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Abstract

Text categorization (TC) has achieved significant success in recently years;
however, in the case where the text is not well represented, TC performance is
usually substantially reduced. A particular example of such a scenario is in the
content-aware public telephone network (PTN), where the input speech can be
only partially transcribed due to the concern of privacy protection and
computational cost. One, therefore, needs an effective approach to selecting a
highly restricted group of keywords (less than 100), by which the spoken content
can be well represented and so the TC performance is largely retained.

Conventional keyword selection approaches are based on a carefully designed
intermediate score, and the keywords are selected according to the score
independently. This often leads to suboptimum performance. This paper proposes
a novel sparsity-based approach to tackling the highly restricted keyword
selection for TC. The idea is to formulate keyword selection as an l1 regularized
linear optimization problem. The l1 term drives less important dimensions of the
model coefficients to zeros, and so the corresponding words are nullified, leaving
only the promising keywords. By this approach, the objective function of keyword
selection is more consistent to the one used in TC; more importantly, the
keywords are selected jointly as a group, leading to a group-optimized selection.
The experiments conducted on an Uyghur TC task demonstrated that the
proposed approach is highly effective.
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1 Introduction
Text categorization (TC) has gained much attention in the research community and

found numerous applications in information retrieval (IR) and text data mining.

Conventional TC works on pure text where the lexicon is large (maybe unlimited).

In this paper, we focus on a particular TC task where the lexicon is highly restricted

(less than 100 words). An example of such text is “np np browse np np np np search”,

where “browse” and “search” are in-lexicon words (keywords), and “np” is a trivial

filler token that represents an occurrence of an out-of-lexicon word. This type of

TC is highly desirable for spoken content search, for instance in a content-aware

PTN system described as follows.

1.1 TC for content-aware PTN

The public telephone network (PTN) is a major channel for people to transmit

messages. Currently, most of the PTNs are content-unaware, which means that the

speech content transmitted through the PTN is undiscovered unless this is delib-

erated checked by authorized listeners. Comparing to the content-unaware PTN, a
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content-aware PTN is more desirable for multiple purposes such as quality check

and information distillation. For example, the increasing concern on public security

leads to resurgent requests for monitoring PTNs and detecting malicious conver-

sations such as the criminal or violent ones; however, monitoring PTNs by human

listeners is unaffordable in cost; more importantly, it violates laws of private in-

formation protection. An automatic monitoring system is obviously a much better

solution. In fact, the current automatic speech recognition (ASR) technique [1, 2]

has been able to deliver a reasonable accuracy on telephone speech, and with a

conventional TC backend, it is feasible to deliver a content-aware PTN system.

This ASR+TC approach, unfortunately, is almost unacceptable. Firstly, nobody

would like his/her conversations being recorded and transcribed, even by machines.

Full transcribing is risky in private information exposition and thus usually vio-

lates national laws. Secondly, the volume of speech data transmitted by PTNs is

huge, which makes full transcribing unaffordable due to the cost on memory and

CPUs. Thirdly, only a very small proportion of conversations through PTNs con-

tain malicious contents, and so it is not economic to conduct the heavy-loaded full

transcribing for such a small proportion.

A reasonable approach is to select a very small group of keywords (e.g., less

than 100) to monitor. Instead of conducting full transcribing, the ASR system just

detects occurrences of the keywords (the other words are recognized as trivial fillers

‘np’). This ‘partial ASR’ is also named as keyword spotting, and the recognition

result is a special form of ‘partially transcribed spoken text’. A TC component is

then applied to the spoken text to detect the desired information, e.g., malicious

conversations. Note that the partially transcribed text only contains keywords and

their frequencies, therefore largely preventing information exposition. In addition,

the partial transcribing is much cheaper than the full transcribing, leading to a

light-weighted content-aware PTN system.

A key issue of this keyword-based content-aware PTN system is how to select

the highly restricted keywords. Usually, a TC system requires thousands or tens

of thousands words to form a reasonable text representation (feature vector). The

partially transcribed spoken text, however, is a limited representation of the speech

content due to the restricted words, which plays a big challenge for TC. It is,

therefore, highly important to select the most discriminative words to ensure that

the TC performance is not degraded much with the limited text representation,

which is the central work of this paper.

Fig. 1 illustrates the architecture of the partial ASR-based content-aware PTN

system, which involves three main components: keyword selection, partial ASR, and

TC. The keyword selection component determines a group of keywords to monitor;

the partial ASR transcribes speech signals into partially transcribed spoken text;

and the TC component classifies the transcribed spoken text. The focus of this

paper is the keyword selection component, as indicated by the shadow in Fig. 1.

In the rest of the paper, we choose the support vector machine (SVM) [3, 4] as

the TC classifier. For the partial ASR component, we do not involve a real ASR

system; instead, we simulate its function by replacing all the non-keywords with

the trivial filler ‘np’. This simulation certainly ignores some difficulties in a real

ASR-based system such as false detections and missings. However, since our focus
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Figure 1 Architecture of a content-aware PTN system.

is the keyword selection, we believe that this simplification is reasonable and help

us concentrate on the most interesting component.

