
ar
X

iv
:1

61
1.

01
73

4v
1 

 [c
s.

C
L]

  6
 N

ov
 2

01
6

Under review as a conference paper at ICLR 2017

DEEPBIAFFINE ATTENTION FOR

NEURAL DEPENDENCYPARSING

Timothy Dozat
Stanford University
tdozat@stanford.edu

Christopher D. Manning
Sanford University
manning@stanford.edu

ABSTRACT

While deep learning parsing approaches have proven very successful at finding
the structure of sentences, most neural dependency parsersuse neural networks
only for feature extraction, and then use those features in traditional parsing al-
gorithms. In contrast, this paper builds off recent work using general-purpose
neural network components, training an attention mechanism over an LSTM to
attend to the head of the phrase. We get state-of-the-art results for standard depen-
dency parsing benchmarks, achieving 95.44% UAS and 93.76% LAS on the PTB
dataset, 0.8% and 1.0% improvement, respectively, over Andor et al. (2016). In
addition to proposing a new parsing architecture using dimensionality reduction
and biaffine interactions, we examine simple hyperparameter choices that had a
profound influence on the model’s performance, such as reducing the value ofβ2

in theAdamoptimization algorithm.

1 INTRODUCTION

Dependency parsers—which annotate sentences in a way designed to be easy for humans and com-
puters alike to understand—have been found to be extremely useful for a sizable number of NLP
tasks, especially those involving natural language understanding in some way, such as semantic
parsing (Monroe & Wang, 2014) and retrieving images based ona textual description (Socher et al.,
2014). However, frequent incorrect parses can severely inhibit final performance, even completely
road-blocking lines of research; for this reason, improving the quality of dependency parsers is
needed for the improvement and success of these downstream tasks.

In recent years, using deep learning in dependency parsers has gained a lot of attention due to the
uncanny ability of neural networks to find real statistical patterns from data. The usual approach
involves essentially training a neural network feature extractor and using the neural features in place
of handcrafted ones to take discrete actions in a traditional parsing algorithm. Until recently, little
to no research had successfully built dependency parsers that only used components that have been
used successfully in a wide variety of neural models (although Vinyals et al. (2015) build such a
sequence-to-sequence constituency tree parser). There are a few reasons why one might want to
build this kind of parser: neural tools have shown a great deal of promise across domains, so it
would be wise to see to what extent dependency parsing can benefit from them; a parser that only
uses general tools can benefit from innovations in those tools that come from other rapidly moving
domains; and advances in the realm of dependency parsing have a higher chance of impacting other
fields when they all share the same tools.

In this paper, we build on a recently proposed neural dependency parser that uses only “neural”
components—BiLSTMs and attention—drawing on ideas proposed in the neural machine transla-
tion literature. Our model substitutes the concatenation-based attention mechanism they use with a
variant of the bilinear attention proposed in the neural machine translation literature by Luong et al.
(2015), augmenting it with additional MLP layers and makingit parallel to traditional classification
over a fixed number of classes. In addition to using bilinear transformations to predict dependency
arc structures, we also show how to extend bilinear transformations to predict the dependency rela-
tions as well.

Furthermore, we explore how different hyperparameter choices—some specific to dependency pars-
ing, others more generally applicable—impacted performance, finding that deviating from estab-

1

http://arxiv.org/abs/1611.01734v1


Under review as a conference paper at ICLR 2017

root/ROOT Casey/NNP hugged/VBD Kim/NNP

root

nsubj dobj

Figure 1: A dependency tree parse forCasey hugged Kim, including part-of-speech tags and a special
root token. Directed edges (or arcs) with labels (or relations) connect the verb to the root and the
arguments to the verb head.

lished conventions can have a significant positive effect onthe quality of the final model. By using
this variation on traditional attention and exploring alternative hyperparameter configurations, we
achieve state-of-the-art performance on standard dependency parsing tasks by a considerable mar-
gin.

