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ABSTRACT

While deep learning parsing approaches have proven vegessful at finding

the structure of sentences, most neural dependency paiserseural networks
only for feature extraction, and then use those featuresitittonal parsing al-

gorithms. In contrast, this paper builds off recent workngsgeneral-purpose
neural network components, training an attention mechaiger an LSTM to

attend to the head of the phrase. We get state-of-the-aittsésr standard depen-
dency parsing benchmarks, achieving 95.44% UAS and 93.76%0dn the PTB

dataset, 0.8% and 1.0% improvement, respectively, loveoAatal. (2016). In

addition to proposing a new parsing architecture using dsimnality reduction

and biaffine interactions, we examine simple hyperparanchigices that had a
profound influence on the model’s performance, such as negtce value of3,

in the Adamoptimization algorithm.

1 INTRODUCTION

Dependency parsers—which annotate sentences in a waynddsimbe easy for humans and com-
puters alike to understand—have been found to be extrensefiulufor a sizable number of NLP
tasks, especially those involving natural language undeding in some way, such as semantic
parsingl(Monroe & Wang, 2014) and retrieving images basealtertual description (Socher ef al.,
2014). However, frequent incorrect parses can severelitrfinal performance, even completely
road-blocking lines of research; for this reason, imprgvihe quality of dependency parsers is
needed for the improvement and success of these downstasém t

In recent years, using deep learning in dependency parasrgdined a lot of attention due to the
uncanny ability of neural networks to find real statisticattprns from data. The usual approach
involves essentially training a neural network featureaotor and using the neural features in place
of handcrafted ones to take discrete actions in a traditipasing algorithm. Until recently, little
to no research had successfully built dependency parsarertly used components that have been
used successfully in a wide variety of neural models (algfiouinyals et al.[(2015) build such a
sequence-to-sequence constituency tree parser). Theefaw reasons why one might want to
build this kind of parser: neural tools have shown a great depromise across domains, so it
would be wise to see to what extent dependency parsing cafibfeom them; a parser that only
uses general tools can benefit from innovations in those thak come from other rapidly moving
domains; and advances in the realm of dependency parsimghaigher chance of impacting other
fields when they all share the same tools.

In this paper, we build on a recently proposed neural depeydparser that uses only “neural”
components—BIiLSTMs and attention—drawing on ideas pregas the neural machine transla-
tion literature. Our model substitutes the concatenaliased attention mechanism they use with a
variant of the bilinear attention proposed in the neuralmaetranslation literature by Luong et al.
(2015), augmenting it with additional MLP layers and makinggarallel to traditional classification
over a fixed number of classes. In addition to using bilinesrgformations to predict dependency
arc structures, we also show how to extend bilinear transditions to predict the dependency rela-
tions as well.

Furthermore, we explore how different hyperparameteradgsi-some specific to dependency pars-
ing, others more generally applicable—impacted perfoeafinding that deviating from estab-
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r oot /ROOT Casey/NNP hugged/VBD Kim/NNP

Figure 1. A dependency tree parse@asey hugged Kinincluding part-of-speech tags and a special
r oot token. Directed edges (or arcs) with labels (or relationgnect the verb to the root and the
arguments to the verb head.

lished conventions can have a significant positive effedherguality of the final model. By using
this variation on traditional attention and exploring afigive hyperparameter configurations, we
achieve state-of-the-art performance on standard depengersing tasks by a considerable mar-

gin.
2 BACKGROUND AND RELATED WORK

2.1 TRANSITION-BASED NEURAL PARSING

Transition-based parsers—such as shift-reduce parsense-gentences from left to right, main-
taining a “buffer” of words that have not yet been parsed afedack” of words whose head has not
been seen or whose dependents have not all been fully pasedch step, transition-based parsers
can manipulate the stack and buffer and assign arcs from ong t& another. One can then train
any multi-class machine learning classifier on featuresaeted from the stack, buffer, and previous
arc actions in order to predict the next action. Here we suriz@the contributions made by models
that use neural networks to make these transition actions.

Chen & Manningl(2014) make the first successful attempt airparating deep learning into a de-
pendency parser (henceforth the CM parser). Their appliogolves using a feedforward network
classifier to make parsing actions; at each step, the neti@keés as input the concatenation of the
word, tag, and label (when applicable) embeddings for wordsitical positions (e.g. the top three
words on the stack and the leftmost and rightmost dependétits top two) and puts them through
a multilayer perceptron (MLP) that assigns a probabilitgagh action the parser can take. At each
step, the parser takes the most probable action, updatrgjdlck and buffer accordingly.

