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Abstract
In this paper, we present our system for the oriental language
recognition challenge, OLR2021. The challenge this year con-
tained four tasks: (1) constrained language identification (LID),
(2) unconstrained LID, (3) constrained multilingual automatic
speech recognition (ASR), (4) unconstrained multilingual ASR.
Our submission addresses tasks (1), (3) and (4). For task 1 we
adopted the transformer model architecture by incorporating a
language token in a sequence-to-sequence learning paradigm.
We trained two systems using different features and finally com-
bined their outputs. For task 3, we relied on a single end-
to-end multilingual WeNet model trained on noise-augmented
data. Finally for task 4, we developed a cascaded approach by
first performing language identification and then combining the
predictions of various wav2vec, WeNet monolingual and multi-
lingual models either readily available online or trained by our
team. Our systems showed varying performance on the evalua-
tion sets, largely depending on the language.
Index Terms: speech recognition, language identification

1. Introduction
Language Identification (LID) refers to identifying the language
of human speech, and it is usually presented at the front-end of
other speech processing systems, such as the equally important
Automatic Speech Recognition (ASR) i.e., the conversion of
human speech into text. While LID and ASR for Western lan-
guages have been largely studied, oriental languages have been
under-explored. Most interestingly, with the worldwide popu-
lation movement and communication, various multilingual phe-
nomena have emerged resulting in oriental languages influenc-
ing each other via multilingual interaction.

To encourage improving the research on multilingual phe-
nomena and advancing the development of multilingual speech
technologies, the oriental language recognition challenge has
been organized annually since 2016. For OLR2021, four tasks
were proposed. Task 1 constrained LID, is described as “a cross
domain identification task with constrained training condition”
and it pertains to identifying the language of around 32000 ut-
terances from 13 languages, while using only the training data
provided by the OLR organizers. Task 2 unconstrained LID,
is described as “a cross domain identification task with uncon-
strained training condition” with the test data comprising real-
life environments. In practice, Task 2 extends to 17 languages
and allows for using external data or models to solve the prob-
lem. Task 3 constrained multilingual ASR pertains to speech
recognition on the same 32k utterances from Task 1, while al-
lowing using only the data provided by the organizer for the
purposes of training acoustic and language models. Finally, for
the Task 4 of unconstrained multilingual ASR, any data is al-
lowed to be used to train the acoustic and language models.

For Tasks 1 and 2 the principle evaluation metric was Cavg ,
which was defined as the average of the pairwise performance of

test languages, given Ptarget = 0.5 as the prior probability of
the target language. For Tasks 3 and 4 the evaluation metric was
Character Error Rate (CER): the sum of deletion, insertion, and
substitution errors in the ASR output compared to the reference
transcription, divided by the total number of characters in the
reference transcription.

Our team “Huawei Amsterdam” attended the OLR chal-
lenge for the first time this year and applied for three of the four
tasks (1), (3) and (4). The rest of this paper is organized as fol-
lows: Section 2 describes the data preparation process for each
task. Sections 3, 4 and 5 describe the methods used to build
the systems for Tasks 1, 3 and 4 respectively. The results for
the development set are shown in Section 6. Finally, we present
some concluding remarks in Section 7.

2. Data preparation
2.1. Constrained LID and ASR Training Set

For Tasks 1 and 3, additional training materials were forbid-
den to participants, and the permitted resources were several
data sets from previous OLR challenges extended with new
languages. The data sets included thirteen languages, which
were Mandarin (zh-cn), Cantonese (ct-cn), Indonesian (id-id),
Japanese (ja-jp), Russian (ru-ru), Korean (ko-kr), Vietnamese
(vi-vn), Kazakh (Kazak), Tibetan (Tibet), Uyghur (Uyghu),
Shanghainese (Shanghai), Sichuanese (Sichuan) and Hokkien
(Minnan). The data was arranged into train and development
sets of sizes around 105k and 4k utterances respectively. For
the sake of simplicity, we call this data the OLR set.

Before training, we adopted noise addition as a type of data
augmentation to increase the amount, diversity and robustness
of the data. We added a noise sample from the MUSAN col-
lection [1] to each recording at an SNR level randomly selected
from [0, 5, 10, 15] dB. So finally, we had one augmented copy
of the data which was added to the original to obtain a 2-fold
combined train and development set.