2 BACKGROUND AND RELATED WORK

2.1 TRANSITION-BASED NEURAL PARSING

Transition-based parsers—such as shift-reduce parsers—parse sentences from left to right, main-
taining a “buffer” of words that have not yet been parsed and a“stack” of words whose head has not
been seen or whose dependents have not all been fully parsed.At each step, transition-based parsers
can manipulate the stack and buffer and assign arcs from one word to another. One can then train
any multi-class machine learning classifier on features extracted from the stack, buffer, and previous
arc actions in order to predict the next action. Here we summarize the contributions made by models
that use neural networks to make these transition actions.

Chen & Manning (2014) make the first successful attempt at incorporating deep learning into a de-
pendency parser (henceforth the CM parser). Their approachinvolves using a feedforward network
classifier to make parsing actions; at each step, the networktakes as input the concatenation of the
word, tag, and label (when applicable) embeddings for wordsin critical positions (e.g. the top three
words on the stack and the leftmost and rightmost dependentsof the top two) and puts them through
a multilayer perceptron (MLP) that assigns a probability toeach action the parser can take. At each
step, the parser takes the most probable action, updating the stack and buffer accordingly.

The principal limitation of the CM parser is that it doesn’t have access to the entire sentence when
making each parsing action, and a number of other approacheshave modified or augmented the
CM parser to address this. Dyer et al. (2015) and Ballesteroset al. (2016) replace the input to the
feedforward network—which in the CM parser is a concatenation of embeddings—with the output
of LSTMs over the stack, buffer, and previous actions. Weisset al. (2015) and Andor et al. (2016)
achieve state of the art performance by instead augmenting it with a beam search and a CRF loss so
that the model can avoid committing to partial parses that later evidence might reveal to be incorrect.

2.2 GRAPH-BASED NEURAL PARSING

Transition-based parsing processes a sentence sequentially to build up a parse tree one arc at a
time. Consequently, these parsers don’t use machine learning for directly predicting edges; they
use it for predicting the operations of the transition algorithm. Graph-based parsers, by contrast,
use machine learning to assign a weight or probability to each possible edge and then construct a
maximum spaning tree (MST) from these weighted edges. Because these general-purpose MST
parsing algorithms are deterministic, they don’t have access to any information about the sentence
other than the weight of each arc, so interactions between words and phrases need to be captured in
the process that produces the weights.

Kiperwasser & Goldberg (2016) take a graph-based approach to neural dependency parsing that is
in many ways reminsicent of attention in neural machine translation as described by Bahdanau et al.
(2014). In the attention model of Bahdanau et al., the recurrent output vectorr(target)i of the current
word i being generated in the target translation is concatenated with the recurrent output vector

2



Under review as a conference paper at ICLR 2017

r
(source)
j of each word in the source sentence1, and the result is fed into an MLP with a single linear

output node representing the score of target wordi aligning to source wordj:

hij = MLP
(

r
(target)
i ⊕ r

(source)
j

)

(1)

sij = u
⊤
hij (2)

Kiperwasser & Goldberg (2016) effectively apply this mechanism to dependency parsing, where the
word that a given token most strongly attends to is interpreted as its head. They use a bidirectional
LSTM to generate a recurrent output vectorri for each wordi, and for each pair of wordsi, j, they
use the same kind of MLP to compute the score of wordi being a dependent on wordj:

h
(arc)
ij = MLP(arc)(ri ⊕ rj) (3)

s
(arc)
ij = u

⊤
h
(arc)
ij (4)

The predicted tree structure is then the tree where each wordi depends on the wordj with the
highest scoresij . They train this model using a hinge loss to maximize the margin between the gold
tree and the highest scoring incorrect tree.

