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Duke undergraduate experience distinct in the world of elite
higher education.

Now she makes one step forward..
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DUKE KUNSHAN UNIVERSITY provides a historic opportunity to
create something truly innovative and world leading for 21t century
— even better than the Duke curriculum, and Duke faculty took on this

challenge.

* Sino-US Joint Venture University with independent legal status
*  Duke-standard education and research
e  Comprehensive and small
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Security & custom care

speaker, language,
gender, age, emotion,
channel, voicing,
psychological states, etc.
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paralinguistic speech
attribute recognition
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Speech signal not only contains lexicon information, but also deliver various
kinds of paralinguistic speech attribute information, such as speaker, language,
gender, age, emotion, channel, voicing, psychological states, etc.
http://compare.openaudio.eu/

The core technique question behind it is utterance level supervised learning based on
text independent speech signal with flexible duration

General framework

Speech | Feature , Variability | Backend

: Representation . > e
signals Extraction P compensation classification [ = Results
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General framework

Speech | Feature Variability Backend

signals Extraction | | cpresentation compensation | | classification |~ esults

Y

— | s * time varying property
-> short time frame level features

% * generative model for data description ->
features (supervectors) in model parameters’

|||||| ) “ space for classification



Generative model, adaptation, supervectors

» Gaussian Mixture Model (GMM) serves as the generative model
« model adaptation from universal background model (UBM)
« MAP adaptation, large dimensional GMM mean supervector
* Maximum Likelihood Linear Regression (MLLR) adaptation
« The statistics vector for a set of features on UBM
» Oth order statistics vector N,centered 1st order statistics vector F

Only means adapted L
z UBM component Nc — Z P(Cl ,A)
k2, () = Cumul
| ’ BY?_f m
RN 5o
20 _

ol Adapted
component

. A . 39%2048=7987
Mapping from:a set of feature vectors to a fixed dimensionat supervector




Factor analysis based dimension reduction

* Factor analysis on the concatenated 1st order statistics vector
*  Total variability i-vector, F — Tx (Dehak et.al, IEEE TASLP, 2011)
T: factor loading matrix; x: i-vector

« Joint factor analysis (JFA), F = Vx+Uy (Kenny et.al, IEEE TASLP, 2007)
V: Eigenvoices, U: Eigenchannels, x: speaker factor, y: channel factor

E VI UX

1

= IdFcto - X i F
| Y i

I T




Variability compensation, modeling

e Variability compensation
* Linear discriminant analysis (LDA)
* Within-class covariance normalization (WCCN) (Hatch et.al, Interspeech, 2006)
* Whitening and length normalization (Garcia-Romero, Interspeech, 2011)
e Verification modeling
* Probabilistic linear discriminant analysis (PLDA) (Prince et.al, ICCV, 2007)
° xij=m+<I>Bi + Eij
* e follows N(O, X), P follows N(0,1) (Garcia-Romero, Interspeech, 2011)

« e follows N(0, 2/T;), (Ming Li, Interspeech 2015)
* Hypothesis testing based scoring
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General framework

i%?—.ea?:_' E}:raat;t?:n .| Representation |-/ Variability | | Backend | Results

compensation classification
_ Commonly Used Methods

Feature MFCC, PNCC, GFCC, CQCC, SDC, LLD, Tandem, Bottleneck,

extraction Acoustic-to-articulatory inversion, subglottal, etc.

s el GMM-MAP,GMM-supervector,GMM-lvector,HMM-
lvector,Auto-encoder,DBN, Statistic Measurement, etc.
Variability WCCN, JFA, LDA, NAP, NDA, LSDA, LFDA, etc.

Compensation

Backend SVM, PLDA, NN, ELM, Random Forest, Cosine Similarity, Joint
classification Bayesian, Sparse Representation, etc.



