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Main question

HIERARCHICAL GENERATIVE MODELING FOR
CONTROLLABLE SPEECH SYNTHESIS

Wei-Ning Hsu'* Yu Zhang? Ron J. Weiss? Heiga Zen? Yonghui Wu? Yuxuan Wang?
Yuan Cao? Ye Jia® Zhifeng Chen? Jonathan Shen? Patrick Nguyen? Ruoming Pang?
1Massachusetts Institute of Technology 2Google Inc.
wnhsu@QRcsail.mit.edu, {ngyuzh, ronw}Rgoogle.com

This paper proposes a neural sequence-to-sequence text-to-speech (T'TS) model
which can control latent attributes in the generated speech that are rarely annotated
in the training data, such as speaking style, accent, background noise, and record-

ing conditions. The model is formulated as a conditional generative model based
on the variational autoencoder (VAE) framework, with two levels of hierarchical
latent variables. The first level is a categorical variable, which represents attribute
groups (e.g. clean/noisy) and provides interpretability. The second level, condi-
tioned on the first, is a multivariate Gaussian variable, which characterizes specific
attribute configurations (e.g. noise level, speaking rate) and enables disentangled
fine-grained control over these attributes. This amounts to using a Gaussian mixture
model (GMM) for the latent distribution. Extensive evaluation demonstrates its
ability to control the aforementioned attributes. In particular, we train a high-quality
controllable TTS model on real found data, which is capable of inferring speaker
and style attributes from a noisy utterance and use it to synthesize clean speech
with controllable speaking style.




Modern speech synthesis
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e Yuxuan Wang et al. Tacotron: A fully end-to-end text-to-
speech synthesis model. arXivpreprint arXiv:1703.10135,
2017.

e Jonathan Shen et al. Natural tts synthesis by conditioning

wavenet on mel spectrogram predictions. arXiv preprint
arXiv:1712.05884, 2017.



How to control generation style
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Control by reference
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Control by reference

Training
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A generative perspective

e Only the text cannot recover the speech signal. A style distribution is required to
improve the model.

e The distribution should reflect the true hidden factors.

e Important when using complex datasets

style




Explict generative modeling

e Treat text as the main input
e Involve speaker embedding as the observed condition
e Model unseen variation as a mixture Gaussian

e Diagonal covariance to encourage disentanglement
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Likelihood function

aka
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Maximum likelihood by VAE

e Likelihood is not tractable (by marginalizing the lagent variable y, and z,), due to the
complex decoder

e Using variational approach to approximate the posterior

p(yi,zi | X, Y, ¥o) = q(yi | X) q(z; | X)

e q(y,|X) and q(z/|x) can be approximated by a Gaussian, using a nueral net encoder



Maximum likelihood by VAE

e Since the y, and z, form a Gaussian mixture, it is possible to infer p(y,|z;) with known z,.
This makes q(y,|X) not necessary if we have known q(z|X).

p(y:1|X) —/P(Yz | 21) p(z1|X) dz; = B0 %) [P(¥1121)] = Eyzy1x) P(y1 | 21)] = q(y1|X)

z

e ELBO is given:

E(pa q; X: Yta yo) = IE:q(ZI|X) [logp(X ‘ Yt? Yo; Zl)]
— By x) [ Prr(q(zi | X) || p(zi | y1))] — Drr(a(y: | X) || p(y1))



Involing latent variables related to speaker
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Experiment setting

multi-spk noisy-multi-spk  audiobooks  crowd-sourced
(Section 4.1) (Section4.2) (Section4.3)) (Section |4.4)
dim(y;) 10 10 10 10
dim(z;) 16 16 16 16
initial o e? g gt e 1
minimum oy g1 g g o
dim(y,) N/A 384 N/A 1,172
dim(z,) N/A N/A N/A 16
initial o, N/A N/A N/A e 2
minimum o, N/A N/A N/A g2




Experiments 1

e 84 English speakers with
different accents

e Assign to the largest q(y,|X).

e Look at the distribution of
gender and accent within each
mixture

e Most mixtures represent one
gender, and a few accents
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Experiments 1

e Random samples by mixture components
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Experiment 1

e Different dimensions control different characters
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Experiment 1

e Different dimensions control different characters
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Experiment 1

e Classification using the latent variable

Gender Accent Speaker Identity

Train  100.00 08.76 97.66
Eval 08.72 08.72 05.39




Experiment 2

e Using noisy data to train model, and then generate clean speech.

e Design 8 clusters clusters (speakers are known), some clusters will represent clean and

others represent noisy.
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Figure 4: Left: Euclidean distance between the means of each mixture component pair. Right: De-
coding the same text conditioned on the mean of a noisy (center) and a clean component (right).