Dependency relations are predicted in a similar fashion; the model concatenatesri with its gold (or
at test time, predicted) head word’s recurrent output vector ryi

, and feeds that concatenation into
another MLP (5) with an output layer that generates a score for each possible dependency relation
(6), which they also train according to a hinge loss. They findthat this setup gets excellent results
on English and Chinese dependency parsing tasks.

h
(rel)
i,yi

= MLP(rel)(ri ⊕ ryi
) (5)

s
(rel)
i,yi

= Uh
(rel)
i,yi

+ b
(rel) (6)

Cheng et al. (2016) similarly propose a graph-based neural dependency parser, but in a way that
attempts to circumvent the limitation of graph-based parsers being unable to condition the scores of
each possible arc on previous parsing decisions. In addition to having one bidirectional recurrent
network that computes a recurrent hidden vectorri for each word, they have additional, unidirec-
tional recurrent networks (left-to-right and right-to-left) that keep track of the probability of previous
parsing decisions, and use these together to predict the scores for each arc.

3 PROPOSEDMODEL

3.1 DEEP BIAFFINE PARSING

The traditional attention mechanism of Bahdanau et al. (2014) is not the only one that has been
proposed in the literature; Luong et al. (2015) argue for substituting the MLP in the attention mech-
anism with a single bilinear transformation, mapping the target recurrent output vectorr(target)i and

the source recurrent output vectorr
(source)
j to a score for the alignment:

sij = r
⊤(target)
i Ur

(source)
j (7)

The straightforward application of this to dependency parsing would be to define the score of a
potential dependency arc as a bilinear map between the dependent and the potential head.

s
(arc)
ij = r

⊤

i Urj (8)

However, there are at least two disadvantages of using the recurrent vectors directly. The first is
that they contain much more information than is necessary for calculating the value ofsij—because
they’re recurrent, they also contain information needed for calculating scores elsewhere in the se-
quence. Training on the entire vector then means training onsuperfluous information, which is likely

1In this paper we follow the convention of using lowercase italic letters for scalars and indices, lowercase
bold letters for vectors, uppercase italic letters for matrices, uppercase bold letters for higher order tensors. We
also maintain this notation when indexing; so rowi of matrixA would be represented asai.

3



Under review as a conference paper at ICLR 2017

. . .

root ROOT Casey NNP

1

1

1

1

⊤

· · =

BiLSTM

Embeddings

MLP

H(arc-dep) ⊕ 1 U (arc) H(arc-dep) S(arc)

Figure 2: Deep biaffine neural dependency parser applied to the sentence “Casey hugged Kim”. We
concatenate a vector of ones toH(arc-dep) to make the scorer biaffine rather than bilinear.

to lead to overfitting. The second disadvantage is that the recurrent vectorri consists of the concate-
nation of the left recurrent state←−r i and the right recurrent state−→r i, meaning usingri by itself in the
bilinear transformation keeps the features learned by the two LSTMs distinct; ideally we’d like the
model to learn features composed from both. We can address both of these issues simultaneously by
first applying (distinct) MLP functions with a smaller hidden size to the two recurrent statesri and
rj before the bilinear operation. This allows the model to combine the two recurrent states together
while also reducing the dimensionality. We call this adeepbilinear attention mechanism, as opposed
to shallowbilinear attention, which uses the recurrent states directly.

h
(arc-dep)
i = MLP(arc-dep)(ri) (9)

h
(arc-head)
j = MLP(arc-head)(rj) (10)

We also make a smaller change to the bilinear attention mechanism. In a traditional classification
task, the distribution of classes is often uneven, so the output layer of the model normally includes
a bias term designed to capture the prior probabilityP (yi = c) of each class, with the rest of the
model focusing on learning the likelihood of each class given the dataP (yi = c|xi). In dependency
parsing, the distribution of dependents is similarly uneven—many words have a global tendency to
attract dependents (e.g. verbs, which frequently take manydependents) and others have a global
tendency to deter them (e.g. function words, which generally have no dependents). In order to
capture the prior probabilityP (yi = j|rj) of a word taking any dependent (rather than the likelihood
P (yi = j|ri, rj) of a word taking a dependent given what the potential dependent is), we include a

bias term linear inh(arc-head)
j , making it a biaffinetransformation rather than a bilinear one.

s
(arc)
ij = h

⊤(arc-dep)
i U (arc)

h
(arc-head)
j (11)

+w
⊤(arc)

h
(arc-head)
j (12)

As with Kiperwasser & Goldberg (2016), the predicted tree isthe one where each word is a depen-
dent of its highest scoring head. This model can be trained with a hinge-loss or a cross-entropy
objective; here, we use cross-entropy. Figure 2 shows one configuration of the proposed model.

