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Abstract 

Neural networks are an artificial intelligence method for modeling complex target functions. For certain types of problems, 

such as learning to interpret complex real-world sensor data, artificial neural networks (ANNs) are among the most effective 

learning methods. During the last decade, they have been widely applied to the domain of financial time series prediction, and 

their importance in this field is growing. This paper aims to analyze neural networks for financial time series forecasting, 

specifically, their ability to predict future trends of North American, European, and Brazilian stock markets. Their accuracy is 

compared to that of a traditional forecasting method, generalized autoregressive conditional heteroskedasticity (GARCH). 

Furthermore, the best choice of network design is examined for each data sample. This paper concludes that ANNs do indeed 

have the capability to forecast the stock markets studied, and, if properly trained, robustness can be improved, depending on 

the network structure. In addition, the Ashley–Granger–Schmalancee and Morgan–Granger–Newbold tests indicate that ANNs 

outperform GARCH models in statistical terms. 
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1. Introduction 
There is a long history of research in financial and economic modeling. Time series analysis is one of the most widely used 

traditional approaches in this field. There are two kinds of models to describe the behavior of time series. The first are the 

linear models. A linear approach to time series analysis is typically effected through one of the following methods: (a) Box–

Jenkins techniques, (b) Kalman filters, (c) Brown’s theory of exponential smoothing, and (d) piecewise regression. The second 

kinds are the nonlinear models, based on (a) Taken’s theorem, (b) Markov switching models, (c) threshold autoregression, and 

(d) smooth transition autoregression, for example. These techniques attempt to reconstruct the time series based upon a 

sampling of the data to forecast future values. Although these techniques are statistically powerful, they have low success rates 

when used to forecast financial markets. 

Recent evidence shows that financial markets are nonlinear; however, the linear methods mentioned are still able to well 

describe the nonlinear systems found in financial market time series analysis (Fang et al., 1994). Bollerslev (1986) provides an 

excellent survey of the existence of nonlinearities in the financial data and develops a model to predict financial time series, 

called generalized autoregressive conditional heteroskedasticity (GARCH), that combines all the features observed in these 

series. But, the economy evolves (rather slowly) over time; this aspect cannot be easily captured by fixed specification linear 

models, however, and manifests itself in the form of an evolving coefficient estimate. Many factors interact in finance and 

economics, including political events, general economic conditions, and traders’ expectations. Therefore, predicting financial 

and economic movements is quite difficult. 

Artificial neural networks (ANNs) are a very powerful tool in modern quantitative finance and have emerged as a powerful 

statistical modeling technique. They provide an attractive alternative tool for both researches and practitioners. They can detect 

the underlying functional relations within a set of data and perform tasks such as pattern recognition, classification, evaluation, 

modeling, prediction, and control (Anderson and Rosenfeld, 1988; Hecht-Nielsen, 1990; Hertz et al., 1991; Hiemstra and 

Jones, 1994).  Several distinguishing features of ANNs make them valuable and attractive in forecasting. First, ANNs are 

nonlinear data-driven approaches. They are capable of modeling nonlinear systems without an a priori knowledge about the 

relations between the input and output variables. The nonparametric ANN model may be preferred over traditional parametric 

statistical models in situations where the input data do not meet the assumptions required by the parametric model, or when 

large outliers are evident in the dataset (Lawrence, 1991; Rumelhart and McClelland, 1986; Waite and Hardenbergh, 1989; 

Wasserman, 1993). Second, ANNs are universal functions approximations. It has been shown that a neural network can 

approximate any continuous function to any accuracy desired (Hornik, 1993; Hornik et al., 1987). Third, ANNs are able to 

generalize. After learning the data presented, ANNs can often correctly infer the unseen part of a population, even if the 

sample data contain noisy information. Neural networks are able to capture the underlying pattern or autocorrelation structure 

within a time series even when the underlying law governing the system is unknown or too complex to describe. 
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Because of their pattern recognition abilities, ANNs have been applied successfully in many fields and are increasingly being 

used in economics, as well as in business research. Wong and Selvi (1998) classify pertinent articles by year of publication, 

application area, journal, various decision characteristics (problem domain, decision process phase, level of management, level 

of task interdependence), means of development, integration with other technologies, and major contribution. Zang et al. 

(1998) survey articles that address modeling issues when ANNs are applied to forecasting. The authors summarize the most 

frequently cited advantages and disadvantages of the ANN models. Chatterjee et al. (2000) provide an overview of the ANN 

system and its wide-ranging use in financial markets. Their work further discusses the superiority of ANNs over traditional 

methodologies. The study concludes with a description of the successful use of ANNs by various financial institutions. Edward 

Gately (1996), in his book Neural Networks for Financial Forecasting, describes the general methodology required to build, 

train, and test a neural network using commercially available software.In addition, Shapiro (2003) describes capital market 

applications of neural networks, fuzzy logic, and genetic algorithms. 

Garcia and Gencay (2000), Gencay (1998), and Qi and Madala (1999) employ ANNs in stock market predictions. Qi and Wu 

(2003), who employ an ANN model with monetary fundamentals, find that their model cannot supass the random walk model. 

Alternatively, Kiani (2005) and Kiani et al. (2005) use ANN models with macroeconomic time series and find that these 

outperform the linear as well as other nonlinear models employed. O’Connor and Madden (2005) evaluate the effectiveness of 

using ANNs with external indicators, such as commodity prices and currency exchange rates, in predicting movements in the 

Dow Jones Industrial Average index. Their results show that there are a few benefits to using these indicators over traditional 

methods based on historical data output only. 