The principal limitation of the CM parser is that it doesréve access to the entire sentence when
making each parsing action, and a number of other approdehe&smodified or augmented the
CM parser to address this. Dyer et al. (2015) and Ballestrak (2016) replace the input to the
feedforward network—which in the CM parser is a concatematif embeddings—with the output
of LSTMs over the stack, buffer, and previous actians. Wetss. (2015) and Andor et al. (2016)
achieve state of the art performance by instead augmentvithia beam search and a CRF loss so
that the model can avoid committing to partial parses that kvidence might reveal to be incorrect.

2.2 CGRAPH-BASED NEURAL PARSING

Transition-based parsing processes a sentence seqglyetatibuild up a parse tree one arc at a
time. Consequently, these parsers don’t use machine tepfar directly predicting edges; they
use it for predicting the operations of the transition aigyon. Graph-based parsers, by contrast,
use machine learning to assign a weight or probability tdgaussible edge and then construct a
maximum spaning tree (MST) from these weighted edges. Becthese general-purpose MST
parsing algorithms are deterministic, they don't have ss¢e any information about the sentence
other than the weight of each arc, so interactions betweedsind phrases need to be captured in
the process that produces the weights.

Kiperwasser & Goldberg (201 6) take a graph-based appr@achural dependency parsing that is
in many ways reminsicent of attention in neural machinedliation as described by Bahdanau et al.

(2014). In the attention model bf Bahdanau ét al., the recuwutput vector!**"9¢ of the current

%

word ¢ being generated in the target translation is concatenattidtiae recurrent output vector
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r{*um°®) of each word in the source senteficand the result is fed into an MLP with a single linear
output node representing the score of target walijning to source worg:

hij — MLP (I_Etarget) @ I_;source)) (1)

Sij = uThij (2)

Kiperwasser & Goldberg (2016) effectively apply this metisan to dependency parsing, where the
word that a given token most strongly attends to is integatets its head. They use a bidirectional
LSTM to generate a recurrent output veatpfor each word;, and for each pair of words j, they
use the same kind of MLP to compute the score of widrding a dependent on wojd
h{?™ = MLP((r; @ ;) ®3)

{7 = uT @
The predicted tree structure is then the tree where each wdepends on the worg with the
highest score;;. They train this model using a hinge loss to maximize the margtween the gold
tree and the highest scoring incorrect tree.

S

Dependency relations are predicted in a similar fashionntibdel concatenates with its gold (or

at test time, predicted) head word’s recurrent output vestg and feeds that concatenation into
another MLP[(b) with an output layer that generates a scaredoh possible dependency relation
(@), which they also train according to a hinge loss. They firat this setup gets excellent results
on English and Chinese dependency parsing tasks.

by = MLPCD(x; or,,) (5)
rel rel re
st = UR{") 4 pred (6)

Cheng et al.|(2016) similarly propose a graph-based nee@grtdency parser, but in a way that
attempts to circumvent the limitation of graph-based parbeing unable to condition the scores of
each possible arc on previous parsing decisions. In additidiaving one bidirectional recurrent
network that computes a recurrent hidden veetdior each word, they have additional, unidirec-
tional recurrent networks (left-to-right and right-tdt)eéhat keep track of the probability of previous
parsing decisions, and use these together to predict thessfoy each arc.

3 PrROPOSEDMODEL

3.1 DEEP BIAFFINE PARSING

The traditional attention mechanism|of Bahdanau et al. 4@ not the only one that has been
proposed in the literature; Luong et al. (2015) argue fosstuiing the MLP in the attention mech-

anism with a single bilinear transformation, mapping thigéarecurrent output vectmgmget) and
the source recurrent output vectéf“’““e) to a score for the alignment:
Sij = r;r(target) Urg_sou'rce) (7)

The straightforward application of this to dependency ipgrsvould be to define the score of a
potential dependency arc as a bilinear map between the depeand the potential head.