§]§ End-to-end
framework
Paralingistic speech attribute
PN
Fully Connected layer backend classifier
Encoding RNN ,
ayer | OR layer representation
CNN layer T-CNN layer feature extraction
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End-to-end
Utterance-level posteriors fra m eWO rk

for identification task
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|
(OO (O - O ()| Speaker/language categories

backend classifier

Utterance-level embeddings
for verification task

representation

feature extraction
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Encoding layer
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VecDim: D VecDim: D*C

Recurrent Layer (OutDlm= Dout)

LDE Layer
(Compoents =C)

TAP Layer

Featim:D*L FeatDim: Din * L FeatDim: D * L

(a) TAP Layer (b) Recurrent encoding layer (c) LDE Layer
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BETTER). NR: NOT REPORTED

Results on NIST LRE 07
language identification

PERFORMANCE ON THE 2007 NIST LRE CLOSED-SET TASK (LOWER IS

Cavg (%) /EER(%)
b System 3s Task 10s Task 305 Task
1 ResNet.TAP 0.08/11.28 3.24/5.76 1.73/3.96
2 ResNet-SAP 8.59/9.80 2.49/4.27 1.09/2.38
3 ResNet-LDE 825775 2.61/231 1.13/0.96
4 GMM ivecior [12]  2046/829 3.0217.71 3.022.27
5 DNN ivector [12]  14.64/12.04 6.20/3.74 2.60/1.29
6  DNN PPP feature [12]  8.00/6.90 2.20/1.43 0.61/0.32
7 DNN Tandem Feature [12] 9.85/7.96 3.16/1.95 0.97/0.51
8  DNN Phonotactic [43]  18.59/12.79 6.28/4.21 1.34/0.79
9 RNN D&C [43] 22.67/15.57 9.45/6.81 3.28/3.25
10 LSTM-Attention [44]  NR/1472  NR NR
T ResNet GRU [12]  11.31/10.74 5.49/6.40  NR
12 ResNetLSTM [12]  10.17/9.80 4.66/426 NR

NSHAN
tSITY

Weicheng Cai,Wenbo Liu, Zexin Cai, Ming Li(*). "Insights into end-to-end learning scheme for language

identification”, ICASSP, 2018.



K Results on NIST LRE 07
N> language identification

2.87
— R 2.45|7 312949

1.13 (0.98]0.961.12| 138
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Weicheng Cai,Wenbo Liu, Zexin Cai, Ming Li(*). "Insights into end-to-end learning scheme for language
identification”, ICASSP, 2018.



§§ Encoding layer
SZ - Attention based CNN-BLSTM

CNNBLSTM [
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Weicheng Cai, Shen Huang and Ming Li (*), “utterance-level end-to-end language identification using
attention-based cnn-blstm”, ICASSP 2019
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Results on NIST LRE 07
language identification
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Table 1. Performance on the 2007 NIST LRE closed-set task

System . L . . Cavg(70) EER(7)
D System Description Front-end module  Encoding layer T3 TiE 305 s T0s 05
2 CNN-SAP[12] CNN SAP 859 249 1.09 989 427 _2.38
3 CNN-LSTM [10] CNN LSTM 10.17 4.66 N/R 980 426 NR
4 CNN-GRU [10] CNN GRU 11.31 549 N/R 1074 640 NR
5 LSTM Attentmn [74] LSTM Attention 1472 N/R N/R N/R N/RE  N/R
& d Y 24 N LY ™ i o i 3 A
7 mlldem {_‘\"HJ BI ‘-:TM SAP CNN-BLSTM SAP 9.22 2.54 0.97 950 348 1.77
8 Fusion 1D2 + 1D7 798 230 0.89 803 305 1.56

- AL
Weicheng Cai, Shen Huang and Ming Li (*), “utterance-level end-to-end language |demrbﬂ§gﬁl ,f,‘sﬁf,:,
attention-based cnn-blstm”, ICASSP 2019 UNIVERSITY
Jinkun Chen, Weicheng Cai and Ming Li(*), “End-to-end Language Identification using NetFV and NetVLAD”,
ISCSLP 2018.
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Loss design

Table 2: Results for verification on VoxCeleb (lower is better)

