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Introduction

* Speaker recognition systems

<> Human-crafted acoustic features (e.g. MFCC)

<> Statistical models (e.g. GMM-UBM (Reynoids 2000)  JFA /j-yector (Kenny 2007))

e Discriminative models

<> SVM for GMM-UBM (Gmebet 2006

<~ PLDA for i-vector (offe 2006)




Introduction

* Deep feature learning (ensan 201

Fbanks
(40*21 dim)

d-vector is the averaged activations ¢ D raw ba c ks Of d -Ve Cto r O n text'Dep.

from the last hidden layers

*

: P(spki)

O
| [ (O]
O -

v’ Simple input feature

o No phone content information

O O
O O
O

O
O

v’ Simple average scoring

O O () Pissk
\L’/ l o Ignoring the temporal constraint

Fully-connected maxout hidden layers.

Output layer is removed in
enrollment and evaluation.




e Introduction

* Improved Deep Feature Learning
* Experiments

* Conclusions




Improved Deep Feature Learning

* Phone-depedent training

Speech data
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An ASR system
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Phone-dependent DNN structure
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Output layer is removed in
enrollment and evaluation.
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Average pooling

One-to-One
scoring

Average pooling

Segment pooling

Piece-to-Piece
scoring

Segment pooling

Improved Deep Feature Learning

Utt. A

* Segment pooling and dynamic time warping (DTW) (eemdt 1094
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Experiments

e Database

<> 100 speakers, 10 short phrases. Each phrase has 150 utterances per speaker.
v' Dev. Set: 80 speakers and 12000 utterances. = training DNN model / UBM / T matrix / LDA / PLDA.

v’ Eva. Set: 20 speakers, 2100 target trials and 42750 non-target trials for each phrase.

* Experimental Setup
<> i-vector system

v 39-dims MFCCs, 128-components UBM, 200-dims i-vector.

<> d-vector system

v’ 40-dims Fbanks, 10 left and right frames, 200-dims of each hidden layer.




Experiments

e Baseline
TABLE 1
PERFORMANCE OF BASELINE SYSTEMS
EER %

Phrase | cosine LDA PLDA

1-vector Pl 2.86 1.81 1.71
P2 1.52 2.29 1.57

P3 343 3.05 3.05

P4 3.19 2.86 2.71

P5 3.57 3.00 2.67

d-vector Pl 10.29 981 12.67
P2 10.52 10.57 12.29

P3 10.10 9.33 10.48

P4 10.38 9.95 11.10

P5 9.14 9.29 11.10

<> Observations

v’ The i-vector outperforms the d-vector.

v' LDA/PLDA is suitable for i-vector, while

has no effect on d-vector.

v’ The d-vector is a ‘discriminative’ vector.
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* Phone-dependent learning

<> Descriptions

[TIDNN+baseline
I DNN+PT

10

v'A DNN model was trained for ASR with a

Chinese database consisting of 6000h.

v'The phone set consists of 66 initial and

finals in Chinese.

v'The ‘DNN+PT leads to marginal but

consistent performance improvement.
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Experiments

* Segment pooling and DTW

<> lllustrations

12

EEONN+PT
I DNN+PT+seg-2
N mowerea ¥ The segment pooling(DNN+PT+seg-n)

B DNN+PT+DTW

generally outperforms the ‘DNN+PT".

v'The ‘DNN+PT+DTW’ offers clear

performance improvement than the

segment pooling.
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Experiments

* System combination

<> Descriptions

TABLE II
PERFORMANCE OF SYSTEM COMBINATION

v'Combine the best i-vector(PLDA) and the best d-

PT T 77 b]ff;% P 3 vector (DNN+PT+DTW) from the score-level.
PLDA 7T [ 1.57 [ 3.05 | 27T | 267 _ _
DNN+PT+DTW | 9.14 | 838 | 8.52 | 8.86 | 8.14 s=as, +{1-a)s,
Combination 152 [ 138 ] 233 ] 233 [ 238 where «ais the interpolation factor.

v'The combination leads to the best performance.
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Conclusions

* A phone-dependent DNN structure.

* Two scoring strategies
<> Segment pooling

<> Dynamic time warping

e System combination
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