Dutta et al. (2006) discuss modeling the Indian stock market (price index) using ANNs. The authors study the efficacy of 

ANNs in modeling the Bombay Stock Exchange Sensex weekly closing values. They use root mean squared error (RMSE) and 

mean absolute error (MAE) as indicators of performance for two kinds of ANN structures. They conclude that the ANN with 

more input values can improve the verified results.
1
 Most recently, Faria et al. (2009) performed a predictive study of the 

Ibovespa through ANNs and an adaptive exponential smoothing method to compare the forecasting performances of both 

methods on this market index and evaluate their accuracy in predicting the sign of market returns. The authors show that both 

methods produce similar results regarding the prediction of index returns. They use two different metrics to evaluate 

forecasting accuracy: RMSE and the measure N(tend) that represents the correct tendencies number achieved by the model, 

that is, the number of times the predictions follow the real tendencies of the market. Finally, Lin and Yu (2009) investigate the 

profitability of using ANN predictions that are transformed into a simple trading strategy, whose profitability is evaluated 

against a simple buy–hold strategy. The authors adopt this approach to analyze the Taiwan Weighted Index and the Standard & 

Poor's (S&P) 500 and find that the trading rule based on ANNs generates higher returns than the buy–hold strategy.
2
 

In addition, ANNs have been successfully applied to predict important financial and market indexes, the S&P 500 and the 

Nikkei 225 Index, among others (Chen, 1994; Enke and Thawornwong, 2005; Huang et al., 2007; Huarng and Yu, 2006; 

Refenes et al., 1994; Yu and Huarng, 2008), but these works focus only on special markets that conform to different kinds of 

ANN architectures and do not necessarily compare with traditional statistical methods such as autoregressive integrated 

moving average (ARIMA)–GARCH models. Besides, none of these works evaluate the differences between competitive 

methods in statistical terms, but only by using traditional metrics such as RMSE and MAE. 

This paper aims to analyze and examine the use of neural networks to predict future trends of North American, European, and 

Brazilian stock market indexes, namely, the Dow Jones and S&P 500 (United States), the DAX (Germany), the CAC 40 

(France), the FTSE (United Kingdom), the IBEX 35 (Spain), the PSI 20 (Portugal), and Ibovespa (Brazil).  We provide a 

detailed discussion of the application of neural networks to forecasting stock market economic indicators. As a comparison, we 

analyze a GARCH model applied to each series to evaluate the accuracy of ANNs, according to traditional performance 

measurements and statistical tests such as the Ashley–Granger–Schmalancee (AGS) and Morgan–Granger–Newbold (MGN) 

tests. An exploration about how ANNs can incorporate the heteroskedasticity of financial time series is presented to verify the 

model's robustness. 

This paper is organized as follows. Section 2 discusses neural network applications in stock market index price forecasting. 

Sections 3 and 4 describe GARCH and neural network models, respectively. Section 5 discusses the structure of the neural 

network applied. Section 6 compares the performances of the methods. Finally, Section 7 presents our conclusions 

2. Applications in Stock Market Index Forecasting 

The stock market is one of the most popular investments, owing to its high expected profit. However, the higher the expected 

profit, the higher the implied risk. The stock market, which has been investigated by various studies, is a rather complicated 

                                                 
1
  A number of attempts have been made to apply ANNs to the task of modeling security prices (see, e.g., Cao et al., 2005; Jasic and 

Wood, 2004; Kaastra and Boyd, 1996; Lam, 2004; Nygren, 2004). 
2  

Pan et al. (2004) present an application to predicting the Australian stock market using feedforward neural networks with the objective 

of developing an optimal architecture for this purpose. 
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environment. There are three degrees of market efficiency. The strong form of the efficient market hypothesis states that all 

information that is knowable is immediately factored into the market price as a security. If this is true, then all of those price 

predictors are wasting their time, even if they have access to private information. In the semi-strong form of the efficient 

market hypothesis, all public information is considered to have been reflected in the price immediately as it became known, but 

possessors of private information can use that information for profit. The weak form holds only that any information gained 

from examining past trading history is reflected in the price as a security. Of course, past trading history is public information, 

implying that the weak form is a specialization of the semi-strong form of the efficient market hypothesis, which itself is a 

specialization of the strong form. 

Stock market fluctuations are the result of complex phenomena, whose effect translates into a blend of gains and losses that 

appear in a stock market time series that is usually predicted by extrapolation. The periodic variations follow either seasonal 

patterns or business cycles in the economy. Short-term and day-to-day variations appear at random and are difficult to predict, 

but they are often the source of stock trading gains and losses, especially in the case of day traders. 

Numerous investigations have given rise to different decision support systems for the sake of providing investors with optional 

predictions. Since a long time, many stock markets experts have employed technical analysis for better predictions. Generally 

speaking, a technical analysis derives a stock's movements from the stock's own historical value. The historical data can be 

used directly to form support and resistance levels, or they can be plugged into many technical indicators for further 

investigation. Conventional research addressing this problem has generally employed time series analysis techniques— that is, 

mixed autoregression moving average (ARMA) methods—as well as multiple regression models (Huang et al., 2005). 

Considerable evidence exists that shows that stock market price is to some extent predictable (Lo and MacKinlay, 1988). 

2.1. Input Variables 

There are two kinds of theoretical approaches to determine the input variables for stock market index forecasting with neural 

networks. The first one introduces the relations between the stock market index price and other macroeconomic indicators. The 

second one introduces nonlinearity in the relation between stock prices, dividends, and trading volume. 