1.2 Keyword selection for TC

Keyword selection has been studied in TC as an important approach to feature

dimension reduction. The most commonly used keyword selection method defines

an intermediate score and then selects the keywords based on the score. Some widely

studied intermediate scores involve Gini index [5, 6, 7], information gain (IG) [8,

9], mutual information (MI) [10, 11], χ2 test [12], class discriminating measure

(CDM) [13], weight of evidence for text [14, 15], odds ratio and its variants [16, 15,

13], and expected cross entropy [17].

Keyword selection is also studied in information retrieval (IR). Different from

the methods in TC where the focus is the discriminative capability of the selected

keywords, the IR-based approach focuses on word representativeness. For instance,

the selection approaches based on document frequency (DF) [18], term strength (T-

S) [19, 20], and word salience [21] belong to this category. This category also involves

the graph-based keyword selection, for instance the TextRank algorithm [22, 23],

where the representative capability of a word is represented by the degree that it

connects to other words (more details in Section 2.2).

All the above approaches can be regarded as examples of the ‘filter-based ap-

proach’ according to [15]. The main advantage of this type of approaches is its

simplicity. However, as the selection criterion (IG, MI, etc.) is different from the

objective function of the TC classifier (e.g., SVM), the selected keywords are not

necessarily optimal for the TC task. Moreover, since the keywords are selected in-

dividually and independently, the selected keywords are not necessarily optimal in

the sense of a group.

The ‘wrapper-based approach’ may partly solve these problems. Different from

the filter-based approach, the wrapper-based approach selects a group of keyword-

s simultaneously, and the selection is based on the same learning algorithm and

evaluation metric that are used to learn and evaluate the TC system [15]. Howev-

er, this approach requires building full systems for a large number of candidates

of the keyword group, thus being very costly. In addition, searching for the op-

timal keyword group often relies on random walk, genetic algorithms or heuristic
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rules [24], which often leads to suboptimum performance. For these reasons, the

wrapper-based approach is seldom used in TC and IR.

1.3 Motivation of the paper

In this paper, we propose a novel keyword selection approach based on sparse anal-

ysis. The basic idea is to train an l1 regularized linear model y(x) = wTx+ λ||w||1,

where x is the feature vector of an input text and each dimension of x corresponds

to a word, and y is the category assignment score of x. w is the model parameter

and λ is a tunable hyperparameter. Due to the l1 constraint on w, some dimensions

of w will be driven to zeros during the training process, leading to a natural way for

keyword selection. A desirable feature of this approach is that multiple keywords

are selected in a group-optimal way. Note that this group-optimization is a conse-

quence of the sparse constraints. This is fundamentally different from the ‘trial and

error’ method in the wrapper-based approach, and so is much more solid in theory

and efficient in practice. When training the keyword selection model, we choose an

objective function which is the same as or related to the one used in training the

TC model (which is an SVM in our work), and so the keyword selection is highly

consistent to the TC in terms of optimization criteria.

Two sparse models are studied in this paper: a sparse discriminative analysis

(SDA) model which is a sparse version of the conventional linear discriminative

analysis (LDA), and a sparse support vector machine (sparse SVM) model which

is also linear but uses maximum margin as the objective function. As mentioned

before, the SVM is used as the TC classifier in our work due to its excellent per-

formance in TC [3, 4]. For this reason, the sparse SVM-based keyword selection

tends to be more consistent with the TC component (both are based on maximum

margin). Nevertheless, the SDA enjoys the property of simplicity in model training.

The rest of the paper is organized as follows: Section 2 reviews some related

work. Section 3 presents the sparsity-based keyword selection. Section 4 reports the

experiments with an Uyghur database, and the paper is concluded in Section 5.

2 Related work
This work is related to a multitude of research including spoken document retrieval,

information retrieval, text categorization, and keyword extraction. In this section,

we review some work on text categorization and keyword extraction which we find

directly relevant to our proposal.

2.1 Text categorization

The problem of TC is to classify an input text into a number of predefined cate-

gories [25, 26, 27, 28]. TC has found a wide range of applications in text mining and

information retrieval (e.g., news filtering, document organization, opinion mining, e-

mail classification, and spam filtering). The content-aware PTN is a new application

of TC, where the input to classify is a partially transcribed spoken text.

A typical TC system first extracts some features from the training text and builds

a classifier with the features. The category of a new input is then predicted by the

classifier. Many classifiers have been studied in TC, including (sorted by model

complexity) Rocchio’s algorithm [11], k-nearest neighbors (k-NN) [29], naive Bayes
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(NB) [13], decision trees (DT) [30], neural networks (NN) [31], and SVMs [3, 4].

