
Investigation on how to improve the performance of LID system under low-resource and multi-domain 

conditions. 

Abstract 

low-resource and multi-domain are enormous challenges of the spoken language recognition(LID), 

but there are seldom studies on this issue so far. Thus this paper focuses on investigate how 

to improve the performance of LID system under low-resource and multi-domain condition. This paper 

applies different systems including traditional iVector system and xVector system used in speaker 

recognition. The acoustic representations MFCC and Fbank. Additionally, the bottleneck feature, 

different backend scoring and data augmentation are also applied in this paper. Moreover, we are 

first to utilize Multi-language BN and domain adaptation based on the distribution of in-domain 

and out-of-domain data in this task. In the post-evaluation analysis presented here, we try several 

variations of the language system, and find that the best performing system is bottleneck features 

with domain adaptation and Logistic regression(LR) classifier. 

Index: low-resource, Multi-domain, Multi-language BN, Domain adaptation, LID 

 

1. Introduction 

Spoken language identification(LID) is expanding the broad range of applications to automatically 

determine which language is the given utterance. Generally speaking, there are two main LID 

categories: the acoustic and phonotactics approaches [1, 2, 3, 4]. The acoustic approach extracts 

discriminative features from the speech signals and build models with these features, such as 

Gaussian mixture models(GMMs) [5],to determine the language identity. The phonotactics approach 

is usually accomplished by phone recognition followed by language modeling (PRLM) [6]. Firstly, 

decoding the utterance into a sequence of phones, then an interpolated n-gram language model is 

used to estimate the probability of the obtained phone streams. The probability is often different 

for different languages to be identified. It can also be extended to Parallel-PRLM (PPRLM) which 

is incorporating multiple language dependent phone recognizers and building the corresponding 

set of language models [3]. LID typically focuses on a single domain during evaluation of unseen 

data. However, some languages are low-resource and it is hard to collect enough data on the same 

channel. This problem motivates the development of novel approaches that the knowledge distilled 

from the source domain can be transferred to the target domain. 

   In this paper, we investigate on how to improve the performance of LID system under low-resource 

and multi-domain condition. The systems rely on five types of vectors to represent speech from 

audio recording: mfcc-iVectors, fbank-xVectors, BNFs-xVectors, Multi-languages BNFs xVectors and 

domain adaptation xVectors. We find out two main advantages with Multi-language BNFs. First, these 

units are defined universally across multiple languages [4,7,8]. As a result, it alleviates the 

problem missing phones in the front-end phone recognizer of PRLM systems [3]. It facilitates 

sharing of speech data from different languages to enhance the modeling capability. Second, 

different acoustic definitions often exhibit complementary discrimination power. For each 

individual system, different acoustic features and models are adopted, and the overall performance 

is often additive when they are combined. The advantages of domain adaptation are especially 

prominent in out-of-domain data sets, it is discriminative for the main learning task on the source 

domain and can adapt to different channels. 

In Session 2, we first describe the training and test data setup followed by a description 

of the two methods to solve the low-resource and multi-domain problem: Multi-language BNFs and 



domain adaptation; In Section 5, the experimental setup is described; In Section 6, the results 

is represented; And in Section 7, the conclusions are derived. 

2. Corpora 

2.1 Training data 

The experimental training set corpus are taken from the 2018 Oriental Language Recognition 

Competition, which was jointly organized by Tsinghua University and Haitian Ruisheng Company [9]. 

The corpus is provided by Haitian Ruisheng and contains 10 languages. The channel source of the 

voice is the traditional telephone channel with a frequency of 16 kHz. Each language is about 

10 hours, and the gender ratio of men and women is 1:1. In order to emphasize the influence of 

data on language recognition, this experiment divides the data set into training data of four 

data equilibrium quantity sets, which are 25h, 50h, 75h, 106h, and are named respectively train_25h 

train_50h, train_75h, train_106h.  

2.2 Evaluation 

Our evaluation consists of two distinct datasets: in-domain test sets and out-of-domain test sets. 

The in-domain database is the standard test set for AP18-OLR, which contains the same target 10 

languages, containing 1800 utterances each. The signals are recorded by mobile phones with a 

sampling rate of 16 kHz and a sample size of 16 bits. The out-of-domain test sets are downloaded 

from the Internet，which contains the target 6 languages, containing about 1800 utterances each. 