Chen (1991) studies the relation between changes in financial investment opportunities and changes in the economy. The 

author provides additional evidence that variables such as the default spread, term spread, one-month T-bill rate, lagged 

industrial production growth rate, and dividend–price ratio are important determinants of the future stock market index. This 

study interprets the ability of these variables to forecast the future stock market index in terms of their correlations with 

changes in the macroeconomic environment. Fama and French (1993) identify the overall market factor, factors related to firm 

size, and book-to-market equity as three common risk factors that seem to explain average returns on stocks and bonds. Ferson 

and Schadt (1996) show that the omission of variables such as the lagged stock index and previous interest rates can lead to 

erroneous results. Sitte and Sitte (2000) discuss the predictive ability of time delay neural networks for the S&P 500 index time 

series. 

The vector autoregression (VAR) method is mainly used to investigate the relations between variables. Its advantage is that 

multiple variables can be investigated at the same time and their interdependence can be tested automatically with 

sophisticated statistically significant levels. Ao (2003a, b) find that (1) HK depends on its past prices, JP, NASDAQ, S&P, and 

DJ; (2) AU depends on its past prices, S&P, and DJ; (3) depends on its past prices, HK, NASDAQ, S&P, and DJ; (4) JP 

depends on its past prices, NASDAQ, S&P, and DJ; (5) DJ depends on its past prices and NASDAQ; and (6) S&P depends on 

its past prices and NASDAQ. The results from VAR modeling suggest that, for Asian markets, the relevant information is the 

stock's own historical values as well as the stock's movements from the U.S. markets. It is also positive to know the extent and 

time-dependent nature of market dynamics when we draw the correlation diagram of the local market with U.S. markets. 

Further investigation tells us that, at time of low correlation, such as in the late '90s during the Asian financial crisis, the Hong 

Kong market (and, similarly, other Asian markets) is dominated by local events, such as currency problems. At other periods, 

the local market is greatly correlated with the U.S. markets. 

In summary, the set of potential macroeconomic indicators is as follows: the term structure of interest rates (TS), the short-term 

interest rate (ST), the long-term interest rate (LT), the consumer price index (CPI), industrial production (IP), government 

consumption (GC), private consumption (PC), the gross national product (GNP), and the gross domestic product. These are the 

most easily available input variables that are observable to a forecaster. Though other macroeconomic variables can be used, 

the general consensus in the literature is that the majority of useful information for forecasting is subsumed by interest rates 

and lagged predictive variables. The term structure of interest rates, that is, the spread of long-term bond yields over short-term 

bond yields, may have some power in forecasting the stock index. 
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This paper utilizes as input variables the historical data of each series studied,
3
 shown in Table 1. The goal is to analyze the 

influence of the ANN structure on the forecast results. After determining the best structure, we compare the performances of 

the ANN and GARCH models. 

 

Table 1. Stock market indexes that form the sample. 

Country Index Variable 

United States Dow Jones DOW 

United States S&P 500 S&P 

Germany DAX DAX 

France CAC 40 CAC 

United Kingston FTSE FTSE 

Spain IBEX 35 IBEX 

Portugal PSI 20 PSI 

Brazil Ibovespa IBOV 

3. GARCH Models 

The ARIMA models have one severe drawback: They assume that the volatility
4
 of the variable being modeled (e.g., stock 

price) is constant over time. In many cases this is not true. Large differences (of either sign) tend to be followed by large 

differences. In other words, the volatility of asset returns appears to be serially correlated (Campbell et al., 1997). The 

autoregressive conditional heteroskedasticity (ARCH) model was developed to capture this property of financial time series. 

The ARCH
5
 process is defined as 

ARCH (q): ttt εζ+a=y                                                       (1) 

q

=i

itit yα+α=ζ

1

2
0                                                       (2) 

where tζ  is the conditional standard deviation of ty , given the past values of this process, and a is a constant. The ARCH(q) 

process is uncorrelated and has a constant mean and a constant unconditional variance ( 0α ), but its conditional variance is 

nonconstant. This model has a simple intuitive interpretation as a model for volatility clustering: Large values of past squared 

returns ( 2
ity ) give rise to large current volatility (Martin, 1998). 

The ARCH(q) model is a special case of the more general GARCH(p,q) model:  

GARCH(p,q): ttt εζ+a=y                                          (3) 

p

=i

q

=j

jtjitit ζβ+yα+α=ζ

1 1

22
0                                                      (4) 

In this model, current volatility depends upon the volatilities for the previous q days and the squared returns for the previous p 

days. 

A long and vigorous line of research has followed the basic contributions of Engle and Bollerslev (developers of the ARCH 

and GARCH models, respectively), leading to a number of variants of the GARCH(p,q) model, including power GARCH 

(PGARCH) models, exponential GARCH (EGARCH) models, threshold GARCH (TGARCH) models, and other models that 

incorporate so-called leverage effects. Leverage terms allow for a more realistic modeling of the observed asymmetric behavior 

of returns, according to which a ―good news‖ price increase leads to lower subsequent volatility, while ―bad news‖ decreases 

in price lead to a subsequence increase in volatility. It is also worth mentioning two-component GARCH models, which reflect 

differing short- and long-term volatility dynamics, and GARCH-in-the-mean (GARCH-M) models, which allow the mean 

value of returns to depend upon volatility (Martin, 1998).
6 

                                                 
3
  The data were obtained from http://finance.yahoo.com, accessed on August 17, 2008.   

4
  Volatility is synonymous of standard deviation. 

5
  This section is based upon the work of Ruppert (2001). 

6
  In this work, the GARCH(1,1) model was utilized as a result of correlation and autocorrelation analysis.  

RyanYu
高亮

RyanYu
高亮

RyanYu
高亮

RyanYu
高亮



Learning and Nonlinear Models (L&NLM) – Journal of the Brazilian Neural Network Society, Vol. 8, Iss. 1, pp. 3-22, 2010. 

