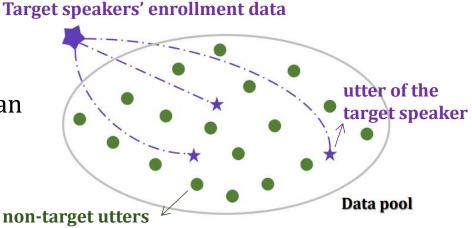
Ordered and Binary Speaker Embedding

Jiaying Wang 2023.04.03

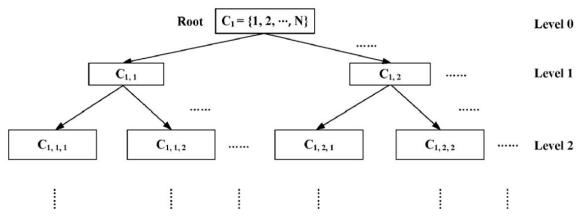

Outline

- Introduction
- Method
 - oAE
 - obAE
- Experiments
 - Baseline
 - Orderliness Test
 - Binary Test
 - Bit Test
 - Speed Test
- Conclusion

Introduction

What is speaker retrieval

- Concept
 - Speaker Retrieval (SR) task is to find out the utterances spoken by a target speaker from a large data pool, given an enrollment data of the target speaker.

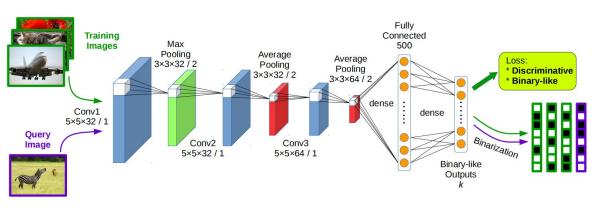


- Value of fast retrieval
 - For instance, identifying a person from 1,251 candidates using 32-dim x-vectors costs 50 ms on a 1.2 GHz CPU and with the highly optimized Scipy package. This amounts to 15.5 hours of CPU time per query if the size of candidates is 1.4 billion, the population of China.

Introduction

Current research on fast retrieval

• Hierarchical clustering Enrolled speakers are clustered according to their similarity and multiple-level clustering forms a decision tree



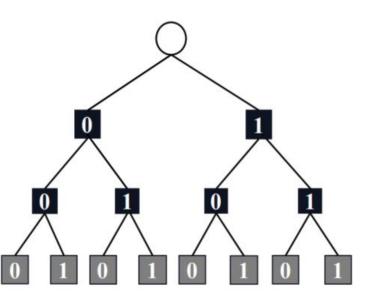
Weekness

• the depth of the tree must be carefully controlled

• Binary code

This approach converts dense embeddings to binary codes, and the similarity is computed as the Hamming distance

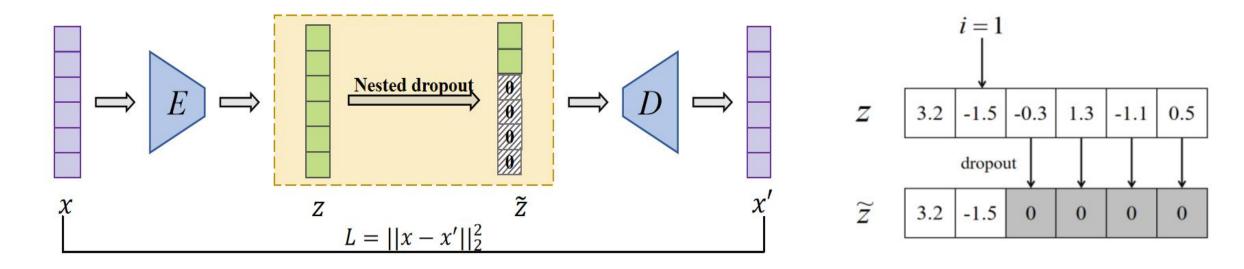
Weekness


- lose precision
- the search still needs to scan all candidates

Introduction

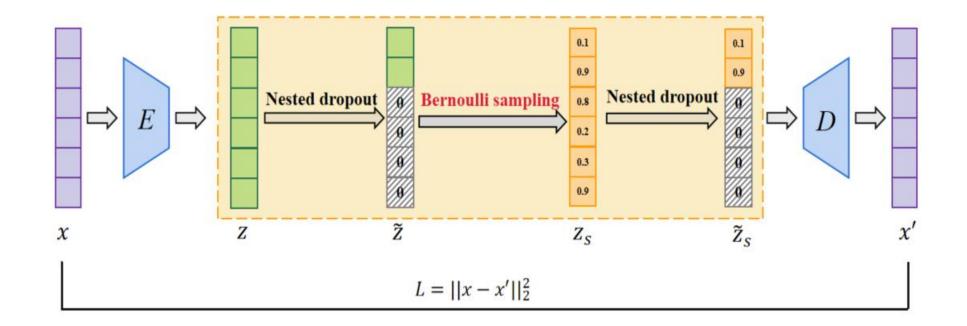
Why ordered binary embeddings

- ordered and binary embedding
 - non-structual x-vector --> ordered binary (OB) code
 - combination of hierarchical clustering and binary code