It has been confirmed that the SVM model is highly effective for the TC task;

we therefore choose the SVM as the classifier in this paper. For more comparison

among the classifiers, please refer to [27, 28].

Most of the commonly used features in TC are based on words, which usually re-

sults into a very large feature vector. Therefore, it is essentially important to reduce

the dimensionality of the features so that a robust classifier can be trained. Low

dimensional features are also important to speed up model training and inference.

The main work of this paper falls on this research area.

There is a multitude of research on feature dimension reduction for TC. A common

approach defines an intermediate score to represent the ‘importance’ of a word. A

group of words is then independently selected according to the score, and the feature

vectors are hence shortened by considering the selected words only. Examples of

the intermediate scores involve document frequency [18], term strength [19, 20],

and word salience [21]. Another group of intermediate scores is more related to the

discriminative power of a word, including Gini index [5, 6, 7], information gain [8, 9],

mutual information [10, 11], χ2 test [12], class discriminating measure [13], weight

of evidence for text [14, 15], odds ratio and its variants [16, 15, 13], and expected

cross entropy [17]. Several comparative studies have been conducted to compare

these scores. [18] found that DF, IG, and χ2 are among the best and they are

highly correlated. [7] reported good performance with Gini index, but the difference

between Gini index, IG, and MI is rather marginal.

An obvious disadvantage of the intermediate score approach is that the words

are selected individually and independently, which does not guarantee an optimal

selection for the keywords as a whole group. In addition, the choice according to an

intermediate score is not necessarily optimal for TC due to the discrepancy between

the criteria of the word selection and the TC classifier. The sparsity-based approach

presented in this paper solves these two problems by selecting the keywords simul-

taneously as a whole group and using a metric (Fisher discriminant or class margin)

that is the same as or relevant to the objective function used in the TC classifier.

Another commonly used approach to feature dimension reduction is to learn some

linear transforms to project the features onto a low dimensional space. This trans-

form can be learned either supervised by linear discriminative analysis [32] or un-

supervised by singular value decomposition (SVD) [33]. Another related approach

constructs the low dimensional space more semantically meaningful. For example,

the word clustering approach merges semantically related words into word clusters

and represents texts in the low dimensional space constructed by the word cluster-

s [34, 35, 36]. The latent semantic indexing (LSI) [37] and its probabilistic variant

PLSA [38] follow the same idea but construct the low dimensional space based on

some automatically inferred topics. Unfortunately, the transform-based approach is

not suitable for the content-aware PTN which is the focus of this work since, in our

case, full ASR transcriptions are unavailable.

The last approach to feature dimension reduction is to select prominent features

(dimensions) in the process of training the TC classifier [39]. The basic idea is to

design a linear classifier where each dimension is assigned a coefficient, and the

learning process optimizes the classifier by adjusting the coefficients. The dimen-

sions with sufficiently large coefficients are selected as keywords. This approach
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solves the problems associated with the intermediate score approach, and is simple

and effective [39]. However, cutting off dimensions according to the magnitude of

the coefficients, although intuitively reasonable, is not theoretically justified. The

sparsity-based approach proposed in this paper follows a similar idea but drives the

coefficients of unimportant dimensions to zeros by introducing a sparse constraint,

thus avoiding the magnitude-based cutting-off.

2.2 Keyword extraction

This work is also related to document keyword extraction (KE), which is a fun-

damental task in IR. There is certain overlap between the research of keyword

extraction in IR and the dimension reduction in TC, but the former focuses on text

representation rather than text discrimination.

The most simple and effective KE approach ranks words using some statistical

quantities such as term frequency - inverse document frequency (TFIDF) [40] or

distributions of co-occurred words [41]. A large volume of research casts KE to a

classification problem (keyword or non-keyword). This approach was first suggested

by [42] in the GenEx system and by [43] in the Kea system. Classification models

that have been studied include decision trees [44], induction rules [42, 45], naive

Bayes [43], conditional random fields (CRFs) [46], maximum entropy models [47],

and SVMs [48]. The features that are utilized by the classifier are usually derived

from document statistics such as word frequencies and positions [42], but may be

also derived from word co-occurrences [41], word coherence [49], linguistic knowl-

edge [45], and semantic knowledge [44, 50].

Recently, graph-based KE approaches have gained popularity, such as the HITS

algorithm [51, 23] and the TextRank algorithm [52, 22]. In this approach, a doc-

ument is represented by a graph where the vertexes represent words and the arcs

represent word relationships. The importance of a word is determined by the im-

portance of its neighboring words via a recursive re-estimation algorithm. The word

importance, after the re-estimation converging, is used to select the most promising

keywords. There are many extensions to the basic graph-based algorithms. [53] com-

bined sentence-level graphs and word-level graphs to infer summaries and keywords

simultaneously; [54] extended the TextRank-based approach by considering similar

(neighboring) documents; and [55] considered scores calculated based on multiple

topics. [23] compared the supervised approach and the graph-based approach, and

found that the latter is superior if the training data are limited. A nice review for

the recent research on KE can be found in [56].