SE?TC) = r;r Ur; (8)
However, there are at least two disadvantages of using tharent vectors directly. The first is
that they contain much more information than is necessargeizulating the value of;;—because
they’re recurrent, they also contain information neededcédculating scores elsewhere in the se-
guence. Training on the entire vector then means trainirsgperfluous information, which is likely

1In this paper we follow the convention of using lowercasédttetters for scalars and indices, lowercase
bold letters for vectors, uppercase italic letters for ioas, uppercase bold letters for higher order tensors. We
also maintain this notation when indexing; so rbaf matrix A would be represented as.
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Figure 2: Deep biaffine neural dependency parser applidtetedntence “Casey hugged Kim”. We
concatenate a vector of onesh* <-4r) to make the scorer biaffine rather than bilinear.

to lead to overfitting. The second disadvantage is that tterrent vector; consists of the concate-
nation of the left recurrent state; and the right recurrent staie;, meaning using; by itself in the
bilinear transformation keeps the features learned bywod ISTMs distinct; ideally we'd like the
model to learn features composed from both. We can addrés®bihese issues simultaneously by
first applying (distinct) MLP functions with a smaller hidusize to the two recurrent statesand

r; before the bilinear operation. This allows the model to comalhe two recurrent states together
while also reducing the dimensionality. We call thidesepbilinear attention mechanism, as opposed
to shallowbilinear attention, which uses the recurrent states dyrect

hgarc—dep) _ MLP(arc—dep) (ri) (9)
h(.arc—head) -M Lp(arc—head) (rj) (10)

J

We also make a smaller change to the bilinear attention nmésna In a traditional classification
task, the distribution of classes is often uneven, so thputlddyer of the model normally includes
a bias term designed to capture the prior probabifity; = ¢) of each class, with the rest of the
model focusing on learning the likelihood of each classgive dataP(y; = c|x;). In dependency
parsing, the distribution of dependents is similarly umevenany words have a global tendency to
attract dependents (e.g. verbs, which frequently take nd@mendents) and others have a global
tendency to deter them (e.g. function words, which genetadlve no dependents). In order to
capture the prior probabiliti?(y; = j|r;) of a word taking any dependent (rather than the likelihood
P(y;, = j|ri, r;) of a word taking a dependent given what the potential deparisle we include a

bias term linear irhg.‘"c'he“d), making it a baffinetransformation rather than alibiear one.
SE?TC) _ h;r(arc—dep)U(arc)h;arc—head) (11)
arc arc-head
1w T(@rop(are-head) (12)

As with|Kiperwasser & Goldberg (2016), the predicted trethésone where each word is a depen-
dent of its highest scoring head. This model can be trainéld avihinge-loss or a cross-entropy
objective; here, we use cross-entropy. Fidure 2 shows omfigemation of the proposed model.

3.2 DEEP BIAFFINE CLASSIFICATION

In order to predict the labels, we use a parallel mechanisdeép biaffine attention. We want the
label that the model predicts for a given word to be condétbon that word’s head (e.g. we want
a word like “fast” be classified as an adverbial modifier whtedeipends on a verb, but not when
it depends on a noun). So again, we use MLPs to transform theerent state of the current word
r; and its gold or predicted heag's recurrent state,,, but this time we let the model predict an

4
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array of scores—one for each possible label—by allowinghtilaéfine transformation to map the
two vectors to a third vector rather than a scalar. This can #iso be trained under a hinge loss or
cross-entropy loss objective, and we use the latter.

hg%el—dep) _ MLP(rel—dep) (rz) (13)
B = MLPC ety () (14)
Sl(-Tel) _ hgrel—dep) U(rel)hggzi—cf)zead) (15)
e (e g e (20

+blred) 17)

Again, in our model, the MLPs serve to reduce dimensionaity build features from the two
halves of the last BiLSTM output state. In this part of the mlpdhe term in line[{1I6) captures
global preferences for the kinds of labels weighn take, as well as global preferences for the kinds
of dependents wortls head can take (e.g. articles will have a strong prefertmtake a determiner
label and a noun will have a strongly prefer dependents @ dakerminer or adjectival labels).