3.2 DEEP BIAFFINE CLASSIFICATION

In order to predict the labels, we use a parallel mechanism todeep biaffine attention. We want the
label that the model predicts for a given word to be conditioned on that word’s head (e.g. we want
a word like “fast” be classified as an adverbial modifier when it depends on a verb, but not when
it depends on a noun). So again, we use MLPs to transform the recurrent state of the current word
ri and its gold or predicted headyi’s recurrent stateryi

, but this time we let the model predict an

4



Under review as a conference paper at ICLR 2017

array of scores—one for each possible label—by allowing thebiaffine transformation to map the
two vectors to a third vector rather than a scalar. This can then also be trained under a hinge loss or
cross-entropy loss objective, and we use the latter.

h
(rel-dep)
i = MLP(rel-dep)(ri) (13)

h
(rel-head)

y
(arc)
i

= MLP(rel-head)(r
y
(arc)
i

) (14)

s
(rel)
i = h

(rel-dep)
i U

(rel)
h
(rel-head)

y
(arc)
i

(15)

+W (rel)

(

h
(rel-dep)
i ⊕ h

(rel-head)

y
(arc)
i

)

(16)

+ b
(rel) (17)

Again, in our model, the MLPs serve to reduce dimensionalityand build features from the two
halves of the last BiLSTM output state. In this part of the model, the term in line (16) captures
global preferences for the kinds of labels wordi can take, as well as global preferences for the kinds
of dependents wordi’s head can take (e.g. articles will have a strong preferenceto take a determiner
label and a noun will have a strongly prefer dependents to take determiner or adjectival labels).

3.3 PRACTICAL CONSIDERATIONS

A noteworthy advantage of bilinear or biaffine attention over traditional attention is that it requires
less memory to compute. Traditional attention requires explicitly computing a sized hidden state for
each ordered pair of words in the lengthn sentence; the resulting tensorH is (n×n×d)-dimensional.
Bilinear attention, however, can be computed more memory-efficiently; because it uses matrix mul-
tiplications, it never explicitly computes a full(n × n × d) hidden state. As a result, computing
traditional attention requiresO(dn2) memory, whereas computing bilinear attention requires only
O(dn + n2) memory. Similarly, the memory complexity of our approach tolabel classification is
O(dnc+n2c)—with c being the number of classes to predict—whereas the complexity of the tradi-
tional attention approach isO(dn2 + cn). As long as the number of labelsc is significantly smaller
than the length of the longest sequence in the dataset, this bilinear classification mechanism will also
be more memory-efficient than any variant that concatenateseach pair of recurrent output vectors.

Since BiLSTMs useO(dn) memory, this choice can noticeably affect the memory requirements of
the network. While our TensorFlow (Abadi et al., 2015) implementation2 of a deep biaffine parser
with multiple hidden MLP layers can train with less than 2.5GB of GPU memory, our implementa-
tion of an otherwise identical parser that uses a traditional attention mechanism requires more than
4GB, even with only one hidden MLP layer. Since the attentionmechanism has far fewer param-
eters than the BiLSTMs, the concatenation-based approach winds up using upwards of 33% of its
consumed memory on training a part of the network that comprises less than 1% of the parameters,
which is clearly not ideal.