  © Sociedade Brasileira de Redes Neurais (SBRN) 

7 

 

4. Neural Networks 

Neural networks learning methods provide a robust approach to approximating real-, discrete-, and vector-valued target 

functions. For certain types of problems, such as learning to interpret complex real-world sensor data, ANNs are among the 

most effective learning methods known (Mitchell, 1997). One motivation for ANN systems is to capture this kind of highly 

parallel computation based on distributed representations. Most ANN software runs on sequential machines emulating 

distributed processes, although faster versions of the algorithms have also been implemented on highly parallel machines and 

specialized. 

4.1. Basic Definitions 

The multilayer perceptron (MLP) is the most commonly used type of artificial network structure. It consists of several layers of 

processing units (also termed neurons or nodes). The input values (input data) are fed to the neurons in the so-called input 

layer, which processes the input values, and the output values of these neurons are then forwarded to the neurons in the hidden 

layer. Each connection has an associated parameter indicating its strength, the so-called weight. By changing the weights in a 

specific manner, the network can ―learn‖ to map patterns presented at the input layer to target values on the output layer. The 

procedure by means of which this weight adaptation is performed is called the learning or training algorithm. 

Usually, the data available for training the network are divided into (at least) two non-overlapping parts: the so-called training 

and testing sets. The commonly large training set is used to ―teach‖ the network the desired target function. Then the network 

is applied to the data in the test set to determine its generalization ability, that is, its ability to derive correct conclusions about 

the population properties of the data from the sample properties of the training set (e.g., if a network has to learn a sine 

function, it should produce correct results for all real numbers and not only for those in the training set). If the network is not 

able to generalize but, instead, learns the individual properties of the training patterns without recognizing the general features 

of the data (i.e., produces correct results for training patterns but has a high error rate in the test set), it is said to be overfitted 

or to be subject to overfitting. 

4.2. Neural Network Properties  

ANN learning is well suited to problems in which the training data correspond to noisy, complex sensor data, such as input 

from cameras and microphones. It is also applicable to problems for which more symbolic representations are often used, such 

as decision tree learning tasks. In this case ANNs and decision tree learning produce results of comparable accuracy (Haykin, 

2001). 

The backpropagation algorithm is the most commonly used ANN learning technique. It is appropriate for problems with the 

following characteristics (Mitchell, 1997). 

 Instances are represented by many value pairs. The target function to be learned is defined over instances that can be 

described by a vector of predefined features, such as pixel values. These input attributes can be highly correlated or 

independent of one another. The input values can be any real values. 

 The target function output can be discrete valued, real valued, or a vector of several real- or discrete-valued 

attributes. 

 The training examples may contain errors. ANN learning methods are quite robust to noise in the training data. 

 Long training times are acceptable. Network training algorithms typically require longer training times than, say, 

decision tree learning algorithms. Training times can range from a few seconds to many hours, depending on factors 

such as the number of weights in the network, the number of training examples considered, and the settings of various 

learning algorithm parameters. 

 Fast evaluation of the learning target function can be required. Although ANN learning times are relatively long, 

evaluating the learning network, to apply it to a subsequent instance, is typically very fast. 

 The ability of humans to understand the learning target function is not important. The weights learned by neural 

networks are often difficult for humans to interpret. Learned neural networks are less easily communicated to humans 

than learned rules. 

4.3. MLPs 

A network consists of a set of nodes that constitute the input layer, one or more hidden layers of nodes, and an output layer of 

nodes. The input propagates through the network in a forward direction, on a layer-by-layer basis. These neural networks are 

referred to as MLPs. In the mid-1980s, ANNs were mostly studied by employment of the error backpropagation (EBP) 

learning algorithm in combination with multilayer networks (Rumelhart and McClelland, 1986). Basically, the EBP process 

consists of two phases through the different layers of the network: a forward pass and a backward pass. In the forward pass, an 
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input vector is applied to the nodes of the network, and its effect propagates through the network, layer by layer. Finally, a set 

of outputs is produced as the actual network response. During this phase, the weights are all fixed. During the backward pass, 

the weights are all adjusted in accordance with the error correction rule. Specifically, the actual response of the network is 

subtracted from a desired response, producing an error signal. This error is propagated backward through the network, against  

the direction of synaptic connections—hence the name EBP. The synaptic weights are adjusted so as to make the actual 

network response closer to the desired response (Haykin, 2001). 

An MLP network consists of at least three layers: an input layer, one or more hidden layers, and an output layer. The nodes are 

connected by links associated with real numbers, named weights. Each node takes on multiple input values, processes them, 

and produces an output, which can be ―forwarded‖ to other nodes. Given a node j, its output is equal to 

)( jijij wxtransfer=o                                         (5) 

where jo  is the output of node j, jix  is the ith input to unit j, jiw  is the weight associated with the ith input to j, and transfer 

is the nonlinear transfer function responsible for transferring the weighted sum of the inputs to some value that is given to the 

next node.
7
 A neuron can have an arbitrary number of inputs, but only one output. By changing the weights of the links 

connecting the nodes, the ANN can be adjusted to approximate a particular function. 

4.4. Learning Algorithms 

Usually, the weights of an ANN must be adjusted using some learning algorithm so that the ANN is able to approximate the 

target function with sufficient precision. This section presents a stochastic gradient descent backpropagation learning 

algorithm, as follows.
8
 The term neural network refers to an MLP trained with this learning algorithm, often called 

backpropagation or EBP. Assume that an ANN uses the error function 

Dd outputsk

kdkd ot=)wE( 2)(
2

1
                                       (6) 

where kdo  is the output value produced by output neuron k, kdt  is the desired (correct) value this neuron should produce, and 

D denotes the set of all training patterns, that is, )(wE


 is the sum of the prediction errors for all training examples. The 

prediction errors of the individual training examples are, in turn, equal to the sum of the differences between the output values 

produced by the ANN and the desired (correct) values, where w


 is the vector of the weights of the ANN. 