System ID  System Description  Encoding Procedure Loss Function Similarity Metric ‘aet (%) EER(%)
1 i-vector + cosine Supervector GNLL cosine 0.829 20.63
2 i-vector + PLDA Supervector GNLL + GNLL PLDA 0.639 7.95
l 3 TAP-Softmax TAP softmax cosine 0.553 5.48 |
4 TAP-Softmax TAP softmax + GNLL PLDA 0.545 5.21
| 5 TAP-CenterLoss TAP center loss cosine 0.519 499 |
6 TAP-CenterLoss TAP center loss+ GNLL PLDA 0.608 4.82
| 7 TAP-ASoftmax TAP A-Softmax cosine 0.439 5.27 |
8 TAP-ASoftmax TAP A-Softmax + GNLL PLDA 0.577 4.46
9 SAP-Softmax SAP softmax cosine 0.522 5.51
10 SAP-Softmax SAP softmax + GNLL PLDA 0.545 5.08
11 SAP-CenterLoss SAP center loss cosine 0.509 5.15
12 SAP-CenterLoss SAP center loss+ GNLL PLDA 0.581 4.58
13 SAP-ASoftmax SAP A-Softmax cosine 0.509 4.90
14 SAP-ASoftmax SAP A-Softmax + GNLL PLDA 0.622 4.40
] 15 LDE-Softmax LDE softmax cosine 0.516 3.21 |
16 LDE-Softmax LDE softmax + GNLL PLDA 0.519 5.07
] 17 LDE-CenterLoss LDE center loss cosine 0.496 498 |
18 LDE-CenterLoss LDE center loss + GNLL PLDA 0.632 4.87
] 19 LDE-ASoftmax LDE A-Softmax cosine 0.441 4.57 |
20 LDE-ASoftmax LDE A-Softmax + GNLL PLDA 0.576 4.48

Angular loss, center loss, softmax loss

Liu, Weiyang, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song. "Spherefaeﬁ\: Deghy, 1w A3
hypersphere embedding for face recognition." CVPR, vol. 1. 2017. L

Weicheng Cai, Jinkun Chen, Ming Li(*). "Exploring the Encoding Layer and Loss func!lon In End-to-End
Speaker and Language Recognition System”, Odyssey, 2018.

DUKE KUNSHAN
UNIVERSITY



IR Length normalization layer

Testing Speaker embedding
T feature sequence

| Testing
- feature sequence

The proposed framework with length normalization layer
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How to tune Alpha

Table 3: Verification performance on VoxCelebl for various
scale parameter o (lower is better)

System Description DCF10~° DCF10~° EER(%)

Deep embedding baseline 0.553 0.713 5.48
fixedax = 1 0.922 0.967 10.18
fixedax =4 0.601 0.828 6.36
fixedax =8 0.515 0.687 5.49

fixed o« = 12 0.475 0.586 .01
fixed « = 16 0.499 0.696 5.32
fixed a = 20 (0.503 0.637 5.46
fixed o = 24 0.502 0.638 5.54
fixed « = 28 0.497 0.640 5.52
trained o = 26.1 0.486 0.599 5.60
p(C —2) For voxcelebl, C=1211, p=0.9, then Alpha_low=9
low = lOg T p— >

Weicheng Cai,Jinkun Chen, Ming Li(*). "Analysis of Length Normalization in End-to-End Speaker
Verification System”, Interspeech, 2018.



Length normalization layer
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Table 2: Voxcelebl open-set verification task performance, in comparing the effect of our introduced deep length normalization strategy
and traditional extra length normalization step (lower is better)

System Description Deep Ly-norm  Traditional Ly-norm  Similarity Metric DCF10~° DCF10~* EER(%)
i-vector + inner-product N/A X inner-product 0.736 0.800 13.80
i-vector + cosine N/A v inner-product 0.681 077 13.80
i-vector + PLDA N/A X PLDA 0.488 0.639 5.48
i-vector + Lo-norm + PLDA N/A v PLDA 0.484 0.627 5.41
| Deep embedding + inner-product X X inner-product 0.758 0.888 742 |
Deep embedding+ cosine X v inner-product 0.553 0.713 5.48
Deep embedding+ PLDA X X PLDA 0.524 0.739 5.90
| Deep embedding + Ly-norm + PLDA X v/ PLDA 0.545 0.733 521 |
-normalized deep embedding + inner-product v/ 0.475 0.586 5.01
La-normalized deep embedding + PLDA v X PLDA 0.525 0.694 4.74
A B #EYE N5

DUKE KUNSHAN
UNIVERSITY

Weicheng Cai,Jinkun Chen, Ming Li(*). "Analysis of Length Normalization in End-to-End Speaker
Verification System”, Interspeech, 2018.
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Results on Voxceleb1 data