It should be noticed that most of the KE research so far focuses on text data. Spo-

ken KE research has not been extensively studied. Among the limited exceptions,

[57] described a discriminative framework to extract keywords from full transcribed

speech signals facilitated by ASR. This is closely related to our research, though we

focus on quick detection, and therefore do not rely on full speech transcriptions. [58]

followed the same direction but based on the TextRank framework. By introducing

a history graph, the authors attained quick adaptation for the keyword group.

3 Sparse analysis
Imposing an l1 or lasso penalty to achieve sparsity on features has been extensively

studied in both regression [59, 60] and classification [61, 62, 63, 64]. By adding an
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l1 regularization term to the original cost function, the coefficients of less impor-

tant feature dimensions are effectively driven to zeros, leading to a natural and

efficient feature selection approach which can be used for keyword selection. A re-

markable advantage of this sparsity-based approach is that the promising keywords

are selected simultaneously as an entire group, which is particularly suitable for the

highly restricted keyword selection task of this paper where the group optimization

is important.

We investigate two sparse models in this paper: one is based on the simple linear

discriminative model while the other is based on the SVM model. The former is

simple and efficient, but the latter is more consistent with the TC component,

considering that the classifier used in the TC is an SVM in our work.

3.1 Sparse linear discriminative analysis (SDA)

Following the formulation of [61], let X ∈ RN×P be a data matrix where N is

the number of observations and P is the dimension of the feature vector; further

let Y ∈ {0, 1}N×K be the class variables in which Ynk is an indicator variable for

which the n-th observation belongs to the k-th class. The optimal scoring criterion

for LDA involves recasting the classification problem as a regression problem by

turning the categorical target (class label) to a continuous target by multiplying a

score vector θk. The objective function takes the following form [61]:

minβk,θk{||Y θk −Xβk||22} s.t.
1

N
θTk Y

TY θk = 1, θTk Y
TY θl = 0 ∀l < k,

where θk is the K-dimensional score vector, and βk is a P-dimensional vector of

variable coefficients. Note that this is a sequential optimization problem where the

‘discriminative directions’ {βk} are attained one by one. To enforce sparsity in

the discriminative directions, [61] appended an l2 term and an l1 term to the cost

function, given by:

minβk,θk{||Y θk −Xβk||22 + γβTk Ωβk + λ||βk||1}

s.t.
1

N
θTk Y

TY θk = 1, θTk Y
TY θl = 0 ∀l < k,

(1)

where Ω is a positive definite matrix to avoid singularity when the observations are

mutually dependent or when the dimension is large, i.e., P > N , and λ and γ are

non-negative hyperparameters. Note that the l1 penalty introduced by the third

term in the above equation enforces sparsity on βk, and more dimensions of βk are

driven to zeros with a larger λ [59].

In the case of a two-class classification problem such as TC for the content-aware

PTN system, there is only one discriminative direction β. The optimization problem

is then simplified as follows:

minβ,θ{||Y θ −Xβ||22 + γβTΩβ + λ||β||1}

s.t.
1

N
θTY TY θ = 1.

(2)
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Eliminating θ by a simple calculation leads to:

minβ{||Ŷ −Xβ||22 + γβTΩβ + λ||β||1}, (3)

where Ŷ is the normalized class indicator matrix whose elements are given by:

Ŷn,k =

√
N

Nk
,

where Nk is the number of observations of the k-th class. We see that the opti-

mization problem for the classification task equals to the optimization problem of

a regression task in the case of two classes, which has been stated in [65]. Further,

notice that Eq. (3) is an elastic net problem if Ω = I, and a generalized elastic

net problem for an arbitrary symmetric positive definite matrix Ω. This elastic net

problem can be solved by the algorithm proposed by [60].

Once the optimal β is obtained, for a new observation x ∈ RP , a simple classifi-

cation can be conducted by setting a threshold on βTx. In this work, however, we

treat the SDA as a keyword selector instead of a classifier. First, notice that β is

sparse, which indicates that only a fraction of the dimensions of X contributes to

the decision. We therefore select the features (words) whose corresponding coeffi-

cients in β are not zero as keywords; these keywords are then used to build a new

low-dimensional text feature, based on which an SVM (non-linear in this work) is

constructed and is used as the classifier for TC.

We finally note that it is only for a binary classification task that the SDA model

coincides with the elastic net regression proposed by [60]. For multiple classification

tasks, the SDA model is a general framework to derive sparse coefficients {βk}. In

this case, the non-zero dimensions of different βk are usually different, so the words

corresponding to all these non-zero dimensions of all the coefficients {βk} have to

be selected as keywords.