The goal of a learning algorithm is to minimize )(wE


 for a particular set of training examples. There are several ways to 

achieve this, one of them being the so-called gradient descent method, which basically works as follows (Schraudolph and 

Cummins, 2002): 

1. Choose some (random) initial values for the model parameters. 

2. Calculate the gradient G of the error function with respect to each model parameter. 

3. Change the model parameters so that we move a short distance in the direction of the greatest rate of decrease of the 

error, that is, in the direction of –G. 

4. Repeat steps 2 an 3 until G gets close to zero. 

Let )(xf=G , the gradient of the function f, be the vector of first partial derivatives, 

nx

xf
,,

x

xf
,

x

xf
=xf

)(
...

)()(
)(

21

                                        (7) 

In our case, )(wE=G


 (i.e., the derivative of the error function E with respect to the weight vector w


). With this in mind, we 

now explore the gradient descent backpropagation (EBP) learning algorithm. First, a neural network is created and the 

parameters are initialized (the weights are set to small random numbers). Then, until the termination condition (e.g., the mean 

squared error of the ANN is less than a certain error threshold) is met, all training examples are taught the ANN. The inputs of 

each training example are fed to the ANN and processed from the input layer, over the hidden layer(s), to the output layer. In 

this way, a vector o of output values produced by the ANN is obtained. 

                                                 
7
  There are a several types of transfer functions, discussed in Haykin (2001). 

8
  See more learning algorithms in Haykin (2001).  
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In the next step, the weights of the ANN must be adjusted. Basically, this is accomplished by moving the weight in the 

direction of the steepest descent of the error function. This happens by adding to each individual weight the value 

jij xηδ=Δw                                 (8) 

where η  is the learning rate that determines the size of the step that we use to move toward the minimum of E, and jδ  

represents the error term of the neuron j.
9
 The learning rate can be thought of as the lengths of the arrows.

10
 

Many improvements of this algorithm, such as momentum terms and weight decay, are described in the appropriate literature 

(Bishop, 1996). Nevertheless, MLPs in combination with the stochastic gradient descent learning algorithm are the most 

popular ANNs in practice.
11

 Another important feature of this learning algorithm is that it assumes a quadratic error function, 

and therefore assumes there is only one minimum. In practice, the error function can have—apart from the global minimum—

multiple local minima. There is a danger the algorithm will land in one of the local minima and thus not be able to reduce the 

error to the highest extent possible by reaching a global minimum. The next section describes an ANN design for our data and 

a step-by-step comparison with a GARCH model. 

5. ANN Design in Stock Market Forecasting 

The methodology described in this section is based upon Kaastra and Boyd (1996). The design of a neural network that 

successfully predicts a financial time series is a complex task. The individual steps of this process are as follows: 

1. Variable selection. 

2. Data collection. 

3. Data preprocessing. 

4. Data partitioning. 

5. Neural network design. 

6. Training the ANN. 

A detailed description of each step is presented below. 

5.1. Variable Selection 

Success in designing a neural network depends on a clear understanding of the problem (Gately, 1996). Knowing which input 

variables are important in the market being forecast is critical. This is easier said than done, because the very reason for relying 

on a neural network is its powerful ability to detect complex nonlinear relations among a number of different variables. 

However, economic theory can help choose variables that are likely important predictors. At this point in the design process, 

the concern is about the raw data, from which a variety of indicators will be developed. These indicators will be derived from 

the actual inputs to the neural networks (Kaastra and Boyd, 1996).  

The financial researcher interested in forecasting market prices must decide whether to use both technical and fundamental 

economic inputs from one or more markets. Technical inputs are defined as lagged
12

 values of the dependent variable
13

 or as 

indicators calculated from the lagged values. The model applied in this paper uses the lagged values of the dependent variables 

as a result of correlation and autocorrelation analysis.
14

  For each series we plot the sample autocorrelation functions (ACF) 

and partial autocorrelation functions (PACF), as in Box et al. (1994). Then, according to the lags and their respective ACF and 

PACF values, we select those lags that indicate significant correlation. In the next step, we apply all the selected lags to the 

network, as described above. Nevertheless, we decrease the number of lags for each series, and apply the standard Bayesian 

information criterion (BIC) model selection procedure (Schwartz, 1978), according to the RMSE metric. That is, the choice of 

inputs is based on correlation analysis and the BIC procedure. Table 2 shows the input structures performed for the data 

utilized. 

                                                 
9
  Stochastic gradient descent backpropagation learning algorithm derivatives are discussed in Haykin (2001). 

10
  Usually, η , 0.90 η< . Note that too large an η  leads to oscillation around the minimum, whereas too small an η  can lead 

to the ANN's slow convergence. 
11

  This structure was utilized in the present work.  
12

  Lagged means pertaining to an element of the time series in the past. For example, at time t, the values pt2tt y,y,y 1  are said to 

be lagged values of the time series y. 
13

  The dependent variable is the variable whose behavior is being modeled or predicted (Dougherty, 1992). 
14

  Such models have outperformed traditional ARIMA-based models in price forecasting, although not in all studies (Sharda and Patil, 

1994; Tang et al., 1991). 
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Table 2. Variable selection. 