4 EXPERIMENTS AND RESULTS

4.1 HYPERPARAMETER SELECTION

In this section we go in depth into how the different hyperparameters affect parsing performance.
Here we use the Penn Treebank train and validation splits, converted to the Stanford Dependen-
cies using version 3.5.0 of the Stanford dependency converter, reporting unlabeled attachment score
(UAS) and labeled attachment score (LAS). When not otherwise specified, our model uses: 100-
dimensional word and tag embeddings with word vectors initialized to GloVe (Pennington et al.,
2014) trained on Wikipedia and Gigaword and an 15% chance of dropping tag embeddings; 4-
layer BiLSTMs with 300-dimensional left and right LSTMs, using the form of recurrent dropout
suggested by Gal & Ghahramani (2015) with a 75% keep probability between timesteps and a
67% keep probability between layers; a 1-layer 100 dimensional MLP layer with the elu func-
tion (Clevert et al., 2015), also with a 67% keep probability; the Adam optimizer (Kingma & Ba,

2Using a different framework or implementation could yield different results

5



Under review as a conference paper at ICLR 2017

MLP depth
0 1 2

UAS LAS UAS LAS UAS LAS

BiLSTM depth 2 95.03* 93.01* 94.98* 93.14* 94.84* 92.95*
4 95.08* 93.05* 95.24 93.37 95.19 93.24

Table 1: Effect of network depth on performance. Statistically signficant differences between the
highest-scoring model are marked with an asterisk.

2014) withβ1 = β2 = .9 and learning rate2e−3, annealed continuously at a rate of .75 every
2,500 iterations; 120 epochs of training, with batches of approximately 5,000 tokens. Words that
only occur once in the training set are replaced with a special <UNK> token. These hyperparameters
were selected based on a random search followed by further refining using both grid search and
trial-and-error. The performance of the different hyperparameter configurations is shown in Table 1
and Table 2.

4.1.1 DEPTH

First we examine how making the network deeper affects performance, since all other models dis-
cussed hereuse two-layer neural networks (except Cheng et al. (2016), who use one-layer networks).
We test using two or four BiLSTM layers, and zero, one, or two MLP layers after the last BiLSTM.
What we find is that making the network deeper improves performance to an extent—when the BiL-
STM is shallow, adding an MLP doesn’t significantly improve performance, presumably because the
dimensionality reduction limits its representative powertoo much—but when the BiLSTM is deeper
and can learn more abstract features, dimensionality reduction successfully helps the model avoid
overfitting. Using a deeper MLP, however, actually hinders performance. The training accuracies of
the two- and four-LSTM models with two-layer MLPs are comparable, suggesting that the deeper
network isn’t overfitting. Instead, it seems more likely that the biggest gain from the MLP layer is
dimensionality reduction rather than adding significant further nonlinear abstraction, so the second
layer serves only to needlessly distort the information learned by the LSTM.

It should be noted, however, that the increase in accuracy does come with a cost–while the two-
layer LSTM can parse about 1000 sentences per second on an nVidia Titan X GPU machine, the
four-layer one can only parse about 500 sentences per second. Including dimensionality reduction,
however, speeds up parsing by about 50 sentences per second.

4.1.2 ATTENTION MECHANISM

Next, we compare three attention-based scoring mechanisms—since our model uses a very different
hyperparameter configuration from Kiperwasser & Goldberg’s, we implemented the concatenation-
based attention mechanism in addition to our deep biaffine one. However, the biaffine layer of our
parser hasO(d2) parameters and the last layer of the concatenation-based one has onlyO(d). In
order to ensure that the extra parameters in our model don’t influence the outcome, we also train a
special case of our model with aO(d)-parameter bilinear layer whereU (arc) and each sliceU (rel)

·,i,·

is diagonal; for efficiency we also abstain from including the linear bias terms. What we find is
that both the full biaffine parser and the smaller diagonal bilinear parser significantly outperform the
concatenation-based one.