3.2 Sparse SVM

A shortcoming of the SDA-based keyword selection approach resides in the dis-

crepancy between the objective functions used in the feature selection and the TC

classifier: the former is based on the minimum square error, and the latter, which

is the SVM in our work, is based on the maximum margin. A better approach is to

use the same objective function/model to conduct keyword selection and TC. The

sparse SVM model is a good candidate because it is a sparse version of the SVM

and both are based on the maximum margin.

We follow the formulation in [65]. First, we define xn as a training sample and tn ∈
{+1,−1} as its label. The linear SVM holds a classification boundary wTx+ b = 0

where w and b are model parameters, and it predicts the target for xn (i.e., the

category assignment yn) as follows:

yn = wTxn + b. (4)
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The model training involves optimizing the following regularized hinge function

with respect to w and b:

C

N∑
n=1

ξn +
1

2
||w||22 s.t. tnyn > 1− ξn, (5)

where N is the number of training samples, and ξn is a slack variable that represents

the cost term of xn: ξn = 0 if xn is inside or on the correct margin boundary,

otherwise ξn = |tn − yn|. In addition, ||w||22 is the regularization term, and C is a

tunable hyperparameter to trade off the cost and regularization. From the constraint

of Eq. (5), one can show that the distance from the margin to the decision boundary

remains to be 1, and so any data xn is misclassified if ξn > 1.

As pointed by [63], the l2 norm ||w||22 leads to a dense vector of the optimal w. In

order to obtain a sparse w, an l1 norm can be used to substitute for or append to

the l2 norm, leading to the following cost function:

N∑
n=1

ξn + γ||w||22 + λ||w||1, s.t. tnyn > 1− ξn, (6)

where γ and λ are two model hyperparameters for trading off the hinge cost and

the regularization. A larger λ drives more dimensions of w to zeros, which in turn

vanishes contributions of more features when conducting model inference, according

to Eq. (4). Therefore, a sparse SVM leads to a natural way for feature selection.

As in SDA, the words corresponding to the non-zero coefficients in w are selected

as keywords, and the selected keywords comprise the low dimensional features to

build a non-linear SVM model for the TC.

In this work, we employ the template first-order conic solver (TFOCS) to optimize

the sparse SVM. TFOCS is a general framework for solving a variety of convex cone

problems, including the problem of Eq. (6) [66].

We notice that using a linear sparse SVM to conduct feature selection has been

studied in some publications. For example, [63] proposed a quite similar approach

to ours, where a linear sparse SVM is used to choose significant dimensions and

a non-linear SVM conducts classification. The difference is that [63] worked on

v-Support Vector Regression (SVR) and did not involve the l2 term in Eq. (6).

[64] provided another form of sparse SVM, where the maximum number of non-

zero dimensions was treated as a constraint, and a convex relaxation approach was

employed to optimize the model. To the authors’ best knowledge, this paper is the

first application of the sparse SVM model to TC keyword selection.

Comparing the SDA-based and sparse SVM-based keyword selection (Eq. (3) and

Eq. (6)), we notice that both are based on sparse constraints in the form of an

elastic net regularization. The only difference resides in the objective function when

optimizing the model coefficients β (in SDA) or w (in sparse SVM): the former

is the regularized square error while the latter is the regularized hinge cost. Since

the classifier in the TC component is an SVM in this work, the sparse SVM-based

approach tends to be more consistent to the TC component.
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4 Experimental setup
This section reports the experimental settings and results. As mentioned in the

introduction, we make use of a simulation approach to generate the partial ASR

output from a text (instead of using a real ASR system), and use an SVM as the

classifier in TC. First, we describe the Uyghur text database that is used in the

experiments, and then present the text pre-processing steps. The experiments are

then presented, which involve a comparative study on three major keyword selection

approaches: the intermediate score approach based on TextRank, the intermediate

score approach based on document statistics, and the proposed sparsity-based ap-

proach.

4.1 Data profile

We choose an Uyghur text database to conduct the experiments. The reason to

select Uyghur is that there are real requests to retrieve spoken information in minor

languages for the reason of public security, and we hold much interest on keyword

selection with limited training data.

Uyghur belongs to the Altai family, Turki branch. Historically, the development

of Uyghur can be divided into four stages: the ancient Uyghur, the middle-aged

Uyghur, the new-aged Uyghur, and the modern Uyghur. Several symbol systems

were adopted in the development process, including Turkic, Uyghur, Arabic, and

Chagatay. The modern Uyghur was evolved from the late-period Chagatay, and is

a spelling language based on the Arabic alphabet. This is usually called the ‘old

Uyghur’. In 1970s, the China government tried to create a new writing system for

the Uyghur people (sometimes called ‘new Uyghur’) based on Latin characters but

it finally failed to gain popularity. In 1982, the Arabic-based old Uyghur turned

into the standard writing system of the modern Uyghur.