Variables Input Past Closing Values 

DOW 
3t2t1t DOW,DOW,DOW  

S&P 
2t1t PS,PS &&  

DAX 
2t1t DAX,DAX  

CAC 
4t3t2t1t CAC,CAC,CAC,CAC  

FTSE 
3t2t1t FTSE,FTSE,FTSE  

IBEX 
2t1t IBEX,IBEX  

PSI 
4t3t2t1t PSI,PSI,PSI,PSI  

IBOV 
3t2t1t IBOV,IBOV,IBOV  

The frequency of the data depends on the researcher's objectives. A typical off-floor trader in the stock or commodity futures 

markets would likely use daily data if designing a neural network as a component of an overall trading system. An investor 

with a longer horizon may use weekly or monthly data as inputs to the neural network, rather than a passive buy and hold 

strategy (Kaastra and Boyd, 1996), to formulate the best asset mix. 

5.2. Data Collection 

The research must consider cost and availability when collecting data for the variables chosen in the previous step. Technical 

data are readily available from many vendors at a reasonable cost, whereas fundamental information is more difficult to obtain. 

Time spend collecting data cannot be used for preprocessing, training, or evaluating network performance. The vendor should 

have a reputation for providing high-quality data; however, all data should still be checked for errors by examining day-to-day 

changes, ranges, logical consistency, and missing observations (Kaastra and Boyd, 1996). Missing observations, which are 

common, can be handled in a number of ways. All missing observations can be dropped, or a second option is to assume that 

the missing observations remain the same by interpolating or averaging from nearby values. In this work, we assume that there 

are no missing observations in the sample and that some values, which can be viewed as outliers, are present in the data, 

because we aim to model stock markets mainly in turbulent scenarios, characterized by low losses.
15 

5.3. Data Processing 

As in most other neural network applications, data processing is crucial in achieving good predictive performance when 

applying neural networks to the prediction of financial time series. The input and output variables for which the data are 

collected are rarely fed into the network in raw form. At the very least, the raw data must be scaled between the upper and 

lower bounds of the transfer functions (usually between zero and one minus one and one). Two of the most common data 

transformations in both traditional and neural network forecasting are first differencing and taking the logarithm of a variable. 

First differencing, or using changes in a variable, can be used to remove a linear trend of data. Logarithmic transformation is 

useful for data that can take on both small and large values. Logarithmic transformations also convert multiplicative or ratio 

relations to additive ones, which is believed to simplify and improve network training (Masters, 1993).
16

 In this work we use 

the logarithmic transformation of the return, 

1t

t
t

Index

Index
=R ln                                                        (9) 

where tR  represents the normal logarithm of the returns. This approach is especially useful in financial time series analysis, 

and produce good results, according to the literature (see Fama, 1965; Granger and Morgenstern, 1970). In addition, the returns 

behavior is more closely approximated by a normal probability distribution, but, as will be shown here, this is a very hardly 

hypothesis. 

5.4. Data Partitioning 

Common practice is to divide the time series into three distinct sets, the training, testing, and validation
17

 (out-of-sample) sets. 

The training set is the largest and is used by neural networks to learn the patterns present in the data. The testing set, ranging in 

size from 10% to 30% of the training set, is used to evaluate the generalization ability of a supposedly trained network. A final 

check on the validation set chosen must strike a balance between obtaining a sufficient sample size to evaluate a trained 

network and having sufficient remaining observations for both training and testing. The validation set should consist of the 

most recent contiguous observations, because the past values was applied to test the neural network and, for evaluate the 

                                                 
15

  The sample ranges from January 12, 2000, to July 27, 2008, with daily data. 
16

  Another popular data transformation is to use the ratios of the input variables (see Topek and Querin, 1984).  
17

  Some studies call the validation set the testing set . 
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generalization capability of the model, the most recent observations consists as a validation sample as well as in standard time 

series models. This work breaks down the sets as follows: 

1. Training set: 80%. 

2. Testing set: 15%. 

3. Validation set: 5%. 

5.5. Neural Network Design 

There are an infinite number of ways to construct a neural network. Neurodynamics and architecture are two terms used to 

describe the way in which a neural network is organized. The number of input neurons is one of the easiest parameters to select 

once the independent variables have been reprocessed, because each independent variable is represented by its own input 

neuron.
18

 The tasks of selecting the number of hidden layers, the number of neurons in the hidden layers, and the number of 

input neurons, as well as the transfer functions, are much more difficult. 

5.5.1. Hidden Layers 

Hidden layers provide the network with its ability to generalize. In practice, neural networks with one and occasionally two 

hidden layers are widely used and have performed very well. Increasing the number of hidden layers also increases the 

computation time and the danger of overfitting, which leads to poor out-of-sample forecasting performance. In the case of 

neural networks, the number of weights, which is inexorably linked to the number of hidden layers and neurons, and the size of 

the training set (number of observations) determine the likelihood of overfitting (Baum and Haussler, 1989). Here we analyzed 

neural networks structure with one and two hidden layers to a comparison. 

5.5.2. Hidden Neurons 

Despite its importance, there is no ―magic‖ formula for selecting the optimum number of hidden neurons, and therefore 

researchers fall back on experimentation. However, some rules of thumb have been advanced. A rough approximation of the 

optimum number of hidden neurons can be obtained by the geometric pyramid rule proposed by Masters (1993). For a three-

layer network with n input neurons and m output neurons, the hidden layer would have mn  neurons. Baily and Thompson 

(1990) suggest that the number of hidden layer neurons in a three-layer neural network should be 75% of the number of input 

neurons. Katz (1992) indicates that the optimal number of hidden neurons will generally be found between one-half to three 

times the number of input neurons. Ersoy (1990) proposes doubling the number of hidden neurons until the network’s 

performance on the testing set deteriorates. Klimasauskas (1993) suggests that there should be at least five times as many 

training facts as weights, which sets an upper limit on the number of input and neurons. Because of these features, this work 

applies different structures to all the data, chosen randomly, with 2, 3, 4, 5, and 6 neurons in the hidden layer to describe the 

best structure according to the index. 