4.1.3 RECURRENT CELL

We also tested to see how the choice of LSTM or GRU affects performance. However, we found that
GRUs were unable to train with recurrent dropout, with the loss exploding after a few iterations of
training even under a lower learning rate. Greff et al. (2015) suggest modifying the formulation of
LSTMs to make them more GRU-like by using a coupled input-forget gate (CifLSTM), but retaining
the output gate of the vanilla LSTM. We thus modified the formulation slightly to remove one of
the tanh nonlinearities—which is not needed when using an update gatezt (18 - 19)—and trained

6



Under review as a conference paper at ICLR 2017

Attention UAS LAS Recurrent cell UAS LAS

Biaffine 95.24 93.37 LSTM 95.24 93.37
Diag Bilinear 95.14 93.24 Cif-LSTM 95.20 93.31
Concat 94.96* 93.03* GRU - -
Adam UAS LAS Tag dropout UAS LAS

β2 = .9 95.24 93.37 85% keep 95.24 93.37
β2 = .999 94.93* 93.05* 100% keep 94.99* 93.08*
GD 89.31* 86.59* 0% keep 94.90* 92.97*

Table 2: Effect of select hyperparameters on performance. Statistically signficant differences from
the highest-scoring model are marked with an asterisk.

parsers using them.

ct = it ⊙ tanh(at) + (1− ft)⊙ ct−1 Vanilla LSTM cell (18)

ct = zt ⊙ at + (1− zt)⊙ ct−1 Cif-LSTM cell (19)

Critically, CifLSTM cells were able to train with dropout inspite of sharing one simplification to
LSTMs that GRUs have; the reason why GRUs failed to train almost certainly has to do with scaling
up the hidden state at training time. When using the dropped hidden state to compute the activations
for the gates and next hidden state, the previous hidden state needs to be scaled up by the inverse of
the keep probability in order to ensure that the expected activations at training time are the same as
the actual activations at test time (Srivastava et al., 2014). However, because the GRU cell always
reveals its hidden state and uses the update gate to retain the value of the hidden state across steps,
scaling up the hidden state at every step in the sequence increases the magnitude of the the activations
exponentially. Because of LSTMs’ distinction between the cell state and the hidden state, they don’t
suffer from this problem to nearly the same extent.

One recently proposed alternative to dropout, zoneout (Krueger et al., 2016), would address this
issue with using dropout in GRUs–however, we leave experimenting with this for future work.

4.1.4 OPTIMIZATION ALGORITHM

We choose to optimize with Adam (Kingma & Ba, 2014), which keeps a moving average of the
L2 norm of the gradient for each parameter throughout trainingand divides the gradient for each
parameter by this moving average, ensuring that the magnitude of the gradients will on average
be close to one. However, we find that the value forβ2 recommended by Kingma & Ba—which
controls the decay rate for this moving average—is too high.When this value is very large, the
magnitude of the current update is heavily influenced by the larger magnitude of gradients very far
in the past, with the effect that the optimizer can’t adapt quickly to recent changes in the model. Thus
we find that settingβ2 to .9 instead of.999 makes a large, positive impact on final performance.

4.1.5 TAG DROPOUT

All models under consideration here—including our own—usePOS tags as input. While we find
training on POS tags to be very helpful for final performance,we want to ensure that our model
doesn’t overfit to specific sequences of POS tags and we want toensure that it remains robust to up-
stream tagging errors. So to keep our model from depending too heavily on POS tags, we randomly
drop them 15% of the time, finding this to noticeably improve performance.

4.2 MODEL COMPARISON

4.2.1 DATASETS

In this work we show test results for the proposed model on three datasets, coming from two sources:
the English Penn Treebank, automatically converted from constituency trees into Stanford Depen-
dencies using both version 3.3.0 and version 3.5.0 of the Stanford Dependency converter (PTB-SD
3.3.0 and PTB-SD 3.5.0); and the Chinese Penn Treebank version 5.1 (CTB 5.1), automatically con-
verted from constituency trees into the CoNLL 2007 dependency format with Penn2Malt. PTB-SD