The modern Uyghur involves 32 Arabic characters, and each character roughly

corresponds to a particular phoneme. Among the 32 phonemes, 8 phonemes are

vowels and 24 phonemes are consonants. The writing system involves a number of

deformations for each character, depending on the position that the character takes.

The writing is word-based and the order is from right to left.

We collected an Uyghur text database that involves 1000 Uyghur documents en-

coded in the old Uyghur (Arabic characters). These documents were downloaded

from several Uyghur websites including ulinix.com and http://www.ts.cn/. 500 doc-

uments among them have been labeled as health-related by the web editor, and the

rest 500 documents involve multiple topics, including education, history, traffic, en-

vironment, economics, computer science, military, and sports. This database has

been published online for free download.[1]

We chose 70% of the health & non-health documents (700 in total) as the training

data to train the models for keyword selection and the TC classifier, and 10% of

the documents (100 in total) as the development set to choose the hyperparameters

(e.g., C in SVM); finally, the rest 20% documents (200 in total) were selected as

the test data to evaluate the TC performance.

We choose health & non-health as the positive and negative categories in the

study. The reason by which we did not choose malicious & non-malicious as the

[1]http://cslt.riit.tsinghua.edu.cn/mediawiki/index.php/Public_data
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paired categories (which maybe is more desired for a content-aware PTN system)

is that the definition of a ‘malicious conversation’, to our understanding, is rather

subjective and so it is not quite suitable for scientific research. Nevertheless, we

believe that the conclusions obtained here can be well generalized to other tasks

including malicious content detection.

4.2 Uyghur text pre-processing

The text pre-processing for Uyghur documents involves three steps: character purge,

Latinization, and stop words removal.

• Character purge

The first step removes less informative tokens, including punctuations, digits,

mathematic symbols, and special symbols such as ‘$’ and ‘#’. These characters

involve little semantic information and introduce much noise if involved in the

feature vector, so they need to be removed.

As already mentioned, the ASR output is generated by a simulation method

instead of by a real ASR system. This is achieved by a special step for all the

evaluation documents: converting all the non-keywords to the trivial filler,

i.e., the ‘np’ symbol.

• Latinization

The Uyghur documents we collected are in old Uyghur, which are based on

Arabic characters and so are not suitable for computer-based processing. In

order to simplify the following processing, we convert the Arabic characters of

the old Uyghur to Latin characters. A mapping rule designed by the Intelligent

Information Processing Lab (IIPL) of Xinjiang University was used to perform

the conversion, as shown in Fig. 2.

• Stop word removal

Stop words can be categorized into two classes. The first class involves word-

s that represent little semantic information, such as conjunctions, pronouns,

quantifications, and interjections. The second class involves words that are

equally distributed in all texts and so are little discriminative for text cate-

gories. The stop words that we removed are listed in Fig. 3, where we use the

old Uyghur for easy reading.

4.3 TextRank-based keyword selection

The first experiment studies the TetxRank-based keyword selection method. Firstly,

all the health documents are merged into a single document, and then the TextRank

algorithm is performed to compute the centrality of every word. Note that only the

health documents are used here because our goal is to extract the words that are

representative for the health category. The words with top-n centralities are then

selected as n keywords. The TextRank package implemented in Perl 5 was used

to conduct the computation[2], where the connection degrees between words are

initialized by word co-occurrences.

Once the keywords are chosen, the keywords can be used to extract features

and build the TC classifier. In our experiments, we found that the simple term

frequency (TF) feature performs slightly better than the commonly used TFIDF

[2]http://search.cpan.org/dist/Text-Categorize-Textrank/lib/Text/Categorize/Textrank/En.pm
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Figure 2 Character mapping from old Uyghur to Latin characters.

feature, which is perhaps due to the unreliable document frequencies computed with

the limited training data (700 documents). We therefore used the TF feature in all

the following experiments of the paper. Note that here we mean the feature used

for the TC classifier; for keyword selection, a multitude of features can be used, as

we will present shortly.

As mentioned already, we choose the SVM model as the TC classifier. The Gaus-

sian kernel is used in our work and the model hyperparameter C is optimized with

the development set. Once the SVM has been trained, it is used to conduct TC on

the evaluation data, for which the classification accuracy (CA) is used to evaluate

Accessories ياق،خۇددى،ئهمهس،بهر،كهل،ئال،ئىكهن،ئىمىش،يۈر،ئهت،...  

Conjunctions ،يهنه،ھهم، ،بىلهن ياكى ، ۋە شۇڭا،چۈنكى،دىگهندە،ئهمىسه،قاتارلىق،... 

Adverbs ،ھېلى،ئاران،ئىلدام،چاپسان،بهك،ئىلگىرى... 

Pronouns ،سهن،مهن،بىز،ئۇلار،ئۇ،ئۇنى... 

Quantities نهپهر،دانه،تىم،كىلوگىرامېتۈپ،ق،... 