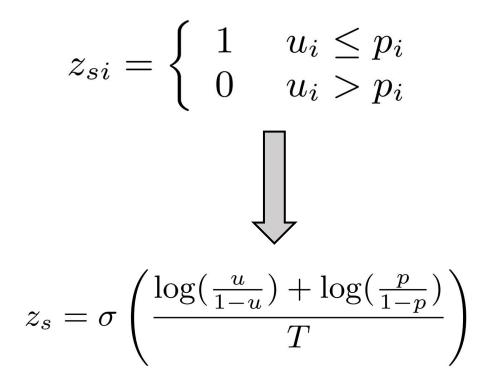
(a) OB code

(b) Binary tree formed by OB codes


Method - Ordered AE (oAE)

(a) oAE structure

(b) nested dropout


Method - Ordered Binary AE (obAE)

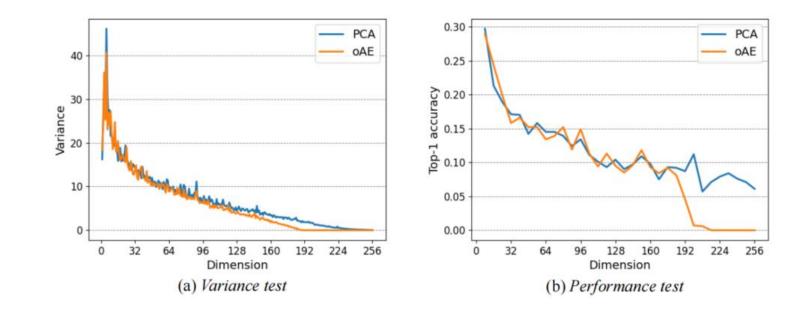
obAE structure

Method Reparametric Trick in obAE

- Using reparametric trick, let u is a uniform distribution
- Due to this trick, graident can BP to p, which further BP to the encoder.
- *T* stands for temperature coefficient. The smaller the value *T*, the higher the probability that *z_s* concentrates around 0 or 1.

• Data

• Baseline


Tabel 1: Data description

VoxCeleb	Train VoxCeleb2.dev	Enroll VoxCeleb1	Test VoxCeleb1	
# of Spks	5,994	1,251	1,251	
# of Utters	1,092,009	3,753	149,763	
CN-Celeb	Train	Enroll	Test	
5	CN-Celeb.T	CN-Celeb.E	CN-Celeb.E	
# of Spks	2,793	196	196	
# of Utters	632,740	196	14,124	

	VoxCeleb1	CN-Celeb.E
Top-1	0.959	0.706
Top-3	0.984	0.800
Top-5	0.989	0.844

• Orderliness Test

Figure 1: Orderliness test with PCA and oAE, using x-vectors in VoxCeleb1

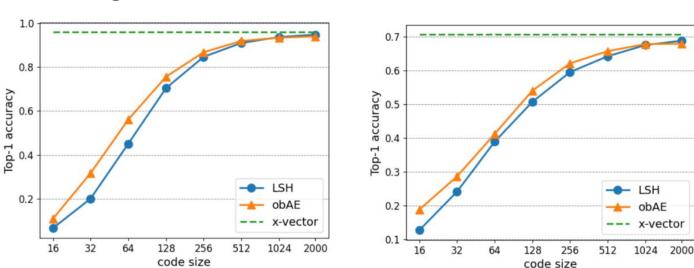
Conclusion:

- oAE learns ordered representations as PCA
- oAE performs even better than PCA on tail dimensions

• Binary Test

Table 3: Top-k Acc on VoxCeleb1.

Bits		20	40	80	120	160	256
LSH	Top-1	0.094	0.273	0.543	0.684	0.759	0.847
	Top-3	0.176	0.412	0.689	0.808	0.865	0.924
	Top-5	0.227	0.481	0.747	0.851	0.898	0.945
PCA-LSH	Top-1	0.126	0.350	0.599	0.709	0.768	0.847
	Top-3	0l233	0.514	0.746	0.830	0.872	0.924
	Top-5	0.297	0.588	0.799	0.870	0.904	0.945
obAE Top-1 Top-3 Top-5		0.182	0.440	0.681	0.779	0.813	0.824
		0.316	0.616	0.822	0.890	0.911	0.913
		0.392	0.690	0.870	0.923	0.939	0.939


Table 4: Top-k Acc on CN-Celeb.E.

