Domain-Invariant Speaker Vector Projection by Model-Agnostic Meta-Learning

Jiawen Kang

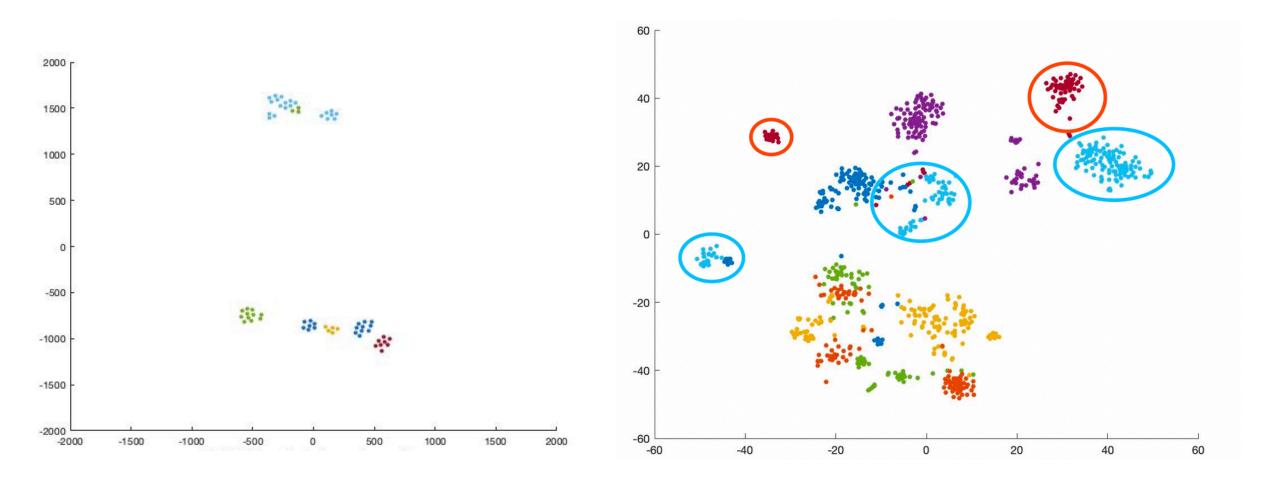
Ruiqi Liu

Problem statement

• CN-Celeb reveals the shortcoming of current VPR system:

In unconstrained conditions, the performance of the current speaker recognition techniques might be much worse than it was thought.

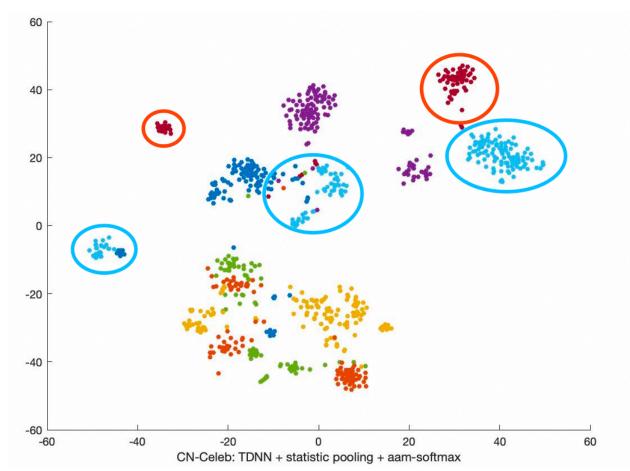
VPR system performances



SITW

CN-Celeb

Domain shift problem



Domain shift

- Data from different genre have different domains.
- Speakers of a same domain tend to have the same domain.
- Traditional discriminative DNN method can only handle visible domain.
- We want to obtain a domain-Invariant speaker vector to enhance the robustness of speaker recognition system.

Solutions

• Direction: Meta-learning

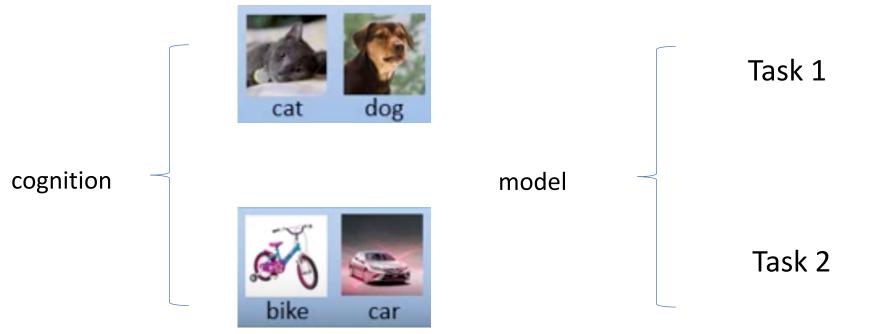
Learning to learn: Fast adaptation trained models to new tasks.