Numbers ،مىڭ،ئهللىك،بىرىنجى،ئۈچ... 

Interjections شار،- چۇرۇڭ،شار-ۋۇل،خۇددى،ۋاراڭ- گۈر،ۋال-جۇرۇڭ،ئۇھ،گۈر-ۋاي،جاراڭ... 

 
Figure 3 Stop words in Uyghur.
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the TC performance. In our work, the libSVM tool[3] was used to conduct the model

training and perform classification.

Fig. 4 presents the CA results with the TextRank-based keyword selection method,

where the number of keywords n varies from 20 to 100. We observe that the CAs are

between 70% and 75%, which is a rather low performance for a binary classification

task. This can be attributed to the fact that the TextRank-based selection ignores

the non-health documents and considers only the health documents, which probably

results in keywords that are more representative than discriminative. This in turn

leads to a suboptimal TC model. Additionally, we observe that the CA curve is

rather ‘bumpy’, suggesting that the keywords selected are not group-optimal: a

new selected keyword may reduce the performance of the group.
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n
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A

%

  75
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  71
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74.5

Figure 4 CA results with TextRank-based keyword selection. The TF is used as the document
feature, and the SVM is used as the classification model.

4.4 Keyword selection based on document statistics

In the second set of experiments, we study the keyword selection based on document

statistics. [18] found that word selection based on these statistics may lead to high-

ly competitive TC performance when compared with some deliberately designed

intermediate scores such as IG and MI, but the former is much simpler.

4.4.1 Non-discriminative statistics

We first experiment with non-discriminative statistics, e.g., those statistics that

represent properties of the health documents. They are, therefore, similar to

the TextRank-based scores in this sense. Four statistics are experimented: DF

on health documents (DFh), TF on health documents (TFh), DFh ∗ TFh, and

DFh ∗TFh ∗IDFh+n where IDFh+n is the inverse document frequency (IDF) value

computed on both the health and non-health documents. Most of the statistics are

[3]http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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straightforward; the only one that requires a bit explanation is the fourth, where

IDFh+n is involved in order to reduce the impact of frequent words in both cate-

gories. Note that although the non-health documents are involved here, the statistics

are still representative for the health category.

CA%
n 20 40 60 80 100
DFh 88.0 87.5 88.5 89.5 89.0
TFh 90.5 92.5 89.5 89.5 90.0
TFh ∗DFh 91.0 91.5 92.5 90.0 93.0
TFh ∗DFh ∗ IDFh+n 93.0 92.5 90.0 90.5 92.5

Table 1 CA results with keyword selection based on non-discriminative document statistics. ‘n’ refers
to the number of keywords.

These statistics are computed for each word in the training data, based on which

the keywords are selected. The TC model (SVM) is then trained with the TF feature,

and is evaluated as in the TextRank-based experiment. Table 1 presents the CA

results. The results show that both DFh and TFh can be used as the intermediate

score to select keywords, but their combination is more effective. Applying the

global IDFh+n seems to improve performance in some circumstances, but it might

lead to performance reduction in others. When compared with the TextRank-based

keyword selection approach, we find that the document statistics-based approach is

much more effective, suggesting that the TextRank is perhaps not suitable for TC,

at least in some circumstances.

4.4.2 Discriminative statistics

In order to improve the discriminative capability of the selected keywords, we design

a number of ‘discriminative statistics’. These statistics take into account both the

health and non-health documents, and so is more related to the TC objective.

Table 2 presents the discriminative statistics and the corresponding TC perfor-

mance. Note that the subscript n indicates that the statistics are computed with

the non-health documents. It can be observed that the discriminative statistics

generally perform better than the non-discriminative statistics as shown in Table 1,

confirming that discriminative information, even in a very simple form, can lead to

better keyword selection.

CA%
n 20 40 60 80 100
DFh −DFn 91.0 93.5 91.5 93.5 92.0
TFh − TFn 93.5 92.5 90.0 92.5 92.0
TFh ∗DFh − TFn ∗DFn 91.5 91.0 95.0 94.0 91.5
TFh ∗DFh ∗ IDFh+n − TFn ∗DFn ∗ IDFh+n 90.5 90.5 89.5 91.0 94.0

Table 2 CA results with keyword selection based on discriminative document statistics. ‘n’ denotes
the number of keywords.

Although simple and promising, the document statistics-based approach shares

the same problem with the TextRank-based approach: the CA results are highly

‘bumpy’ with n increasing. This means that the keyword selection is rather unreli-

able, and a good CA obtained with a particular keyword group may be simply lost

if another keyword is added into the group. This uncertainly is a common problem

of all the keyword selection approaches based on intermediate scores.
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4.5 Sparse discriminative keyword selection

The last experiment studies two sparse models: SDA and sparse SVM. As discussed

in Section 3, these two models share the same idea to build an l1 regularized linear

model with which prominent keywords can be selected simultaneously according to

the model coefficients. This differs from the two approaches used in the previous

sections where the keywords are selected independently. The difference between the

SDA and the sparse SVM is that the objective function of the SDA training is the

least square error, while the sparse SVM training targets to maximize the class

margin.