Before extracting the features of the out-of-domain test speech segment, the parameters of the 

speech are normalized to a sample rate of 16 kHz, a sample size of 16 bits and saved in wav format. 

The training set and the in-domain and out-of-domain test sets are divided as Table 1. The total 

duration of the training data is 106.58h, the total duration of the in-domain data in the set 

is 34.05h, and the total duration of the out-of-domain data is 15.71h. 

3. Multi-language BNFs 

In this paper, we explore fusion of multiple systems with different speech units due to the 

advantage and complementarity of universal speech attributes to language-dependent phonemes. The 

accuracy of phone recognizer is critical, but not the only factor for LID performance in the 

phonotactic approaches. In other words, it is fine to model the phonemes in the language model 

based on the assumption of similarity between these two language if a phoneme of another language 

to be recognized is always recognized as the one in the phone set designed for the phone recognizer. 

It is quite common for spoken languages in different language families that the phonemes cannot 

be represented well in language modeling if some phonemes are very different from the language 

for phone recognizer. 

We could relieve this problem by using attribute units that are potentially language-universal 

across all spoken languages. Meanwhile, a single LID system may not achieve the comparable 

performance of a PR based LID system [10]. Because the size of the attribute inventory for manner 

or place of articulation is small. In this study, we show the complementary nature of speech 

attribute detectors to phone recognizers by fusing multiple language BNFs with phones and 

attributes. 

4. Domain adaptation 

The domain adaptation(DA) is to solve the target domain data insufficient (and possibly unlabeled) 

problem while source domain data(assumed labeled and sufficient for training a model) should be 

leveraged as well for training a model from scratch. Despite the differences in the marginal 



distributions of the two domain, the knowledge distilled from the source domain can be transferred 

to the target domain. Due to the target data being weakly-labeled or even unlabeled, conventional 

approaches such as fine-tuning a source domain model to the target domain data may fail in many 

settings  

   Researcher pay more attention to DA method. Because many real-word applications large amounts 

of target domain labeled data are rarely available. Hence, for training the new models which 

require several thousands of training utterances, resorting to large out-of-domain corpora and 

using the small and possibly unlabeled target domain datasets for channel or other types of 

adaptation is necessary. 

In this paper, we study the use of the DA, which approach the problem as a transformation of 

fixed utterance-level representations xVectors. We evaluate this method on the challenging task 

of channel adaptation. Our target is to greatly improve the accuracy of the out-of-doamin test 

data when the accuracy in in-domain test data is not greatly reduced. Finally, we utilize large 

amounts of source training data to training xVector extractor，and utilize very small amount 

annotate out-of-domain data to get xVectors of each language. 

5. Experiment setup 

We build several systems to investigate how to improve the performance of LID system under 

low-resource and multi-domain condition. All systems are built using the Kaldi speech recognition 

toolkit [11]. 

5.1 Baseline 

iVector: Our acoustic-feature baseline system is a traditional iVector system. This system is 

based on the GMM-UBM recipe described in [12]. The features are 13 MFCCs with a frame-length of 

25ms. They are mean normalized over a sliding window of up to 3 seconds. Delta and acceleration 

are appended to create 39 dimension feature vectors. An energy-based speech activity detection 

(VAD) system selects features corresponding to speech frames. The UBM is a 1024 component 

full-covariance GMM. The system uses a 400 dimensional iVector extractor. 

xVector: The xVector system is based on a framework that developed for speaker recognition [13]. 

The recipe is based on the SRE16 v2 recipe available in the main branch of Kaldi as 

https://github.com/kaldi-asr/kaldi/tree/master/egs/sre16/v2. The feature learning component is 

a 5-layer time-delay neural network (TDNN). The statistic pooling layer computes the mean and 

standard deviation of the frame-level features from a speech segment. The size of the output layer 

is 10, corresponding to the number of languages in the training set. Once trained, the 

512-dimensional activations of the penultimate hidden layer are read out as an xVector.  

5.2 features 

5.2.1 Acoustic features 

The acoustic features are 39 mfccs with a frame-length of 25ms in iVector systems and 40 fbanks 

in xVector system. 

5.2.2 English BNFs 

It is difficult to extract the latent language information because of the diverse variations in 

speech utterances caused by different speakers, channels and banckground noise. It is most 

important to find effective representations of language information. 

The language models are trained by alignments provided by a standard chain ASR model. 1300h 

of training data is used, and its input features are 40 fbanks. The dnn has 11 layers, and its 



total left-context is 21 and right-context is 21. The softmax output layer computes posteriors 

for 5297 triphone states. Excluding the output layer, the dnn has 19.96 million parameters. 