2.2. Unconstrained ASR Training Set

For Task 4, we were not constrained to the OLR set. We
therefore decided to additionally use any freely available on-
line sources from Commonvoice1 and/or OpenSLR2. We lim-
ited ourselves to those data repositories due to time constraints.
In Table 1, we present the amount of data in hours that we found
for some of the OLR languages. No noise addition was applied
to this collection of data.

2.3. Transcriptions preparation

Both OLR and freely available data from Commonvoice or
OpenSLR came with noisy transcriptions i.e., they were in-
consistently cased, included punctuation marks and unneces-

1commonvoice.mozilla.org/en/datasets
2openslr.org



Language CommonVoice OpenSLR
id-id 23h -
ja-jp 26h -
Kazak 0.7h -
ru-ru 148h -
vi-vn 3h -
ko-kr - 51.6h

Table 1: Amount of hours of freely available data for six of the
thirteen OLR languages.

sary tags. Prior to training we performed some text cleaning
to alleviate some of those issues. However, the processing was
language-dependant since each language has its own particular-
ities. Unfortunately, for some languages such as Tibetan, pre-
processing was based on merely intuition since our team did not
include any native Tibetan speakers.

3. Constrained LID: System Description
For the language identification of Task 1 we employed trans-
former models. The setup was a typical sequence-to-sequence
transformer configuration, where the inputs are extracted
speech features, and the outputs are expected text transcripts;
the only minor change was that language token was added to
the beginning of the text transcripts, so the model also learns to
predict the language. We use label smoothed cross entropy to
optimize the model.

3.1. Feature Extraction and Text Tokenization

Features were extracted from 16kHz audio data. Two mod-
els were built with different features: the non-pitch system
used 80-dimensional fbank, while the pitch system adds one
additional pitch feature to the 80-dimention fbank feature.
SpecAugment[2] was applied during training.

A character based tokenizer was trained using all the text
transcripts from OLR training data set. In addition, thirteen lan-
guage tokens were added to the dictionary as special tokens.

3.2. Likelihood Combination

The final likelihood was the combination of output from the
pitch and non-pitch systems, weighted by inverse entropy. For-
mally, for the i-th system which outputs P

(j)
i , j = 1, 2, ..., 13

as the likelihoods for all 13 languages, its corresponding weight
wi was calculated as follows:

wi =
1∑13

j=1 P
(j)
i · [− logP

(j)
i ]

(1)

The likelihood for an utterance being the j-th language was the
weighted average of the two systems’ likelihood:

P (j) =

∑2
i=1 wi · P (j)

i∑2
i=1 wi

(2)

4. Constrained Multilingual ASR: System
Description

For Task 3 our aim was to build a single end-to-end model that
can perform multilingual ASR without the need of any LID
prior knowledge.

4.1. WeNet

Our system is based on the WeNet end-to-end model; a U2
model [3] aiming to unify both streaming and non-streaming
ASR. The setup of the WeNet model is similar to that of ESPnet
[4] but with the few modifications most notably in the decoding
strategy. As such WeNet can be described as a hybrid connec-
tionist temporal classification (CTC)/attention architecture with
transformer or conformer as encoder and an attention decoder
to rescore the CTC hypotheses.

Two kinds of acoustic features were used: 80-dimensional
fbank, with 3-dimensional pitch features. In addition to the aug-
mentations applied prior to training (see Section 2.1), SpecAug-
ment was applied during training and a global CMVN technique
was applied on top of the features. Regarding transcription to-
kenization, WeNet uses SentencePiece3 as its default tokenizer
i.e., text splitting into sub-word units. Meanwhile, the OLR
languages can be either word- or character-based. For exam-
ple, modern Korean is written with spaces between the different
words while Japanese is ultimately based on characters with-
out spaces. To accommodate for all languages we used a char-
based tokenization across all transcriptions which resulted to
6861 outputs for our multilingual model. The max trainable
epoch was set to 120 and the last 20 epochs were averaged to
form the final model.

5. Unconstrained Multilingual ASR:
System Description

For Task 4 given its unconstrained nature and the small size of
the original OLR training data, we decided to leverage whatever
materials were freely available at the moment for the OLR lan-
guages. This includes both training data and pre-trained/ready-
to-use models. Our hypothesis was that given a large amount
of models with different predictions and a combination/fusion
strategy, we should be able to achieve a better performance than
any of the individual models.

