 PERFORMANCE OF SYSTEM COMBINATION

| $\checkmark$ | Combine | the | best | i-vector | (PLDA) | and the | e best | d- |
|--------------|---------|-----|------|----------|--------|---------|--------|----|
|--------------|---------|-----|------|----------|--------|---------|--------|----|

| vector (DA | IN+PT+DTW) | from the | score-level. |
|------------|------------|----------|--------------|
|------------|------------|----------|--------------|

$$s = \alpha s_{iv} + (1 - \alpha) s_{dv}$$

where  $\alpha$  is the interpolation factor.

 $\checkmark$  The combination leads to the best performance.



|             | EER% |      |      |      |      |
|-------------|------|------|------|------|------|
|             | P1   | P2   | P3   | P4   | P5   |
| PLDA        | 1.71 | 1.57 | 3.05 | 2.71 | 2.67 |
| DNN+PT+DTW  | 9.14 | 8.38 | 8.52 | 8.86 | 8.14 |
| Combination | 1.52 | 1.38 | 2.33 | 2.33 | 2.38 |

- Introduction
- Improved Deep Feature Learning
- Experiments
- Conclusions



## Conclusions

- A phone-dependent DNN structure.
- Two scoring strategies
  - $\diamond$  Segment pooling
  - $\diamond$  Dynamic time warping
- System combination



## References

- D. Reynolds, T. Quatieri, and R. Dunn (**Reynolds 2000**), "Speaker verification using adapted gaussian mixture models," Digital Signal Processing, vol. 10, no. 1, pp. 19–41, 2000.
- P. Kenny, G. Boulianne, P. Ouellet, and P. Dumouchel (Kenny 2007), "Joint factor analysis versus eigenchannels in speaker recognition," IEEE Transactions on Audio, Speech, and Language Processing, vol. 15, pp. 1435–1447, 2007.
- ——, "Speaker and session variability in gmm-based speaker verification," IEEE Transactions on Audio, Speech, and Language Processing, vol. 15, pp. 1448–1460, 2007.
- P. Kenny, V. Gupta, T. Stafylakis, P. Ouellet, and J. Alam (**Kenny 2014**), "Deep neural networks for extracting baum-welch statistics for speaker recognition," Odyssey, 2014.
- W. Campbell, D. Sturim, and D. Reynolds (**Campbell 2006**), "Support vector machines using gmm supervectors for speaker verification," Signal Processing Letters, IEEE, vol. 13, no. 5, pp. 308–311, 2006.
- S. loffe (**loffe 2006**), "Probabilistic linear discriminant analysis," Computer Vision ECCV 2006, Springer Berlin Heidelberg, pp. 531–542, 2006.
- T. Kinnunen and H. Li (**Kinnunen 2010**), "An overview of text-independent speaker recognition: From features to supervectors," Speech communication, vol. 52, no. 1, pp. 12–40, 2010.
- V. Ehsan, L. Xin, M. Erik, L. M. Ignacio, and G.-D. Javier (Ehsan 2014), "Deep neural networks for small footprint text-dependent speaker verification," IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP), vol. 28, no. 4, pp. 357–366, 2014.
- D. Berndt and J. Clifford (**Berndt 1994**), "Using dynamic time warping to find patterns in time series," KDD workshop, vol. 10, no. 16, pp. 359–370, 1994.







# Thank you

APSIPA ASC, Dec. 16-19, 2015