• Approach:

MAML: Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks

Meta-learning(元学习)

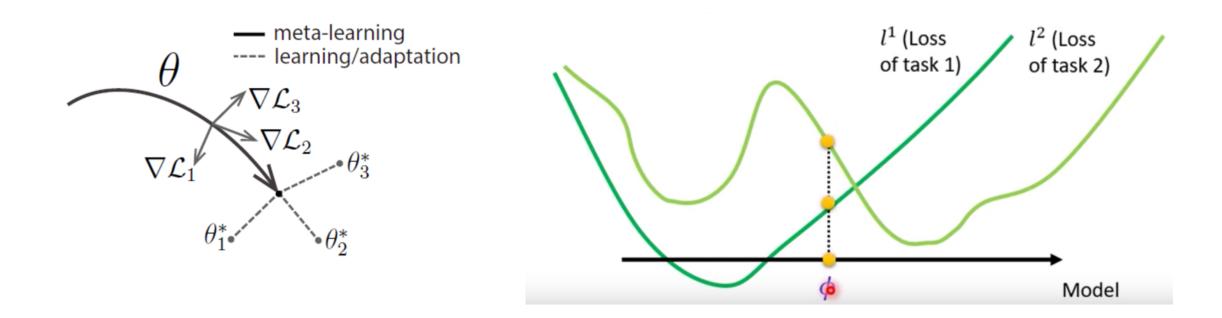
- Starting point :
 - After building cognition, human can learn things in a very fast speed, since human can learn more "**basic**" things.



• Meta leaning aims to build such a cognition to machine, make them learn how to learn.

Revisit MAML

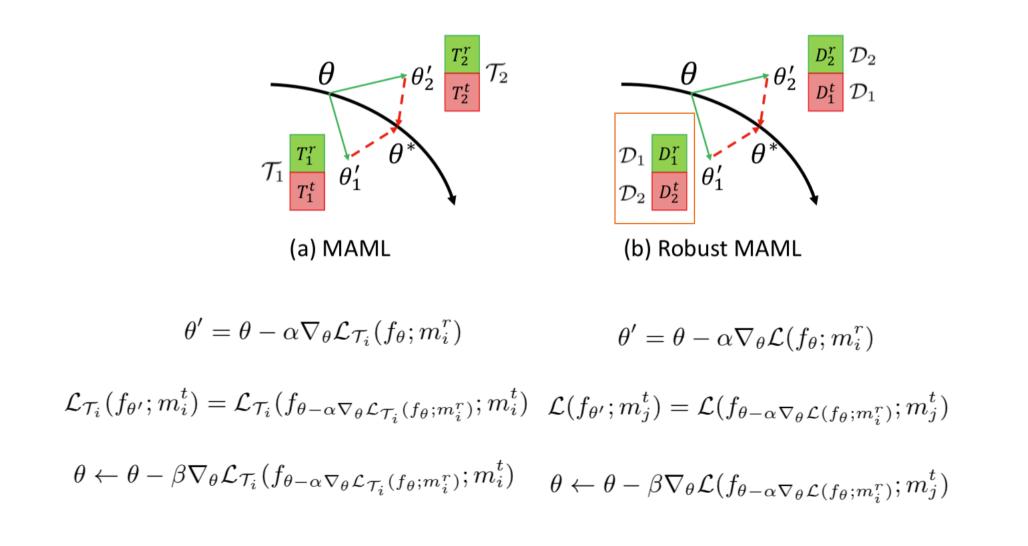
• Finding an optimal initialization position θ (initial parameters), to fast reach the optimal position θ_n for task_n.



For our task

- Tasks -> domains: averaged optimal point for different domains, remain to be adaptation.
- Can be a generalization model:
 - Different domains follow a same task, the "initialization position θ " can be regarded as a domain-invariant optimal point, so the adaptation process is not necessary.