PERFORMANCE RESULTS ON VOXCELEB] (LOWER IS BETTER). DA: DATA AUGMENTATION

ID System DA Training Set Loss + Scoring Caer EER(%)
1 ResNet-TAP X Voxcelebl Softmax + Cosine 0.553 5.48
2 ResNet-SAP X Voxcelebl Softmax + Cosine 0.522 3.51
3 ResNet-LDE X Voxcelebl Softmax + Cosine 0.516 5.21
4 ResNet-TAP X Voxcelebl+Voxceleb2 Softmax + Cosine 0.331 3.28
5 ResNet-SAP X Voxcelebl+Voxceleb2 Softmax + Cosine 0.307 311
6 ResNet-LDE X Voxcelebl+Voxceleb2 Softmax + Cosine 0.291 2.89
7 i-vector X Voxcelebl PLDA 0.484 5.41
8 i-vector X Voxcelebl+Voxceleb2 LDA+PLDA 0.493 3.32
9 i-vector [16] v Voxceleb1+PRISM PLDA 0.479 5.39
10 X-vector X Voxcelebl Softmax + Cosine 0.726 11.42
11 X-vector v Voxcelebl + MUSAN Softmax + Cosine 0.727 10.11
12 X-vector X Voxcelebl Softmax + PLDA 0.570 7.74
13 X-vector v Voxcelebl + MUSAN Softmax + PLDA 0.485 6.20
14 X-vector v Voxcelebl + MUSAN Softmax + LDA+PLDA 0.480 5.64
15 x-vector [16] v Voxcelebl + PRISM Softmax + PLDA 0.413 4.19
16 X-vector v Voxcelebl+Voxceleb2+MUSAN Softmax + LDA+PLDA  0.325 3.12
17 Chung et al. [11] X Voxcelebl Softmax + Cosine 0.75 10.2
18 Chung et al [11] X Voxcelebl Contrastive + Cosine 0.71 1.8
19 Cai et al. [17] X Voxcelebl A-Softmax + Cosine  0.441 4.56
20 Hajibabaei et al. [45] X Voxcelebl AM-Softmax + Cosine 0.413 4.30
21 Chung er al [40] X Voxceleb2 Contrastive + Cosine  0.429 3.95
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Results on SITW data

PERFORMANCE RESULTS ON SITW (LOWER IS BETTER). DA: DATA AUGMENTATION. N/A: NOT APPLICABLE

D System DA Training Set Loss + Scoring SITW Dev SITW Eval
Caet EER(%) Caei EER(%)
1 ResNet-TAP X Voxcele 1+Voxceleb?2 Softmax + Cosine 0.376 4.06 0.454 5.66
2 ResNet-SAP X Voxcelebl+Voxceleb2 Softmax + Cosine 0.334 4.34 0.405 5.17
’ 3 ResNet-LDE X Voxcelebl+Voxceleb2 Softmax + Cosine 0.298 395 0.349 4.52 \
4 1-vector v Voxcelebl+Voxceleb2+MUSAN LDA+PLDA 0.425 4.81 0.463 5.65
5 x-vector X YVoxcelebl+Voxceleh2 Softmax + Cosine 0.827 16.55 0887 17.19
5} x-vector v Voxcelebl +Voxceleb2+MUSAN Softmax + Cosine 0.777 15.05 0.818 15.30
7 x-vector X Voxcelebl+Voxceleb2 Softmax + LDA+PLDA 0.377 3.77 0.410 4.31
8 x-vector v Voxcelebl+Voxxceleb2+ MUSAN Softmax + LDA+PLDA 0.313 308 0.348 341
0  x-vector [20] « SITW Dev+NIST SREs+Voxxcelebl +MUSAN Softmax + LDA+PLDA N/A N/A (.303 4.16

A

Y \
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DUKE KUNSHAN
UNIVERSITY



1N/
72\

Results on NIST SRE 2018

Table 1: NIST SRE 2018 CMN2 results for fixed condition (EER[ %] / minC / actC)

X-vector

LDA +inW + PLDA

07.77 1 0.587 1 0.605

08.89 / 0.587 /0.596

LDA + CORAL +inW + PLDA . 07.09/0.469 / 0.559 07.43/0.518 /0.584
LDA + PLDA AS-Norm2  07.17/0479/0779  07.68/0.492/0.770
LDA + CORAL + PLDA AS-Norm2  07.32/0.419/0.715  07.50/0.504 /0.730