3.3 PRACTICAL CONSIDERATIONS

A noteworthy advantage of bilinear or biaffine attentionravaditional attention is that it requires
less memory to compute. Traditional attention requiredieily computing a sizel hidden state for
each ordered pair of words in the lengtBentence; the resulting tenddris (n xn x d)-dimensional.
Bilinear attention, however, can be computed more memfigiently; because it uses matrix mul-
tiplications, it never explicitly computes a fulk x n x d) hidden state. As a result, computing
traditional attention require®(dn?) memory, whereas computing bilinear attention requireyg onl
O(dn + n?) memory. Similarly, the memory complexity of our approachatoel classification is
O(dnc+ n?c)—with ¢ being the number of classes to predict—whereas the contyteixhe tradi-
tional attention approach @&(dn? + cn). As long as the number of labelss significantly smaller
than the length of the longest sequence in the dataset,ilihisdr classification mechanism will also
be more memory-efficient than any variant that concatereatels pair of recurrent output vectors.

Since BILSTMs us&(dn) memory, this choice can noticeably affect the memory resménts of
the network. While our TensorFlow (Abadi et al., 2015) imptntatio§ of a deep biaffine parser
with multiple hidden MLP layers can train with less than 2B&f GPU memory, our implementa-
tion of an otherwise identical parser that uses a traditiatiantion mechanism requires more than
4GB, even with only one hidden MLP layer. Since the attenti@chanism has far fewer param-
eters than the BiLSTMs, the concatenation-based approaaswp using upwards of 33% of its
consumed memory on training a part of the network that cosapiliess than 1% of the parameters,
which is clearly not ideal.

4 EXPERIMENTS AND RESULTS

4.1 HYPERPARAMETER SELECTION

In this section we go in depth into how the different hypegpagters affect parsing performance.
Here we use the Penn Treebank train and validation splits/ected to the Stanford Dependen-
cies using version 3.5.0 of the Stanford dependency cagveeporting unlabeled attachment score
(UAS) and labeled attachment score (LAS). When not otherspecified, our model uses: 100-
dimensional word and tag embeddings with word vectorsailiwgd to GloVe [(Pennington etlal.,
2014) trained on Wikipedia and Gigaword and an 15% chanceajping tag embeddings; 4-
layer BiLSTMs with 300-dimensional left and right LSTMs,ing the form of recurrent dropout
suggested by Gal & Ghahramani (2015) with a 75% keep prababiétween timesteps and a
67% keep probability between layers; a 1-layer 100 dimeraidLP layer with the elu func-
tion (Clevert et al., 2015), also with a 67% keep probahilihe Adam optimizer (Kingma & Ba,

2Using a different framework or implementation could yieltfetent results
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MLP depth
0 1 2
UAS LAS ‘ UAS LAS UAS LAS
2 | 95.03* 93.01*| 94.98* 93.14*| 94.84* 92.95*
4| 95.08* 93.05*| 9524 9337 | 95.19 93.24

BiLSTM depth

Table 1: Effect of network depth on performance. Statiflticsignficant differences between the
highest-scoring model are marked with an asterisk.

2014) with3; = B, = .9 and learning rat@e 3, annealed continuously at a rate of .75 every
2,500 iterations; 120 epochs of training, with batches girapimately 5,000 tokens. Words that
only occur once in the training set are replaced with a spetiblK> token. These hyperparameters
were selected based on a random search followed by furtfieimge using both grid search and
trial-and-error. The performance of the different hypeapaeter configurations is shown in Table 1
and TableP.

4,1.1 DePTH

First we examine how making the network deeper affects pmdace, since all other models dis-
cussed hereuse two-layer neural networks (except Cheh2046), who use one-layer networks).
We test using two or four BILSTM layers, and zero, one, or twoPMayers after the last BILSTM.
What we find is that making the network deeper improves perémice to an extent—when the BiL-
STMis shallow, adding an MLP doesn't significantly improwformance, presumably because the
dimensionality reduction limits its representative poteer much—but when the BILSTM is deeper
and can learn more abstract features, dimensionality tedusuccessfully helps the model avoid
overfitting. Using a deeper MLP, however, actually hindesdgrmance. The training accuracies of
the two- and four-LSTM models with two-layer MLPs are conalde, suggesting that the deeper
network isn’'t overfitting. Instead, it seems more likelytttize biggest gain from the MLP layer is
dimensionality reduction rather than adding significamtifer nonlinear abstraction, so the second
layer serves only to needlessly distort the informationied by the LSTM.

It should be noted, however, that the increase in accuraeg dome with a cost—while the two-
layer LSTM can parse about 1000 sentences per second on diaVian X GPU machine, the
four-layer one can only parse about 500 sentences per selahading dimensionality reduction,
however, speeds up parsing by about 50 sentences per second.