Bits		20	40	80	120	160	256
LSH	Top-1 Top-3 Top-5	0.157 0.266 0.326	0.293 0.410 0.471	0.432 0.546 0.602	0.502 0.612 0.664	0.543 0.653 0.702	0.595 0.703 0.750
PCA-LSH	Top-1 Top-3 Top-5	0.183 0.323 0.403	0.329 0.478 0.550	0.462 0.588 0.647	0.519 0.634 0.687	0.544 0.655 0.706	0.595 0.701 0.748
obAE	Top-1 Top-3 Top-5	0.197 0.357 0.446	0.353 0.518 0.594	0.495 0.639 0.705	0.551 0.688 0.743	0.579 0.708 0.762	0.588 0.719 0.774

Conclusion:

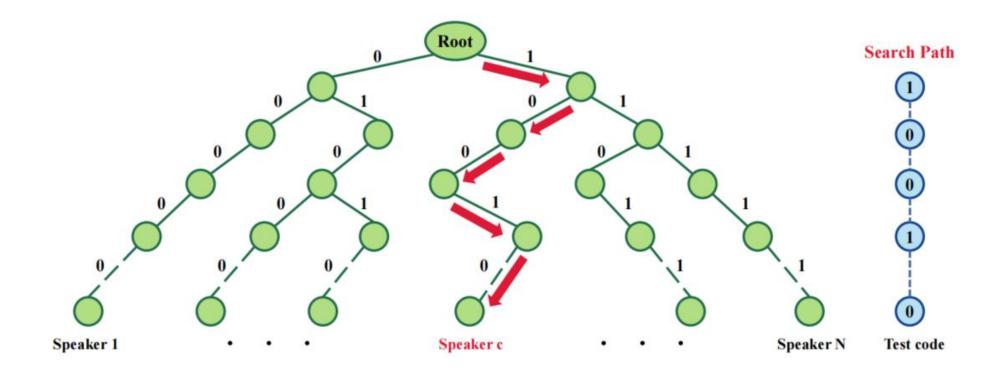
- Iimited code: obAE shows a clear advantage over LSH and PCA-LSH
- > The performance of the three codes tends to be the same

• Bit Test

(b) CN-Celeb.E

Figure 2: Bit test with LSH and obAE codes

Conclusion:


- Compared to x-vector, OB codes obtain a competitive performance while code size=1,000
 - binary codes may represent the full information with less storage

(a) VoxCeleb1

obAE can achieve better performance with limited code capacity ---> orderliness

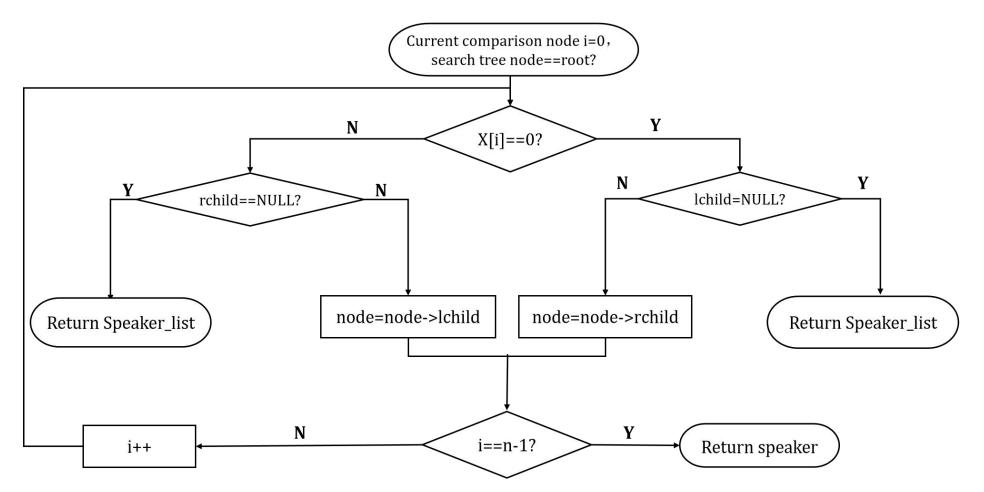

• Speed Test

Figure 3: An illustration of the binary search tree

• Speed Test

Figure 4: An illustration of the search pipeline

• Speed Test

Table 5: Speed test result

Code	Distance	32 din Speed	ns/bits Top-1	40 din Speed	ns/bits Top-1	48 din Speed	
Dense	Cosine	52.89	0.950	53.17	1.000	51.87	1.000
OB	Hamming	18.97	0.950	19.84	0.981	19.98	1.000
OB	Binary tree	0.04	0.950	0.05	0.981	0.07	1.000

Conclusion:

- > 1,300 times faster than the linear search based on cosine distance
- ➤ 450 times faster than the linear search based on Hamming distance

Conclusion

- obAE model
 - nested dropout ---> ordered representations
 - Bernoulli sample ---> binary codes
- The orderliness, SID performance of obAE are proved
- OB codes can bring remarkable speeding up
- Discussion: reconstruction, generation, compression...