MN2
Encoding Loss CMN2
Layer <085 Development Evaluation
GAP softmax  7.85/0.501/0.790 7.43/0.557 /0.794
GAFP A-softmax  6.03/0.420/70.636 6.61/70.474/70.654
GSP softmax 7.03/7 048170550 7.1270.489/0.541
GSP A-softmax  5.94/0.418/0.704 6.14/70.463/70.700
LDE softmax 7.50/0.408 /0,716  7.17/0.503 / 0.731
LDE A-softmax  6.03/0.354/0.425  6.20/ 0.430 / 0.448
A B 1L v K¢

DUKE KUNSHAN
UNIVERSITY



§% Results on Voices 2019 fixed condition

Table 1: Development subset results for the speaker recognition task of the VOICES from a distance challenge (SN represents Score
Normalization, devW represents whitening using development sub-set)

Development sub-set Evaluation
Front-end Back-end WPE SN "hinC adtC  EER[%] minC  aetC  EER[%]

- PLDA - v 04935 0.6747 6.33 0.8037 0.8294 12.92

MFCC i-vector
CORAL + devW + PLDA  / 04527 0.4703 6.12 0.6870 0.6891] 11.89
PNCC i-vector PLDA - v 05073 0.6745 6.12 0.6791 0.7803 10.18
' CORAL + devW + PLDA  / - 0.4594 04697 5.29 0.6498 0.7152 10.09
——— CORAL + PLDA - v 04018 04151 4.96 0.6377 0.6492 09.13
CORAL + PLDA 4 - 0.3617 0.3688 4.52 0.5417 0.5544 07.54
Mifbank-8k CORAL + devW + PLDA - - 0.4557 0.5246 541 0.6608 0.7128 10.92
ResNet + Softmax CORAL + devW + PLDA  / - 0.3934 04611 4.59 0.5929 (.6424 09.75
Mifbank- 16k cosine similarity - - 0.3608 1 3.81 0.6262 1 08.75
ResNet + Softmax cosine similarity v - 0.3245 1 3.02 0.5507 1 07.91
Mifbank- 16k cosine similarity - - 0.2735 1 2.73 0.4156 1 05.84
ResNet + A-Softmax  cosine similarity 4 - 0.2485 1 241 0.3668 1 05.58
Gibank cosine similarity - - 0.3065 1 3.52 0.4411 1 06.78
ResNet + A-Softmax  cosine similarity 4 - 0.2680 1 3.14 0.4056 1 06.49

A

Bl K%

DUKE KUNSHAN
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K Results on Voices 2019 fixed condition

NZi

Development sub-set Evaluation

Fusion strategy minC  actC EER[%] Clr minC  actC EER[%] ClIr
Best single system 02485 1 241 08060 03668 1 5.58 (.8284
Each embedding with top 1 back-end 0.1831 0.1857 193 0.080%8  0.3205 03214 4.60 0.2335
_Each embedding with top 2 back-end 01644 01659 14% 00710 03555 03578 479 0.2684
Each embedding with top 3 back-end (submission)  0.1473 0.1484 1.21 0.0577 03532 03609 4.96 n.2ﬁ33|

A

DUKE KUNSHAN
UNIVERSITY
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Results on OLR 2018 dev dataset

Table 1. AP18-OLR development set performance

Feature Modeling

Clapg > 100

Full-length | 1 second
MFCC | i-vector + LR 3.58 14.23
PPP 1-vector + LR 2.23 14.54
Tandem | 1-vector + LR 2. 77 13.21
BNF i-vector + LR 3.17 20.74
MFCC | x-vector + LR 3.45 11.85
PPP x-vector + LR 1.78 11.47
BNF x-vector + LR 1.97 15.48
Fhank CNN-GAP 4.63 8.98
PPP CNN-GAP 1.49 11.02
Tandem CNN-GAP 2.08 9.62
Fusion 0.85 5.76

'A- Bl K%
DUKE KUNSHAN
UNIVERSITY
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§ Challenges & opportunities for the end-to-end
Zl speaker and language recognition task

Network structure

Data augmentation

Loss function design

Transfer learning

Joint learning & multitask learning

A B ILFEvE N2

DUKE KUNSHAN
UNIVERSITY
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Thank you very much!

ming.li369@duke.edu

https://scholars.duke.edu/person/MingLi
BAER (RURETEHF)
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