4.1.2 ATENTION MECHANISM

Next, we compare three attention-based scoring mechasisinse our model uses a very different
hyperparameter configuration from Kiperwasser & Goldksenge implemented the concatenation-
based attention mechanism in addition to our deep biaffiee blowever, the biaffine layer of our
parser ha®)(d?) parameters and the last layer of the concatenation-basedamonlyO(d). In
order to ensure that the extra parameters in our model dafhieince the outcome, we also train a

special case of our model with@(d)-parameter bilinear layer whet&* <) and each incé],(Ze,l)

is diagonal; for efficiency we also abstain from including imear bias terms. What we find is
that both the full biaffine parser and the smaller diagonaidwr parser significantly outperform the
concatenation-based one.

4.1.3 RECURRENT CELL

We also tested to see how the choice of LSTM or GRU affectopmdnce. However, we found that
GRUs were unable to train with recurrent dropout, with theslexploding after a few iterations of
training even under a lower learning rate. Greff et/al. (JGLBgest modifying the formulation of
LSTMs to make them more GRU-like by using a coupled inpugiédgate (CifLSTM), but retaining
the output gate of the vanilla LSTM. We thus modified the folation slightly to remove one of
the tanh nonlinearities—which is not needed when using alatgpgatez; (18 -[I9)—and trained
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Attention UAS LAS Recurrentcell UAS LAS
Biaffine 95.24 9337 | LSTM 95.24  93.37
Diag Bilinear 95.14  93.24| Cif-LSTM 95.20 93.31
Concat 94.96* 93.03% GRU - -

Adam UAS LAS | Tag dropout UAS LAS
B =.9 9524  93.37 | 85% keep 95.24  93.37
B2 = .999 94.93* 93.05*| 100% keep 94.99* 93.08*
GD 89.31* 86.59*| 0% keep 94.90* 92.97*

Table 2: Effect of select hyperparameters on performantaisScally signficant differences from
the highest-scoring model are marked with an asterisk.

parsers using them.

Cy = it ® tanh(at) + (1 — ft) ®cCci—1
=2z 0a;+ (1 —2z)Oci

Vanilla LSTM cell
Cif-LSTM cell

(18)
(19)

Critically, CifLSTM cells were able to train with dropout gpite of sharing one simplification to
LSTMs that GRUs have; the reason why GRUs failed to train atroertainly has to do with scaling
up the hidden state at training time. When using the dropmieteh state to compute the activations
for the gates and next hidden state, the previous hiddemsézids to be scaled up by the inverse of
the keep probability in order to ensure that the expectadaditins at training time are the same as
the actual activations at test time (Srivastava et al., [pOfHéwever, because the GRU cell always
reveals its hidden state and uses the update gate to re¢avalile of the hidden state across steps,
scaling up the hidden state at every step in the sequeneases the magnitude of the the activations
exponentially. Because of LSTMS’ distinction between tek state and the hidden state, they don’t
suffer from this problem to nearly the same extent.

One recently proposed alternative to dropout, zoneoutdfeuet al.. 2016), would address this
issue with using dropout in GRUs—however, we leave experiimg with this for future work.

4.1.4 COPTIMIZATION ALGORITHM

We choose to optimize with Adam (Kingma & |Ba, 2014), which g&@ moving average of the

L, norm of the gradient for each parameter throughout traiaimg divides the gradient for each
parameter by this moving average, ensuring that the matmitd the gradients will on average
be close to one. However, we find that the value ferecommended by Kingma & Ba—which

controls the decay rate for this moving average—is too higthen this value is very large, the

magnitude of the current update is heavily influenced by ainger magnitude of gradients very far
in the past, with the effect that the optimizer can’t adaptkjy to recent changes in the model. Thus
we find that setting, to .9 instead 0f999 makes a large, positive impact on final performance.

4,1.5 TAG DROPOUT

All models under consideration here—including our own—B&S tags as input. While we find
training on POS tags to be very helpful for final performarwe,want to ensure that our model
doesn’t overfit to specific sequences of POS tags and we wanstare that it remains robust to up-
stream tagging errors. So to keep our model from dependmbeavily on POS tags, we randomly
drop them 15% of the time, finding this to noticeably improegfprmance.