We employed a cascaded approach (see Figure 1): we first
used our LID system from Task 1. We then computed the ASR
predictions using multiple monolingual or multilingual models
including the WeNet model from Task 3 and various WeNet and
wav2vec models either trained by us or freely available on web-
sites such as HuggingFace4. The monolingual models would
only be used when the LID output agreed with the model’s lan-
guage. Language models (LM) were built and integrated into
the models for some of the languages depending on the text
data availability. All the different models/configurations are
presented in the Table 5. The final prediction was based on
fusing/combining the individual predictions per utterance using
multiple sequence alignment.

5.1. WeNet Models

For Task 4 we used two WeNet models. First, the multilin-
gual model trained specifically for Task 3. This model outputs
a prediction for every input recording. Secondly, a model for
Mandarin (zh-cn) trained on the AISHELL-25 dataset that can
be found on the public WeNet github repository6. The latter
model is based on a unified conformer architecture with a con-

3github.com/google/sentencepiece
4huggingface.co/models?filter=wav2vec2
5aishell-eval.oss-cn-beijing.aliyuncs.com
6github.com/wenet-e2e/wenet/tree/main/examples/aishell2/s0#unified-

conformer-result



Figure 1: Our cascaded approach for Task 4. The prediction of
various monolinguals and multilingual ASR models is combined
to form the final prediction. Monolingual models are triggered
only when the LID prediction agrees with their corresponding
language. For certain languages we use language models typi-
cally trained on Wikipedia data.

former encoder and transformer decoder. It was trained with
fbank features (no pitch) and no speed perturbation. We call this
model “WeNet 20210421 unified conformer”. In our pipeline,
the model would produce a prediction only when the LID output
was zh-cn.

5.2. Wav2Vec Models

Besides WeNet, we used the popular wav2vec 2.0 model [5].
We employed both pre-trained wav2vec models, for the purpose
of finetuning, and already fine-tuned models.

Pre-trained models are implemented in fairseq [6] and can
be found on the public fairseq github repository7. We made
use of the multilingual pre-trained model XLSR-53, trained on
56k hours of unlabeled audio corresponding to 53 languages.
XLSR-53 follows an architecture comprising 24 transformer
blocks with model dimension 1,024, inner dimension 4,096 and
16 attention heads, resulting in a total of 300M parameters.
XLSR-53 can be fine-tuned on labeled data using Connectionist
Temporal Classification (CTC) [7] and a character-based output
vocabulary. We finetuned XLSR-53 for all thirteen languages
individually using two dataset configurations: 1) only OLR data
and 2) OLR data plus Commonvoice or OpenSLR when avail-
able depending on the language.

Already finetuned wav2vec models are freely available on
the HuggingFace model repository. We used seven finetuned
models as shown in Table 2. It should be noted that for the
Korean model we had to convert the predicted text from “jamo”
characters to Hanguls to agree with the OLR format (Korean is
an agglutinative language).

5.3. Language Models

We used Wikipedia8 and the OpenSubtitles corpus9 as our
main sources of text for Indonesian (id-id), Vietnamese (vi-vn),
Japanese (ja-jp), Mandarin (zh-ch), Korean (ko-kr) and Russian
(ru-ru). For the rest of the languages we failed to locate either
valuable text sources or compatible to the OLR format. For
the available languages we trained separate KenLM10 5-gram

7github.com/pytorch/fairseq/blob/main/examples/wav2vec/README.md
8dumps.wikimedia.org
9opus.nlpl.eu/OpenSubtitles-v1.php

10github.com/kpu/kenlm

Language Name
id-id indonesian-nlp/wav2vec2-large-xlsr-indonesian
vi-vn nguyenvulebinh/wav2vec2-base-vietnamese-250h
ja-jp jonatasgrosman/wav2vec2-large-xlsr-53-japanese
zh-cn jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn
ko-kr fleek/wav2vec-large-xlsr-korean
ct-cn ctl/wav2vec2-large-xlsr-cantonese
ru-ru jonatasgrosman/wav2vec2-large-xlsr-53-russian

Table 2: The collection of finetuned wav2vec HuggingFace
models used in our pipeline. All are freely available at hug-
gingface.co.