5.2.3 Multi-language BNFs 

For the multi-domain condition, we use 256-dimensional BNFs extracted from an ASR DNN trained 

on multiple languages. Including the bottleneck layer, the DNN has the same architecture as Section 

5.2.2.It also uses the same features. 

The DNN is trained on 2 languages (Chinese and English). Among them, English ASR model is same 

with Section 5.2.2. Chinese ASR model is trained with 3000h training data, which architecture 

is same with English ASR model except that the posteriors is 5984 triphone states. 

5.3 Classifer 

Cosine: Simple cosine distance  

Pos: Direct classification of xVector 

Lr : Logistic regression 

L-PLDA: LDA-based projection (9-dim in in-domain and <=9-dim in out-of-domain) plus PLDA scoring.  

5.4 Data augmentation 

The data augmentation methods to increase the amount and diversity of the iVector training data 

and the xVector DNN training data are as follows: speed perturbation, volume perturbation, 

reverberation and additive noises.  

   Speed perturbation is using a specified speed factor[14] to change the speed of the speech 

signal. Reverberation is convolving room impulse responses (RIR) with audio. For additive noise, 

we use the MUSAN dataset, which consists of over 900 noises, 42 hours of music from various genres 

and 60 hours of speech from twelve languages[15]. Both MUSAN and the RIR datasets are from 

http://www.openslr.org.  

   Finally, we use two ways of data augmentation, one is superimposed, which consists of 2-fold 

augmentation that combines the original “clear”training data with 1 mixed noise of multiple 

noises. The other is combined, which consists of 5-fold augmentation that combines the 

original“clean”training data with 4 copies of augmented data. To augment a recording, we 

randomly choose between one of the following: 

• Speed perturbation: apply 1.1 times or 0.9 times speed of the original recording. 

•  Volume perturbation: the volume of the recording be chosen randomly to be between 

scale-low=0.125 and scale-high=2. 

• Reverberation: the artficially reverberated data is convoluted with  simulated RIRs. 

• Babble: adding the summation of the speech from several speakers randomly selected from MUSAN[16] 

to the to the original signal (13-20dB SNR) 

• Music: adding a randomly selected music file from MUSAN to the original signal (5-15dB SNR). 

• Noise: adding MUSAN noises at one second intervals throughout the recording (0-15dB SNR). 

6. Result 

The evaluation standard is the accuracy metric. In the following tables, scores from each data 

source (in-domain or out-of-domain) or language have been balanced and contribute equally to the 

metric.

6.1 Baseline 

In this section, we compare the performances of two state-of-the-art joint iVector systems and 

the xVector system in different duration of training data and different channels of test data. 

http://www.openslr.org/


MFCC is the input feature of the system iVec_mfcc_lr. Fbank is the Fbank of the xVector_fbank_lr. 

And their back-end is LR. 

system in-domain Out-of-domain 

25h 50h 75h 106h 25h 50h 75h 106h 

iVec_mfcc_lr 71.43 84.00 88.05 90.62 31.94 37.28 40.15 37.51 

xVec_fbank_lr 61.70 76.76 82.87 86.34 31.05 35.56 37.76 35.48 

Table 1: comparing the accuracy of different durations of training sets in in-domain and out-of-domain. All systems 

conform to the fixed training condition. 

   In Table 1, we find that the smaller the amount of training data, the lower the accuracy in 

the in-domain. And the accuracy of out-of-domain is much lower than in-domain on same training 

data. Overall, in xVec_fbank_lr, the accuracy of in-domain in train_106h is 64.04% which is better 

than out-of-domain in train_25h. The experimental results above demonstrate the influence of 

low-resource and cross-channel on the accuracy of language recognition. 

6.2 Classification Analysis 

In this paper, we use four back-ends classifer as session 5.3. 

system in-domain Out-of-domain 

25h 50h 75h 106h 25h 50h 75h 106h 

xVec_fbank_pos 58.00 72.77 78.92 81.66 27.98 30.07 28.60 28.73 

xVec_fbank_cos 58.21 66.08 72.11 72.42 21.84 22.45 24.36 23.44 

xVec_fbank_lr 61.70 76.76 82.87 86.34 31.05 35.56 37.76 35.48 

xVec_fbank_lplda 65.92 82.34 87.15 89.83 36.11 37.44 39.05 38.43 

Table 2 comparing the accuracy of different back-ends on xVector  

The xVector framework is based on [13] aiming to produce embeddings that generalize to unseen 

speakers. However, in a closed-set LID task, the xVector can classify directly. It is trained 

on the same language classes as required for deployment. In this section, direct classification 

is compared with embeddings extracted from the same system. 

