Large-scale information extraction from textual definitions through deep syntactic and semantic analysis

Andy Zhang

Abstract

- Present DEFIE, an approach to largescale Information Extraction (IE) based on a syntactic-semantic analysis of textual definitions. (textual definitions: short and concise descriptions of a given concept or entity)
 - Leverage syntactic dependencies to reduce data sparsity
 - Disambiguate arguments & content words of the relation strings
 - Use the resulting info to organize the acquired relations hierarchically
- Output a knowledge base consisting of several million automatically acquired semantic relations

Shortcomings of previous works

- Constrained to small and often pre-specified sets of relations
- Rely mostly on dependencies at the level of surface text
- Relations strings are bound to surface text, lacking actual semantic content
- Require additional processing steps to be used in real applications

Relation extraction(1)

- Textual definition processing
 - Syntactic analysis $-G_d$
 - Parsing
 - using C&C (Clark and Curran, 2007), a log-linear parser based on Combinatory Categorial Grammar (CCG).
 - Semantic analysis $-S_d$
 - Based on Babelfy (Moro et al., 2014)
 - An approach to entity linking and word sense disambiguation

Semantics draws on BabelNet(Navigli and Ponzetto, 2012)

Relation extraction(2)

- Syntactic-semantic graph construction
 - Merge vertices referring to same concept or entity
 - Incorporate semantic info from sense mapping S_d to vertices in dependency graph G_d
 - Discard non-disambiguated adjuncts and modifiers

Relation extraction(3)

- Relation pattern identification
 - extract the relation pattern r between two entities and/or concepts as the shortest path between the two corresponding vertices in G_d^{sem}
 - Floyd-Warshall algorithm(Floyd, 1962)
 - One constraint: at least one verb

$$X \to is \to album_{bn}^1 \to by \to Y$$

 $X \to is \to Y$

Relation type signatures and scoring

- Computing semantic type signatures for each relation
 - Collect hypernyms(BabelNet) of all the arguments, the one covers the biggest subset of arguments is selected to be the semantic class of the relation
- Scoring

$$\mathbf{R} := \mathbf{R} \cup \{ \langle s_i, r_{ij}, s_j \rangle \}$$

Relation taxonomization

- Consider only relations whose patterns are identical except for a single noun node
- Hypernym generalization
 - extract hypernym sets of concepts or entities
 - check whether one concept belongs to the set of the other
- Substring generalization

Experiment(1)

- All experiments conducted manually
- Assess the quality of relations
 - whether it represented a meaningful relation
 - whether the extracted argument pairs were consistent with this relation and the corresponding definitions

	Top 100	Top 250	Rand 100	Rand 250
DEFIE	0.93 ± 0.01	0.91 ± 0.02	0.79 ± 0.02	0.81 ± 0.08
PATTY	0.93 ± 0.05	N/A	0.80 ± 0.08	N/A

Table 3: Precision of relation patterns

Experiment(2)

- Assess the coverage of relations
 - 163 manually annotated semantic relations from Wikipedia about musicians, seek for a relation carrying the same semantics

Gold Standard	DefIE	WISENET	РАТТҮ
	131	129	126
163	REVERB	Freebase	DBpedia
	122	69	39

• Look for similar relations in DEFIE

	Freebase	DBpedia	NELL
Random 100	83%	81%	89%

Table 6: Coverage of manually curated resources

Experiment(3)

- Quality of relation taxonomization
 - extracted a random sample of 200 hypernym edges for each generalization procedure
 - Manually judge whether they are correct or not

	Hyp. Gen.	Substr. Gen.	PATTY (Top)	PATTY (Rand)
Precision	0.87 ± 0.03	0.90 ± 0.02	0.85 ± 0.07	0.62 ± 0.09
# Edges	44 412		20 339	
Density	1.89×10^{-6}		7.64×10^{-9}	

Table 8: Precision and coverage of the relation taxonomy