ARPA language models that were used to decode the output of
the corresponding wav2vec models.

5.4. Multiple Sequence Alignment

After all predictions have been computed for a recording,
we combined/fused them to compute the “consensus” predic-
tion using multiple sequence alignment (MSA). We used the
MAFFT [8] toolkit but made sure that not all initial predic-
tions were assigned equal weights when computing the MSA.
Instead, we assigned weights to each prediction relative to their
overall similarity to the rest.

6. Results
The performance of our systems on the OLR test evaluation set
is currently not known to us. However, we will now present
some results on either the development or progress set i.e., a
collection of 16k recordings for online ranking.

For Task1, the language identification performance was
measured on the development set with added noise. The data
preparation protocol was explained in section 2. Equal error
rate (EER) and Cavg are shown in Table 4.

For Task 3 we present the results for different WeNet mod-
els besides the one submitted for the sake of knowledge sharing.
Table 3 presents the CER on the development of three different
WeNet models of similar architecture. The first model is trained
on 80 fbank features only. The second one is trained on fbank
and pitch features (83 in total). While the last one corresponds
to our multilingual WeNet submitted system trained on fbank
and pitch features on top of noise augmented data. We observe
that addition of the pitch features is beneficial for most of the
OLR languages besides Russian and Tibetan; a result largely ex-
pected due to Russian’s and Tibetan’s atonal nature. Regarding
the effect of the noise augmented data, we observe that certain
languages show slight improvement while others slight degra-
dation. Nevertheless, for the sake of robustness we decided to
submit the noise augmented model, expecting more challenging
recordings in the test set.

For Task 4, it is first worth discussing the performance of
the individual models on the development set where the record-
ings’ language is known i.e., LID is not required. Table 5
presents the CER scores of all models (monolingual and mul-
tilingual) used in our pipeline for all the OLR languages of the
task. A number of interesting observations arise:

1. The performance varies depending on the language. This
should not come as a surprise considering the diverse na-
ture of the oriental languages. However, it suggests that
a single solution cannot be applied across all languages
at least on the context of this challenge.



ru-ru ct-cn id-id ja-jp Kazak ko-kr Minnan Shanghai Sichuan Tibet Uyghu vi-vn zh-cn

fbank 31.99 24.90 14.60 35.02 13.12 34.33 68.50 40.23 28.12 29.11 10.48 9.70 28.65
fbank+pitch 33.76 17.96 13.00 23.00 11.94 27.44 62.99 32.26 20.16 31.55 9.71 7.89 19.84
fbank+pitch+noise 27.89 18.19 12.76 24.17 11.79 27.47 60.39 32.12 20.50 31.57 9.21 7.30 20.47

Table 3: The CER performance of different WeNet models trained on different features and with or without noise augmented data. Our
multilingual WeNet submission is trained on fbank+pitch features on noise augmented data (on top of the original).

EER (%) Cavg

Pitch 0.64 0.0063
Non-pitch 0.52 0.0051
Combined 0.44 0.0044

Table 4: The language identification performance measured on
development set with noise added.

Figure 2: Euclidean distance between train, dev character dis-
tributions versus the CER score using the finetuned XLSR-53 on
various OLR languages. The larger the distance, the higher the
CER.

2. Chinese dialects i.e., ct-cn, zh-ch, Shanghai, Sichuan and
Minnan, are some of the most problematic cases with the
highest CER scores. The reason for this behavior can be
attributed to two factors: 1) the large number of char-
acters that constitute their alphabet and 2) the uneven
distribution of characters between the training and de-
velopment sets. This can been verified by plotting the
Euclidean distance between the character distributions
against the CER scores (see Figure 2). The figure clearly
shows that imbalanced train, dev data are more likely to
lead to high CER numbers.

3. WeNet multilingual is performing better on specific lan-
guages e.g. the Chinese dialects, than models specifi-
cally trained for those language without even using LID.
This should not come as huge surprise; end-2-end mod-
els are known to be “data hungry” and training data com-
prising linguistically-related dialects can offer valuable
information that monolingual models might miss.