5.5.3. Output Neurons 

Deciding on the number of neurons is somewhat more straightforward, since there are compelling reasons to always use only 

one output neuron. Neural networks with multiple outputs, especially if these outputs are widely spaced, produce inferior 

results compared to networks with a single output (Masters, 1993). In this works, we applied a network with the output layer 

composed by one neuron and it means the closed price one step ahead. 

5.5.4. Transfer Function 

The majority of current neural network models use the sigmoid transfer function, but others, such as the hyperbolic tangent, arc 

tangent, and linear transfer functions, have also been proposed (Haykin, 2001). Linear transfer functions are useful for 

nonlinear mapping and classification. Levich and Thomas (1993) and Kao and Ma (1992) find that financial markets are 

nonlinear and have memory, suggesting that nonlinear transfer functions are more appropriate. Transfer functions such as the 

sigmoid are commonly used for time series data, because they are nonlinear and continuously differentiable, desirable 

properties for network learning. In this study, the sigmoid transfer function is applied in the proposed network.
19 

5.6. Training the ANN 

Training a neural network to learn patterns in the data involves iteratively presenting it with examples of the correct known 

answers. The objective of training is to find the set of weights between the neurons that determine the global minimum of the 

error function. Unless the model is overfitted, this set of weights should provide a good generalization. The backpropagation 

network applied in this work uses the gradient descent training algorithm, which adjusts the weights to move down the steepest 

slope of the error surface. Finding the global minimum is not guaranteed, since the error surface can include many local 

                                                 
18

  Each set of data has its specific input variables, as described in Table 1.  
19

  The sigmoid transfer function is the default in the Neural Network Toolbox in MATLAB®. 
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minima, in which the algorithm can become ―struck.‖ This section discusses when to stop training a neural network and the 

selection of learning rates and momentum values. 

5.6.1. Training Iterations 

Many studies that mention the number of training iterations report convergence from 85 to 5,000 iterations (Deboeck, 1994; 

Klaussen and Uhrig, 1994). However, the range is very wide, since 50,000 and 191,400 iterations (Klimasauskas, 1993; Odom 

and Sharda, 1992) and training times of 60 hours have also been reported. Training is affected by many parameters—the 

choice of learning rate and momentum values and proprietary improvements to the backpropagation algorithm, among 

others—which differ between studies, and it is therefore difficult to determine a general value for the maximum number of 

runs. 

In addition, the numerical precision of the neural network software can affect training, because the slope of the error derivative 

can become very small, causing some neural networks programs to move in the wrong direction due to round-off errors, which 

can quickly build up in the highly iterative training algorithm. It is recommended that studies determine their own particular 

problem and test as many random starting weights as computational constraints will allow (Kaastra and Boyd, 1996). We 

utilize 100, 250, 500, 800, and 1,200 randomly selected iterations to choose the best performance for each index. 

5.6.2. Learning Rate 

During training, a learning rate that is too high is revealed when the error function changes drastically without showing 

continued improvement. A very low learning rate also requires more training time. In either case, the researcher must adjust 

the learning rate during training, or ―brainwash‖ the network by randomizing all weights and changing the learning rate for the 

new run through the training set. The initial learning rates used in this work vary widely, from 0.1 to 0.9. Most neural network 

software programs provide default values for learning rates that typically work well. Common practice is to start training with 

a higher learning rate, such as 0.7, and decrease as training proceeds. Many network programs will automatically decrease the 

learning rate as convergence is reached (Haykin, 2001). 

6. Comparison Analysis 

This section presents the neural network structure implemented for the data that results in a minimum number of errors. In 

addition, the results of the ANN and GARCH models are described for comparison. Table 3 shows the best neural network 

structure performed for each index studied. 

Table 3. Neural network design. 

Index Inputs Hidden 

Layer(s) 

Hidden 

Neurons 

Iterations Learning 

Rate 

DOW 3 2 4 800 0.4 

S&P 2 2 6 500 0.6 

DAX 2 1 2 800 0.4 

CAC 4 2 3 1200 0.5 

FTSE 3 1 2 500 0.7 

IBEX 2 1 5 800 0.5 

PSI 4 2 2 250 0.6 

IBOV 3 2 3 800 0.5 

The results show that the choice of structure is different, depending on the data. There is no magic formula to describe a 

structure that minimizes errors and leads to the best result. The best choice must be sought through random alternatives, 

according to the data. 

The experimental results reveal that the proposed algorithm provides a promising alternative to stock market predictions, 

resulting in low errors in comparison with the GARCH model (see Table 4). Table 4 compares the ranked coefficients of 

multiple determination for each model. The R-squared value represents the proportion of variation in the dependent variable 

that is explained by the independent variables. The better the model explains variation in the dependent variable, the higher the 

R-squared value. Without further comparison, the neural network best explains variation in the dependent variable, followed 

by the regression model. The ranked error statistics are provided for comparison. These statistics are all based on return errors 

between the desired value and the neural network output value. 

 

 

Table 4. Error comparison. 