   In table 2, we can find that the performance using embeddings to train the lr or lplda classifier 

is much better than using the system directly for classification in out-of-domain. Particularly, 

the direct system appears to suffer from the limited amount of same training data as the in-domain 

test set channel. It is 14% better on train_25h while xVec_fbank_lplda is only 10% better than 

xVec_fbank_lplda on tain_106h. Although it is likely that the direct results could be improved 

with hyper-parameter tuning and calibration in the backend, this emphasize the scalability of 

standard xVector approach. Once extracted, xVectors can be fed into the same pipeline used for 

iVectors, taking advantage of existing classifier and backend technology that assists in domain 

adaptation and calibration. 

6.3 Data Augmentation 

In this section, we test the importance of augmenting the iVector and xVector DNN training data. 

The system iVec_mfcc_2f_lr uses 2-fold superimposed augmentation，and iVec_mfcc_5f_lr uses 5-fold 

combined augmentation. The system xVec_fbank_5f_lr uses 5-fold superimposed augmentation. In 

either system, the features are fbank which still uses the same augmentation strategy as described 

in section 5.4. 

system in-domain Out-of-domain 

25h 50h 75h 106h 25h 50h 75h 106h 

iVec_mfcc_lr 71.43 84.00 88.05 90.62 31.94 37.28 40.15 37.51 



xVec_fbank_lr 61.70 76.76 82.87 86.34 31.05 35.56 37.76 35.48 

iVec_mfcc_2f_lr 69.89 76.46 87.83 89.25 25.23 31.27 44.94 46.74 

iVec_mfcc_5f_lr 72.52 86.54 90.09 91.83 43.31 44.61 44.86 45.36 

xVec_fbank_5f_lr 62.05 76.89 83.07 89.89 33.57 36.43 37.97 43.73 

Table 3 comparing the accuracy of different data augmentation on xVector 

2f: 2-fold superimposed augmentation 

5f: 5-fold combined augmentation 

   In Table 3, we observe that augmentation using 2-fold significantly degrades in in-domain, 

which may have been corrupted by noise due to raw data. And removing augmentation degrades 

performance significantly. Due to augmentation increasing the limited amount of training data, 

the system is more robust against degraded audio. This result parallels training xVectors for 

speaker recognition in [16].  

6.4 BNFs Analysis 

The goal is to maximize the distinction between different languages of the xVector system. 

Obviously, the system only focuses on the inter-class dispersion of language, and ignores the 

intra-class cohesion of the language. The learned language features have the problem of 

intra-class divergence as shown in Figure(a). So it attempts to introduce prior knowledge or 

constraints in the network training process to keep the structure of the basic model as constant 

as possible, and further enhance the characterization ability of the learned language features. 

In this paper, the phoneme information is introduced, so that the linguistic features are 

compensated for the prior knowledge of the phoneme in the learning process to solve the problem 

of the volatility of the linguistic features caused by the pronunciation content and the speaker. 

In Figure (a) and (b), the BNFs in our tasks makes each language more convergent and distinguishing. 

 

(a)                      (b) 

Figure 1  The effect of BNFs on the distribution of the extracted features(best viewed in color). The figure shows t-sne visualizations 

of the xVectors embeddings (a) in case when xVector-fbank (b) in case when xVector-BNF. 

system in-domain out-of-domain 

25h 50h 75h 106h 25h 50h 75h 106h 

xVec_fbank_lr 61.70 76.76 82.87 86.34 31.05 35.56 37.76 35.48 

xVec_fbank_5f_lr 62.05 76.89 83.07 89.89 33.57 36.43 37.97 43.73 

xVec_enbnf_lr 93.72 97.66 98.31 98.41 59.13 60.78 61.02 64.22 

Fus         

Table 4 Comparing Fus with others. Fus represent the combination of xVec_fbank_5f and xVec_enbnf. 

In Table 4, We observed that only a single English ASR model was used during the experiment. 