7



Under review as a conference paper at ICLR 2017

English PTB-SD 3.3.0 Chinese PTB 5.1
Model UAS LAS UAS LAS

Dyer et al. (2015) 93.1 90.9 87.1 85.5
Ballesteros et al. (2016) 93.56 91.42 87.6586.21
Kiperwasser & Goldberg (2016) 93.9 91.9 87.6 86.1
Cheng et al. (2016) 94.10 91.49 88.1 85.7
Weiss et al. (2015) 94.26 92.41 - -
Andor et al. (2016) 94.61 92.79 - -
Deep Biaffine 95.44 93.76 90.07 85.98

Deep Biaffine, SD 3.5.0 95.66 94.03

Table 3: Results on the standard English PTB and Chinese PTB parsing datasets

3.3.0 and CTB 5.1 are datasets standardly used in other dependency parsing work over the past four
years, and PTB-SD 3.5.0 is an updated version of PTB-SD 3.3.0. As is standard, we omit puncuation
from evaluation and use predicted POS tags for the English PTB dataset—generated from the Stan-
ford POS tagger (Toutanova et al., 2003)—and gold POS tags for the Chinese PTB dataset. Note that
in the previous section we reported validation scores on PTB-SD 3.5.0, but in this section we report
our test scores on PTB-SD 3.3.0 and compare those to those of other approaches in the literature, in
order to keep the hyperparameter choices fairly independent of the test set. Word embeddings for
Chinese were generated using Word2Vec (Mikolov et al., 2013) on Chinese Wikipedia.

4.2.2 RESULTS

Here, we compare our model to a number of others in the literature: the models of Dyer et al. (2015)
and Ballesteros et al. (2016), which use LSTMs to generate features for a transition-based parser; the
models of Weiss et al. (2015) and Andor et al. (2016), which augment the CM parser with a beam
search and a globally normalized CRF objective function; and Kiperwasser & Goldberg (2016) and
Cheng et al. (2016), which like this work uses BiLSTMs to generate feature embeddings used for an
attention-based parser.

What we see is that, with the exception of LAS on CTB 5.1, our implementation achieves state-
of-the-art results by a fairly substantial margin. It’s also worth pointing out that our parser also
performs better on PTB-SD 3.5.0 and 3.3.0. While it’s possible that this is in part because we
tuned on 3.5.0, we think it probably represents improvements in the dependency representation and
converter quality between version 3.3.0 and 3.5.0.

On the CTB labeled attachment score, our model underperforms state-of-the-art in spite of getting
state-of-the-art unlabeled attachment results. We have two possible explanations for this: the first
is that our pretrained embeddings were inferior to those used by the other researchers, and don’t
capture label information as well; the second, which we feelis more likely, is that the POS tag
dropout prevented the model from heavily relying on tags to make label predictions. Since ours
and all other models considered train and evaluate on gold tags, this regularization likely hurts the
model’s ability to learn the high correlation between gold tags and labels. Since in practice models
won’t have access to gold tags, we don’t see this as a point of major concern, but future research
will need to substantiate this hypothesis.

5 CONCLUSION

In this paper we proposed using a modified version of bilinearattention in a neural network depen-
dency parser, and showed that our approach outperformed state-of-the-art by a fairly large margin.
We also discussed in detail some of the hyperparameter choices that we found to make a critical
difference in end performance: we find that deeper networks of four LSTM layers outperform shal-
lower networks of two LSTM layers when using our deep biaffineattention mechanism; we find
GRU cells to have significant difficulty training with dropout, but LSTMs (vanilla or with a coupled
input-forget gate) have no trouble; we argue that the default settings for the Adam optimizer should
be tweaked; and we demonstrated tag dropout to be effective.Future work will explore the perfor-

8



Under review as a conference paper at ICLR 2017

mance of this parser on a wider variety of languages and, especially for morphology-rich languages,
augment it with a smarter way of handling out of vocabulary tokens.

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Watten-
berg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning
on heterogeneous systems, 2015. URLhttp://tensorflow.org/. Software available from
tensorflow.org.

Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta, Kuz-
man Ganchev, Slav Petrov, and Michael Collins. Globally normalized transition-
based neural networks. InAssociation for Computational Linguistics, 2016. URL
https://arxiv.org/abs/1603.06042.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neuralmachine translation by jointly
learning to align and translate.International Conference on Learning Representations, 2014.