Similar to the approach based on discriminative statistics, both the health and

non-health documents are employed in the sparsity-based approach, so both the two

approaches are discriminative in nature. A significant difference is that, the sparsity-

based approach utilizes the class discriminative information to train a discriminative

model, while the discriminative statistics-based approach designs some intermediate

scores.

In theory, any feature can be used to train the sparse model since the keyword

selection and the TC are two separate components; however, choosing the same

feature for the two components may lead to better consistency. We therefore choose

the TF feature when training the SDA and the sparse SVM models.

In this work, the SDA model was trained with a tool provided by Line Clem-

mensen[4]. The tool was developed in MATLAB and depends on the LARSEN al-

gorithm [60] implemented in the SpaSM toolbox[5]. In this experiment, γ in Eq. (3)

is optimized with the development set, and λ is selected so that the required num-

ber of keywords is exactly extracted. The CA results with the SDA-based keyword

selection method are presented in Fig. 5.
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Figure 5 CA results with SDA-based keyword selection. ‘n’ stands for the number of keywords.

[4]http://www.imm.dtu.dk/~lkhc/indexP.html

[5]http://www2.imm.dtu.dk/projects/spasm/
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For the sparse SVM, we utilized the implementation in the TFOCS toolbox[6].

γ and λ are chosen in the same way as in SDA. The CA results with the sparse

SVM-based keyword selection method are presented in Fig. 6.
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Figure 6 CA results with sparse SVM-based keyword selection. ‘n’ stands for the number of
keywords.

From the results obtained with the SDA and the sparse SVM, we observe that

both of the two sparse models provide better performance than the TextRank and

document statistics-based approaches. More importantly, the CA results are more

consistent: with more keywords selected, the TC performance is generally improved.

This solves the problem associated with the intermediate score-based approaches

and provides a reliable keyword selection method.

Comparing the SDA and the sparse SVM, we see that they perform similar,

though the CA curve with the sparse SVM seems ‘smoother’ than with the SDA.

Particularly, the sparse SVM seems to be superior to the SDA when the number of

keywords is small. This supports our argument that the sparse SVM is theoretically

more consistent with the SVM-based TC.

4.6 Keyword comparison

To have a more intuitive comparison, the top 10 keywords selected with each of the

four selection methods are given in Fig. 7. Note that the column ‘TFh − TFn’ rep-

resents the approach based on discriminative document statistics. It can be clearly

seen that the sparsity-based keyword selection, particularly the sparse SVM-based

approach, provides more informative keywords than the other approaches.

5 Conclusions
This paper presented a highly restricted keyword selection approach based on sparse

analysis for text categorization. The goal is to deliver a reliable keyword selection

technique for applications which rely on a few but informative keywords such as the

[6]http://cvxr.com/tfocs/
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original    ئهسلىدىكى blood قان blood قان tooth چىش

certain     بىرەر benefit پايدا benefit پايدا blood قان

done        قىلىشنىڭ heart يۈرەك traffic قاتناش cold زۇكام

age         ياشنىڭ can بولىدۇ heart يۈرەك heart يۈرەك

hand        قولغا disease كېسهللىك can بولىدۇ diabetes دىئابېت

mother        ئانىلار more كۆپ disease كېسهللىك liver جىگهر

liver      جىگهر induce كهلتۈرۈپ more كۆپ joint بوغۇم

oneself     ئۆزىگه cure داۋالاش induce كهلتۈرۈپ fever قىزىتما

child         بالىلارنى body بهدەن cure داۋالاش smoke تاماكا

infection ياللۇغىدىن property خارەكتىرلىك body بهدەن cancer راك

TextRank TFh-TFn SDA Sparse SVM

Figure 7 Top-10 keywords selected with different keyword selection methods.

content-aware PTN. We proposed to use a linear sparse model to conduct keyword

selection, and argued that this sparsity-based approach leads to an elegant way to

select keywords in a group-optimized way.

We verified the proposal with an Uyghur text database, and experimented with

two sparse models: SDA and sparse SVM. The experimental results demonstrated

that both the SDA and the sparse SVM lead to better TC performance than the

conventional approaches based on intermediate scores (for which we experimented

with the TextRank score and document statistics). More importantly, the sparse

approach produces more consistent and more reliable TC results than the conven-

tional approaches when the number of keywords varies, confirming our conjecture

that the sparse approach selects keywords in a group-optimal way.

Although the focus of this work is keyword selection, the sparse approach is a

general tool for selecting prominent features. The future work will study sparsity-

based heterogeneous feature selection for TC. Another work in the near future is to

test the proposed approach with a real ASR system, for which false detections and

missings within the ASR output have to be considered.
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