Experiment 2

e Using LDA to find the noise-related dimension and the use the dimension to control the
noise level.
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Experiment 2

1 ;
- |
: |
» E £ £ = £ I
g - 5 5
1 £ £ £ 5 .
Speaker 1 . 3 3 3 J |
- =
| 4 = = = i
2 1
! ;
. 2 I
| i) 50 00 150 00 250 00 :
i Frame Frame I
i :
. |
1 ;
Z |
1

Mel channeal
Mel channel
Mel channel
Mel channel
Mel channe!
Mc: crian:\cl

Noisy Speaker A

50 100 150 200 250 300

150 00 [0
Frame

Frame Frame

I
. o I
1 @ I
- ! 2 2 E % :

@ 8 4 T 8 S g
Noisy Speaker B i : 3 : : £ I
y p 1 3 2 1 % T 3 30 ’
= Gy = = = = £ |
1 o ¥
. 10 1
i 0 :
@ 50 100 150 200 50 o 50 100 150 200 250 0 0 100 150 00 =0 I
T Frame

I . i

: sample 1 sample 2 sample 2 sample 3 |

A noisy component A clean component



Experiment 2
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Experiment 2

e Synthesizing for speaker with only noisy training data

Table 1: MOS and SNR comparison
among clean original audio, baseline,

GST, VAE, and GMVAE models.

Model MOS SNR
Original 448 +0.04 17.71
Baseline 2.87+0.25 11.56
GST 33248013 1443
VAE 355 +=0.17 1291
GMVAE 425+ 0.13 17.20
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Experiment 3

e A single speaker US English audiobook dataset of 147 hours, recorded by professional

speaker

Table 2: MOS comparison
of the original audio, base-
line and GMVAE.

400

Model MOS

Original ~ 4.67 £ 0.04  Fjgure 6: Mel-spectrograms of three samples with the same text, “We
Baseline 4.29 4+ 0.11 must burn the house down! said the Rabbit’s voice.” drawn from the
Proposed 4.67 + 0.07  proposed model, showing variation in speed, g, and pause duration.
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Figure 7: (a) Mel-spectrograms of two unnatural GST samples when setting the weight for one token
-0.1: first with tremolo at the end, and second with abnormally long duration for the first syllable. (b)
I tracks and spectrograms from GMVAE-Tacotron using different values for the “speed” dimension.



Experiment 4

e Audioset dataset, with thounsands of speakers

e Using cluster mean or dimension to perform clean speech synthesis

Table 3: SNR of original audio, baseline, and the proposed
models with different conditioned z;, on different speakers.

o . Proposed
Set  Original Baseline T .
SC 18.61 1433 1590 16.28 17.94
SN 11.80 9.69 1582  6.78 18.94
UC 20:39 N/A 1570 16.40 18.83
UN 10.92 N/A 1527 4.8l 16.89

Table 4: Subjective preference
(%) between baseline and proposed
model with denoised z; on the set
of “seen noisy” (SN) speakers.

Baseline Neutral Proposed
4.0 109 85.5




Experiment 4

Table 5: Naturalness MOS of original audio, baseline,
and proposed model with the clean component mean.

Table 6: Speaker similarity MOS.

Set  Model MOS
Original ~ 4.60 & 0.07 Set  Model MOS
gc Baseline  4.17+0.07 g Baseline 3.54 + 0.09
Proposed 4.18 £ 0.06 Proposed 3.60 + 0.09
Original  4.45 + 0.08 o1
Basgeline 3.64 + 0.10 81&%2;& Shpnmely 20 = el
SN +denoise 3.84 4+ 0.10 SN  Baseline 3.83 + 0.08
Proposed  4.09 =+ 0.08 Baseline + denoise ~ 3.23 4+ 0.20
Original ~ 4.54 £ 0.08 Proposed 3.11 = 0.08
Uc d-vector  4.10 £+ 0.06 d-vector 299 1L 008
Proposed ~ 4.26 £ 0.05 UC d-vector (large) 3.03 + 0.09
Original ~ 4.34 + 0.07 Proposed 2.79 £0.08
UN d-vector  3.76 + 0.12

Proposed 4.20 + 0.08




Additional: Learning short-time feature
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Chorowski J, Weiss R J, Bengio S, et al. Unsupervised speech
representation learning using wavenet autoencoders[J]. IEEE/ACM
transactions on audio, speech, and language processing, 2019,
27(12): 2041-2053.



Conclusions

e It is possible to design a generative model and train it following the ML property.

e An VAE architecture can be used to perform the ML training and infer the latent
variables.

e Defining latent distribution by GMM seems a good choice.

e An interesting trend that merges speech recognition, speaker recognition and speech
synthesis.

e An interesting way of dealing with data explosion.

e An interesting way of dealing with problems like speech enhancement.