Unfortunately due to time constraints, we could not produce
the predictions on the development set using our complete cas-
caded pipeline. Nevertheless, on the progress set the MAFFT
approach achieved our best results with a total CER of 27.5. In
comparison, multilingual WeNet and wav2vec models (no LM)
achieved 30.2 and 28.5 respectively.

7. Conclusions
We presented our system descriptions for Tasks 1,3 and 4 of
the OLR2021 challenge. For task 1 we adopted the trans-
former model architecture by incorporating a language token
in a sequence-to-sequence learning paradigm. For Task 3, we
relied on a single end-to-end multilingual WeNet model. While
for Task 4, we developed a cascaded approach by first per-
forming language identification and then combining the predic-
tions of wav2vec, WeNet monolingual and multilingual models.
Through the course of the challenge we trained and employed
numerous models and identified their strengths and weaknesses
for each language and task. For our team the problem of LID
and ASR on low-resource, oriental languages is still ongoing.
As such, our future plans include researching and developing
new solutions.
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Language Model/Configuration

id-id Wav2Vec2: XLSR53 finetuned on OLR 5.07
Wav2Vec2: XLSR53 finetuned on OLR + KenLM 4.50
Wav2Vec2: XLSR53 finetuned on OLR and CommonVoice + KenLM 5.18
WeNet Multilingual 12.76
HuggingFace: indonesian-nlp/wav2vec2-large-xlsr-indonesian 9.07

vi-vn Wav2Vec2: XLSR53 finetuned on OLR 5.05
Wav2Vec2: XLSR53 finetuned on OLR + KenLM 4.47
Wav2Vec2: XLSR53 finetuned on OLR and CommonVoice + KenLM 4.15
WeNet Multilingual 7.30
HuggingFace: nguyenvulebinh/wav2vec2-base-vietnamese-250h 3.40

ja-jp Wav2Vec2: XLSR53 finetuned on OLR 21.60
Wav2Vec2: XLSR53 finetuned on OLR + KenLM 18.76
Wav2Vec2: XLSR53 finetuned on OLR and CommonVoice + KenLM 18.90
WeNet Multilingual 24.17
HuggingFace: jonatasgrosman/wav2vec2-large-xlsr-53-japanese 23.68

zh-cn Wav2Vec2: XLSR53 finetuned on OLR 29.11
Wav2Vec2: XLSR53 finetuned on OLR + KenLM 23.64
WeNet Multilingual 20.47
WeNet 20210421 unified conformer 12.0
HuggingFace: jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn 23.05

Kazak Wav2Vec2: XLSR53 finetuned on OLR 7.26
WeNet Multilingual 11.79

Shangai Wav2Vec2: XLSR53 finetuned on OLR 39.69
WeNet Multilingual 32.12

Sichuan Wav2Vec2: XLSR53 finetuned on OLR 29.61
WeNet Multilingual 20.50

Uighu Wav2Vec2: XLSR53 finetuned on OLR 5.16
WeNet Multilingual 9.21

ko-kr Wav2Vec2: XLSR53 finetuned on OLR and OpenSLR 30.78
Wav2Vec2: XLSR53 finetuned on OLR and OpenSLR + KenLM 25.02
WeNet Multilingual 27.47
HuggingFace: fleek/wav2vec-large-xlsr-korean 44.67

Minnan Wav2Vec2: XLSR53 finetuned on OLR 65.64
WeNet Multilingual 60.39

Tibet Wav2Vec2: XLSR53 finetuned on OLR 13.32
Wav2Vec2: XLSR53 finetuned on OLR + KenLM 12.11
WeNet Multilingual 31.57

ct-cn Wav2Vec2: XLSR53 finetuned on OLR 28.47
WeNet Multilingual 18.19
HuggingFace: ctl/wav2vec2-large-xlsr-cantonese 54.41

ru-ru Wav2Vec2: XLSR53 finetuned on OLR and CommonVoice 13.80
Wav2Vec2: XLSR53 finetuned on OLR and CommonVoice + KenLM 13.91
WeNet Multilingual 27.89
HuggingFace: jonatasgrosman/wav2vec2-large-xlsr-53-russian 17.60

Table 5: The CER scores on the OLR development set for each individual model used in our pipeline for Task 4. WeNet multilingual
was used for Task 3.


