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p With increasing globalization, there has also been a significant increase 
in the demand for foreign language learning
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p CAPT特点

n 方便学生进行大量发音练习和测试

n 个性化学习进度

n 方便教师掌握学生发音情况

n 提升发音评测的客观性
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p Applications of CAPT can be divided into two areas:

n Pronunciation assessment

n Pronunciation learning/teaching

l Segmental (phonetic)

l Subsegmental (e.g., place of articulation, manner of speech)

l Suprasegmental (prosodic)
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p Pronunciation errors are usually characterized at the 
phonetic(segmental) or prosodic (suprasegmental) level

n Phonetic Errors

l Substitutions

l Insertions

l Deletions
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p Different phontactic constraints across languages might result in 
deletion and insertion errors

n Only certain consonants are allowed at syllable final positions

l “face” might be pronounced as “fay”

n Consonant clusters are not allowed in Vietnamese either

l Vowels might be inserted in between consonants when 

Vietnamese speakers learn English
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p Phonetic substitutions occur because of approximating L2 phonemes 
with L1 phonemes

n In Mandarin and Spanish, there are no short vowels

l Words like “eat” and “it” might sound similar

p Sometimes the non-native phone is neither in L1 or L2. It could be in 
between
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p Most existing approaches to modeling L2 speech can only target 
categorical phoneme error types based on the native phoneme set

Mispronunciation patterns of non-native speakers
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p In terms of intelligibility, prosody is as important as 
phonetic accuracy
n Prosodic Errors

l Stress

l Rhythm

l Intonation

Mispronunciation patterns of non-native speakers
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p Stress: the specific emphasis given to a particular syllable or word

n Acoustic：greater loudness, higher pitch, and longer  duration

n The stress placed on syllables within words are called lexical stress or 
word stress

n Stress placed on words within sentences are called sentence stress or 
prosodic stress

Mispronunciation patterns of non-native speakers



2019-1-17 12

p In Bengali（孟加拉语） is fixed (restricted to the initial syllable 
of a word) 

p English has variable stress

Mispronunciation patterns of non-native speakers
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p Rhythm: the temporal pattern of how a language is spoken

n English and German are stress-timed

l Some syllables are long while others (unstressed syllables) are 
short

n French and Spanish are syllable-based

l Each syllable is spoken at a regular interval

Mispronunciation patterns of non-native speakers
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p Intonation: the variation in pitch

n Intonation helps the listener parse the boundaries in speech

n Intonation also helps convey the speaker’s attitude and emotions

Mispronunciation patterns of non-native speakers

p tonal languages such as Mandarin Chinese and Vietnamese

n Variation in pitch can result in words with different meanings
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p Frameworks for Detecting Phonetic Errors：

n ASR is often a natural component in a CAPT system

n The ASR system can be trained with just native speech or with 
both non-native speech and native speech
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p Frameworks for Detecting Phonetic Errors：

n Likelihood-Based Scoring（GOP）

n Classifier-Based Scoring

n Extended Recognition Network（ERN）

n Unsupervised Error Discovery



Research approaches

2019-1-17 17

p Likelihood-Based Scoring（GOP）
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p Likelihood-Based Scoring（GOP）

Q为所有音素的集合，p标准phone，O为声学特征
q后验概率最大的phone
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p Classifier-Based Scoring

n Truong et.al used acoustic phonetic features to train binary 
classifiers to distinguish confusion pairs

n Acoustic phonetic，MFCC, GOP
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p Extended Recognition Networks(ERN)

n 在解码网格中加入先验知识的约束(Kenworthy, 1987; A. M. 
Harrison, 2008;Gao, 2015)
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p Unsupervised Error Discovery

n Need large-scale non-native speech data with human 
annotations
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p Unsupervised Error Discovery
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p Strategies for Improving Phonetic Error Detection

n Verification/Rescoring
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p Strategies for Improving Phonetic Error Detection
n Deep learning 

l DNN-HMM acoustic model better than GMM-HMM 
baseline

l Convolutional neural networks were used in to 
automatically extract features
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p Strategies for Improving Phonetic Error Detection
n Articulatory or Acoustic Phonetic Knowledge

l Landmark-based SVM classifiers for detecting possible 
English pronunciation
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p Strategies for Improving Phonetic Error Detection
n Articulatory or Acoustic Phonetic Knowledge

l Landmark-based SVM classifiers for detecting possible 
English pronunciation

l Acoustic phonetic properties or distinctive features(the place 
of articulation, the manner of speech, voicing)
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p Detecting Prosodic Errors
n Lexical Stress

l Gaussian mixture models perform the best compared to 
decision trees and neural networks

l Duration and pitch estimates are the most important features
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p Detecting Prosodic Errors
n Lexical Tones

l Lexical tones are primarily characterized by the pitch 
contour (e.g., Mandarin), sometimes the pitch height (e.g., 
Cantonese)

l ASR framework for Tones Recognition

l Syllable boundaries+classifier
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p Detecting Prosodic Errors
n Lexical Tones

l Segment the F0 contour to tone nucleus

l Goodness of Tone (GOT)

l The GOT features were modeled by an SVM classifier

l Pitch related features could be inferred from a DNN system 
trained by 40-dimension MFCC features
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p Detecting Prosodic Errors
n Lexical Tones

l Segment the F0 contour to tone nucleus

l goodness of tone (GOT)

l The GOT features were modeled by an SVM classifier

l Pitch related features could be inferred from a DNN system 
trained by 40-dimension MFCC features
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p Automatic Fluency Scoring
n Cucchiarini et.al found that rate of speech correlates highest 

with perceptual fluency

n The number of silent pauses and the rate of articulation
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p Scarcity of Large-Scale Linguistic Resources
n Lack of Non-Native Speech Data

l Substitution phonemic errors by artificially introducing 
them in a native corpus

n Lack of Human Annotations
l Phonetic transcriptions require lots of cost, time, and 

labor (linguistic expertise)
l Prosody labeling and fluency scoring can be much more 

subjective and harder to achieve inter-rater agreement
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p Common Modeling Assumptions
n Text dependence

l The even higher cost of human annotation of datasets if 
a CAPT system is text-independent

n Mispronunciations are Categorical
l Nonnative pronunciations might frequently fall out of the 

native phonemic or lexical tone categories
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pMetrics for Evaluation
n Information retrieval task

l Precision
l Recall

n Mispronunciation detection error
l False acceptance rate
l False rejection rate
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