The accuracy of in-domain is nearly 52% better than the xVec_fbank in train_25h. And the accuracy 

of train_25h is only about 4% lower than train_106h. It seems that the BN feature combined with 

the xVector system have solved the problem of low-resource. In out-of-domain, the accuracy of 

xVec_enbnf is 90% better than xVec_fbank in train_25h.It can be seen that the addition of shared 

language information greatly solves the low-resource and multi-domain problem. 



Finally, the impact of data augmentation on xVec_enbnf is also explored. Experiments show that 

adding augmentation is 2% better than removing augmentation. 

System 

en cn 

in-domain out-domain in-domain out-domain 

fbank 61.7 31.05 61.7 31.05 

output-xent.linear 93.72 59.13 96.81 64.51 

output.linear  94.04 56.5 96.51 53.87 

prefinal-l 94.35 55.09 96.53 57.85 

tdnn8l 88.96 45.25 89.83 40.6 

Table 5 Comparing different layers, under different ASR models 

In Table 5, we also compare the effects of different extraction layers of different language 

models to the LID. It shows that the performance of Chinese ASR model is better than the English 

ASR model. Because the Chinese ASR model has more training data and the accuracy of phone recognizer 

is higher. In out-of-domain, BNFs extracted from output-xent.linear is best regardless of the 

ASR model. 

6.5 Multi-language BNFs 

It has been well documented that xVector-based LID systems improve the accuracy greatly by using 

the phoneme information extracted from ASR model. In this section, we show the performance of 

multi-language BN by comparing systems trained on English BNFs(xVec_enbnf) and Chinese 

BNFs(xVec_cnbnf). The description of these features is shown in Section 5.2. 

system in-domain out-of-domain 

25h 50h 75h 106h 25h 50h 75h 106h 

xVec_enbnf_lr 93.72 97.66 98.31 98.41 59.13 60.78 61.02 64.22 

xVec_cnbnf_lr 96.81 98.53 98.65 98.91 64.51 64.53 66.40 68.99 

Multi-language BN 97.62 98.98 98.99 99.06 65.02 65.22 68.95 70.14 

Table 6 Comparing xVector performance using Multilingual BNFs. 

   In Table 6, we find that Multi-language BNFs much better than single-language 

BNFs. In out-of-domain of train_75h, the accuracy of Multi-language BNFs is 13% 

better than EN-BNFs.  

6.6 Domain adaptation 

The BNFs maps each language to the phone-related subspace. The distribution of in-domain and 

out-of-domain data under the BNFs is shown in Figure 2. We can find that the edge distribution 

of in-domain and out-of-domain data is different. However, the out-of-domain data is equivalent 

to the convergence of the in-domain data if there are no four languages, 0, 3, 4, and 6. 

 

Figure 2 The distribution of xVector-BNFs. The frame represents the in-domain data. 

0-Kazak, 1-Tibet, 2-Uyghu, 3-ct-cn, 4-id-id, 5-ja-jp, 6-ko-kr, 7-ru-ru, 8-vi-vn, 9-zh-cn 



system in-domain out-of-domain 

25h 50h 75h 106h 25h 50h 75h 106h 

xVec_enbnf_lr 93.72 97.66 98.31 98.41 59.13 60.78 61.02 64.22 

Train+12min 98.90    79.85    

Adapt 94.33 95.43 96.80 98.56 92.61 92.95 93.22 94.13 

Table 7 Comparison of the performance using adaptation domain,  

or adding 12min of annotated out-of-domain data to the training data directly 

   In Table 7, the adaptation domain method is much better than the others systems in out-of-domain 

when it is little lower than the others system in in-domain. 

7. Conclusion 

In this paper, we investigate on how to improve the performance of LID system under low-resource 

and multi-domain conditions. Two methods is proposed: One is multi-language BN, which is inspired 

by the advantage and complementarity of universal speech attributes to language-dependent 

phonemes. The other is the adaptation domain, which allows large-scale training based on large 

amount of annotated data in the source domain and little amount of annotated data in the target 

domain. Although the framework can classify directly, we find that this method extracting xVectors 

from the DNN and using them as features for lr classifier produces much better results in 

low-resource and multi-domain condition. We explore several variations of the basic xVector 

framework. We find that bottleneck features improve the performance greatly over acoustic features. 

Echoing similar results in speaker recognition, our experiments showed that augmenting the xVector 

DNN training data was a good choice. Finally, We explored the distribution of in-domain and 

out-of-domain. We find that the relatively distribution of languages in different channels is 

invariant. 
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