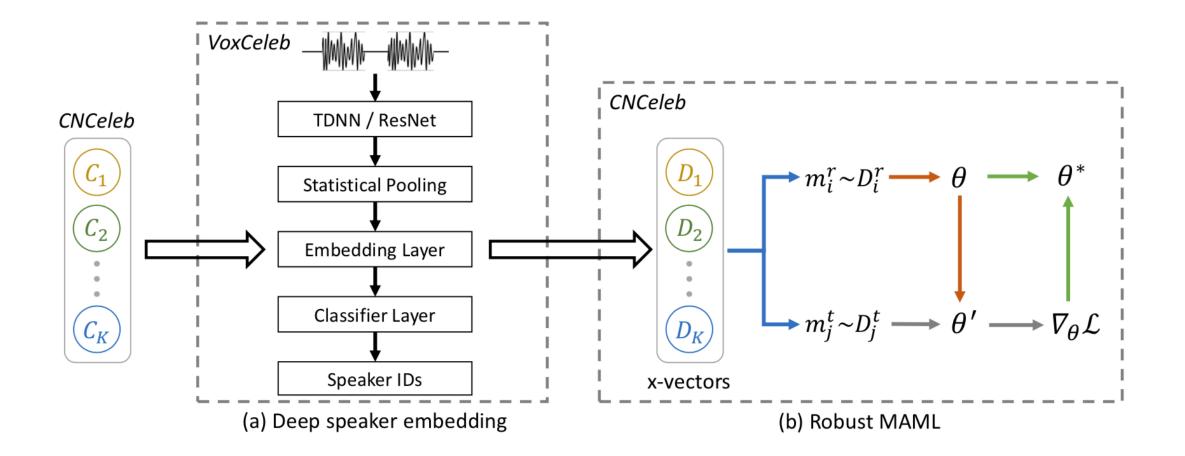
Robust MAML



Tricks:

- Single-speaker and multi-condition (SSMC) data is better.
- Balance the genre proportional is important. i.e. too much clear genre (like interview) will do harm to the meta training.

Domain-invariant projection net



Experiments

name	Input x output		
input	512		
dense1	512 x <mark>512</mark> (embedding)		
dense2	<mark>512</mark> x 512		
dense3	512 x 512		
Softmax/Arcsoftmax	512 x 800		

Input batch: Pair data from same speakers and different genre

Out-set genre: singing, movie, interview

Baseline

Table 1: Performance (EER%) of the baseline systems.

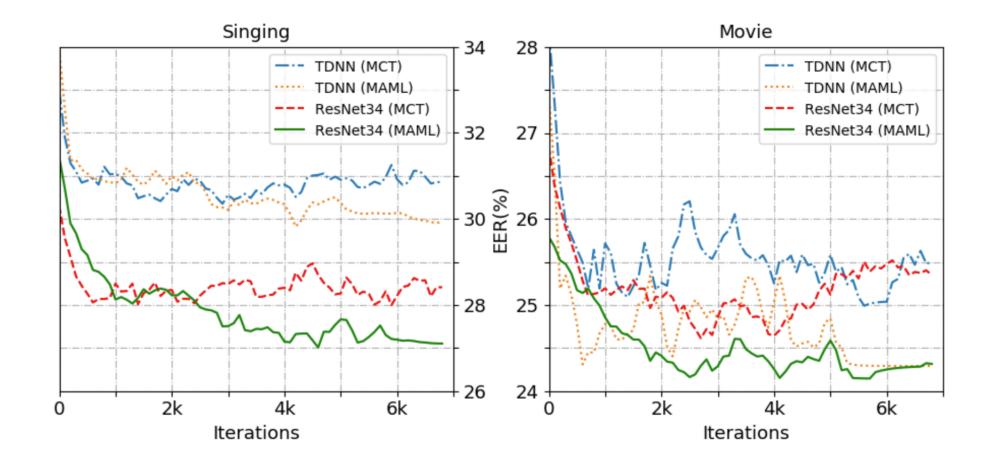
]	ΓDNN	ResNet34		
Test Set	Cosine LDA/PLDA		Cosine	LDA/PLDA	
SITW.Eval.Core	5.139	2.433	3.226	1.968	
CNC.Eval.Singing	29.95	26.88	28.47	27.18	
CNC.Eval.Movie	26.09	20.24	25.19	21.29	
CNC.Eval.Interview	19.68	15.97	19.23	15.47	

Cosine Results

Table 2: *Performance (EER%) with cosine scoring.*

Cosine	TDNN			ResNet34			
Domain	Base	MCT	MAML	Base	MCT	MAML	
Singing	29.95	30.85	29.86	28.47	28.40	27.08	
Movie	26.09	25.46	24.27	25.19	24.92	24.21	
Interview	19.68	17.51	16.82	19.23	16.92	16.87	

EER Curves



PLDA Results

LDA/PLDA	TDNN			ResNet34		
Domain	Base	MCT	MAML	Base	MCT	MAML
Singing	25.67	25.50	25.35	23.83	23.66	23.53
Movie	19.63	18.74	18.85	18.19	17.75	17.75
Interview	13.63	13.47	13.58	12.05	11.85	11.85

- Robustness MAML is effective from the perspective of cosine EER.
- PLDA is partly helpful for domain shift problem.

Further discuss

- Ideally, Robust MAML doesn't require SSMC data.
 - Data volume
 - Domain number in each batch ("Meta batch") is too small
- Metric-based meta learning.
 - The objective function can be more fit for back-end model.
- Light-weighted MAML-based adaptation
 - Adaptation to new domain.
 - Maybe enroll adaptation.