4.2 MODEL COMPARISON
4.2.1 DATASETS

In this work we show test results for the proposed model cegtiatasets, coming from two sources:
the English Penn Treebank, automatically converted fronstituency trees into Stanford Depen-
dencies using both version 3.3.0 and version 3.5.0 of thef@t Dependency converter (PTB-SD
3.3.0and PTB-SD 3.5.0); and the Chinese Penn Treebanlbomérsi (CTB 5.1), automatically con-
verted from constituency trees into the CoNLL 2007 depengémrmat with Penn2Malt. PTB-SD
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English PTB-SD 3.3.0 Chinese PTB 5.1

Model UAS LAS UAS LAS
Dyer et al. (2015) 93.1 90.9 87.1 855
Ballesteros et al. (2016) 93.56 91.42 87.686.21
Kiperwasser & Goldberg (2016) 93.9 91.9 87.6 86.1
Cheng et al. (2016) 94.10 91.49 88.1 857
Weiss et al. (2015) 94.26 92.41 - -
Andor et al. (2016) 94.61 92.79 - -
Deep Biaffine 95.44 93.76 90.07 85.98
Deep Biaffine, SD 3.5.0 95.66 94.03

Table 3: Results on the standard English PTB and Chinese Bigihg datasets

3.3.0and CTB 5.1 are datasets standardly used in other depenparsing work over the past four
years, and PTB-SD 3.5.0is an updated version of PTB-SD.343.& standard, we omit puncuation

from evaluation and use predicted POS tags for the Englighd@faset—generated from the Stan-
ford POS tagger (Toutanova et al., 2003)—and gold POS tagiséddChinese PTB dataset. Note that
in the previous section we reported validation scores on-BDB3.5.0, but in this section we report

our test scores on PTB-SD 3.3.0 and compare those to thoskeasfapproaches in the literature, in

order to keep the hyperparameter choices fairly indeperafehe test set. Word embeddings for
Chinese were generated using Word2Vec (Mikolov et al., 20h3Thinese Wikipedia.

4.2.2 ReEsULTS

Here, we compare our model to a number of others in the litezathe models of Dyer et al. (2015)
and Ballesteros et al. (2016), which use LSTMSs to generaterfes for a transition-based parser; the
models of Weiss et al. (2015) and Andor et al. (2016), whicinaent the CM parser with a beam
search and a globally normalized CRF objective functiow{ldiperwasser & Goldberg (2016) and
Cheng et al. (2016), which like this work uses BiLSTMs to gatefeature embeddings used for an
attention-based parser.

What we see is that, with the exception of LAS on CTB 5.1, ouplementation achieves state-
of-the-art results by a fairly substantial margin. It'salsorth pointing out that our parser also
performs better on PTB-SD 3.5.0 and 3.3.0. While it's pdssthat this is in part because we
tuned on 3.5.0, we think it probably represents improvesienthe dependency representation and
converter quality between version 3.3.0 and 3.5.0.

On the CTB labeled attachment score, our model underpesfetate-of-the-art in spite of getting
state-of-the-art unlabeled attachment results. We hageptvgsible explanations for this: the first
is that our pretrained embeddings were inferior to thosel lsethe other researchers, and don't
capture label information as well; the second, which we feeahore likely, is that the POS tag
dropout prevented the model from heavily relying on tags akenlabel predictions. Since ours
and all other models considered train and evaluate on ggk] this regularization likely hurts the
model’s ability to learn the high correlation between gads and labels. Since in practice models
won'’t have access to gold tags, we don't see this as a pointagdmaeoncern, but future research
will need to substantiate this hypothesis.

5 CONCLUSION

In this paper we proposed using a modified version of bilirg#ntion in a neural network depen-
dency parser, and showed that our approach outperformtedaftéhe-art by a fairly large margin.
We also discussed in detail some of the hyperparameterehdiat we found to make a critical
difference in end performance: we find that deeper netwdrksuw LSTM layers outperform shal-
lower networks of two LSTM layers when using our deep biaffitention mechanism; we find
GRU cells to have significant difficulty training with dropobut LSTMs (vanilla or with a coupled
input-forget gate) have no trouble; we argue that the degatings for the Adam optimizer should
be tweaked; and we demonstrated tag dropout to be effe¢titere work will explore the perfor-



Under review as a conference paper at ICLR 2017

mance of this parser on a wider variety of languages andce&dlysfor morphology-rich languages,
augment it with a smarter way of handling out of vocabulaketts.
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