Miguel Ballesteros, Yoav Goldberg, Chris Dyer, and Noah A Smith. Training with exploration
improves a greedy stack-LSTM parser.Proceedings of the conference on empirical methods in
natural language processing, 2016.

Danqi Chen and Christopher D Manning. A fast and accurate dependency parser using neural
networks. InProceedings of the conference on empirical methods in natural language processing,
pp. 740–750, 2014.

Hao Cheng, Hao Fang, Xiaodong He, Jianfeng Gao, and Li Deng. Bi-directional attention with
agreement for dependency parsing.arXiv preprint arXiv:1608.02076, 2016.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus).International Conference on Learning Representa-
tions, 2015.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin Matthews, and Noah A Smith. Transition-
based dependency parsing with stack long short-term memory. Proceedings of the conference on
empirical methods in natural language processing, 2015.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning.International Conference on Machine Learning, 2015.

Klaus Greff, Rupesh Kumar Srivastava, Jan Koutnı́k, Bas R Steunebrink, and Jürgen Schmidhuber.
LSTM: A search space odyssey.IEEE Transactions on Neural Networks and Learning Systems,
2015.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations, 2014.

Eliyahu Kiperwasser and Yoav Goldberg. Simple and accuratedependency parsing using bidirec-
tional LSTM feature representations.Transactions of the Association for Computational Linguis-
tics, 4:313–327, 2016.

David Krueger, Tegan Maharaj, János Kramár, Mohammad Pezeshki, Nicolas Ballas, Nan Rose-
mary Ke, Anirudh Goyal, Yoshua Bengio, Hugo Larochelle, Aaron Courville, et al. Zoneout:
Regularizing rnns by randomly preserving hidden activations. arXiv preprint arXiv:1606.01305,
2016.

Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to attention-
based neural machine translation.Empirical Methods in Natural Language Processing, 2015.

9

http://tensorflow.org/
https://arxiv.org/abs/1603.06042


Under review as a conference paper at ICLR 2017

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
tations in vector space.International Conference on Learning Representations, 2013.

Will Monroe and Yushi Wang. Dependency parsing features forsemantic parsing. 2014.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
representation.Proceedings of the Empiricial Methods in Natural Language Processing (EMNLP
2014), 12, 2014.

Richard Socher, Andrej Karpathy, Quoc V Le, Christopher D Manning, and Andrew Y Ng.
Grounded compositional semantics for finding and describing images with sentences.Trans-
actions of the Association for Computational Linguistics, 2:207–218, 2014.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15(1):1929–1958, 2014.

Kristina Toutanova, Dan Klein, Christopher D Manning, and Yoram Singer. Feature-rich part-of-
speech tagging with a cyclic dependency network. InProceedings of the 2003 Conference of the
North American Chapter of the Association for Computational Linguistics on Human Language
Technology-Volume 1, pp. 173–180. Association for Computational Linguistics,2003.

Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever, and Geoffrey Hinton. Gram-
mar as a foreign language. InAdvances in Neural Information Processing Systems, pp. 2773–
2781, 2015.

David Weiss, Chris Alberti, Michael Collins, and Slav Petrov. Structured training for neural network
transition-based parsing.Annual Meeting of the Association for Computational Linguistics, 2015.

10


	1 Introduction
	2 Background and Related Work
	2.1 Transition-based neural parsing
	2.2 Graph-based neural parsing

	3 Proposed Model
	3.1 Deep biaffine parsing
	3.2 Deep biaffine classification
	3.3 Practical considerations

	4 Experiments and Results
	4.1 Hyperparameter selection
	4.1.1 Depth
	4.1.2 Attention mechanism
	4.1.3 Recurrent cell
	4.1.4 Optimization algorithm
	4.1.5 Tag dropout

	4.2 Model comparison
	4.2.1 Datasets
	4.2.2 Results


	5 Conclusion