Index R Squared Percentage Mean 

Error 

RMSE POCID 
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ANN GARCH ANN GARCH ANN GARCH ANN GARCH 

DOW 0.97326 0.86327 3.89323 7.73428 0.62152 2.83222 74.65% 63.74% 

S&P 0.95432 0.73429 2.73273 6.89329 0.87323 3.83282 76.23% 57.76% 

DAX 0.98732 0.87364 4.98321 8.78383 0.63263 2.71327 72.98% 58.90% 

CAC 0.94327 0.83272 3.03933 7.32653 0.93289 4.02391 74.52% 61.13% 

FTSE 0.95342 0.79322 4.32187 6.63733 0.73732 3.93811 77.03% 55.24% 

IBEX 0.89763 0.86342 3.09323 7.63723 0.83221 2.83917 78.65% 59.99% 

PSI 0.93721 0.78873 2.67327 6.98430 1.83283 5.63261 69.03% 49.64% 

IBOV 0.96390 0.80323 2.03115 9.83921 0.63282 3.63783 78.11% 62.11% 

 

In Table 4 it is relatively easy to visually verify that the neural network model performs better than the GARCH process. This 

differs from the model ranking, due to R-squared values. The neural network model predicts the closing value relatively 

accurately. 

In an attempt to evaluate the robustness of the ANN model applied, we analyze the error dimension in the sets performed 

(training, test, and validation). The results are measured by the maximum percent error (MPE) and the RMSE: 

n

=i i

ii

y

yy

n
=MPE

1

|ˆ|100
max                                                      

(10) 

2)ˆ(
1

ii yy
n

=RMSE                                                                        (11) 

where iy  denotes the desire value i, and iŷ  the neural network output. 

The financial market is a complex, evolutionary, and nonlinear dynamic system. Many factors interact in finance, including 

political events, general economic conditions, and traders’ expectations. Therefore, predicting financial price movements is 

quite difficult but of extreme importance. In this case, we employ another relevant evaluation measure, the correctness of the 

prediction of change in direction (POCID), defined as 

n

D

=POCID

N

=i

i

1100                         (12) 

where 1=Di  if 0)ˆˆ)(( 11 >yyyy iiii , or 0=Di , otherwise. 

In this case, the model with the higher POCID more accurately predicts the market's movements. Table 5 compares the 

network sets. 

Table 5. Network set comparison. 

Index   Sets  

Training Test Validation 

MPE RMSE POCID MPE RMSE POCID MPE RMSE POCID 

DOW 4.32712 2.12521 74.16% 4.87126 2.87521 73.13% 4.91274 3.13134 70.14% 

S&P 7.53272 3.42513 73.92% 7.92177 3.87532 76.53% 8.08643 4.05235 73.98% 

DAX 3.34741 2.36282 76.88% 3.72362 2.76512 73.28% 4.29347 3.32712 71.41% 

CAC 6.83212 3.78236 75.59% 7.53132 4.13263 70.19% 7.35124 4.73512 69.19% 

FTSE 5.97272 3.08221 79.01% 6.02183 4.02138 78.63% 6.68724 4.53289 76.23% 

IBEX 6.74162 2.21342 72.11% 7.21633 3.42156 72.01% 7.53281 4.02571 70.86% 

PSI 6.26324 4.76532 68.94% 6.83635 5.73512 67.99% 7.01963 6.00012 68.17% 

IBOV 4.53127 3.09217 72.13% 5.02746 4.03821 70.12% 5.21456 4.63218 71.08% 

 

We can see in Table 5 that a neural network structure applied to all the indexes has good prediction capability and, as can be 

seen in the low rate of validation errors compared with the GARCH model (see Table 4), a neural network is capable of 

learning from the data and can process good results for forecasting. The good performance of neural networks in this case is 

verified compared with GARCH model, which presents a higher rate of errors than the ANN model. Finally, the results in the 

test and validation sets confirm the neural network's generalization ability. Nevertheless, the differences between POCID 
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measures for the ANN and GARCH models reveal that the ANN model employed predicts the market's movements more 

precisely than the GARCH process (see Tables 4 and 5). In all samples of data, we observe (see Table 4) that the GARCH 

model predicts a mean of 60% in market price movements (up or down), whereas the neural network model has the capability 

of predicting this measure to around 75%. As we well know, the ANN provides low POCID values in the validation set, 

compared with the other sets. 

We measure the forecast performance for all the indexes in this study based on traditional statistical loss, a method employed 

by many, including Mathews (1994), but these tests do not reveal whether the forecast by one model is statistically superior to 

that of the other. Therefore, another commonly used test is needed that can help compare competitive models in terms of 

forecast accuracy. In the literature, there are few works that incorporate statistical tests to verify competitive models, and then 

mainly only when one of them is a neural network model. For this reason, in addition to the traditional measures described 

above, we perform two parametric tests of pairwise forecast evaluations. These tests are described as follows. 

One of the parametric tests employed in this work is the AGS test, due to Ashley et al. (1980), and it tests for the statistical 

significance of the difference between the RMSEs associated with two competing model forecasts. This test is based on the 

equation 

tmeant21t ζ+ssβ+β=d )(                        (13) 

where td  is the difference between the forecast errors, as obtained by the ANN and GARCH models, ts  is the sum of these 

forecast errors, means  is the sample mean of  ts , and tζ  is a white noise process. The AGS test is a test of the equality of the 

mean squared errors (MSEs) of two competing models against the alternative that the second model's MSE is lower (more 

accurate) than the first model's. The test is performed by jointly testing the significance of the parameters 1β  and 2β  in 

regression (13).
20

 The test statistics for the AGS test are calculated from the residuals obtained from estimating an unrestricted 

model represented by equation (13) and a model that restricts 01 =β=β 2  in equation (13). The test statistics for this test are 

calculated using the equation as follows: 

))/(/())1/()(( knSSEkSSESSE=TS URURR                       (14) 

where RSSE  is the sum of the squared residuals from the restricted model, URSSE  is the sum of the squared residuals from the 

unrestricted model, and k is the number of variables in the regression model. In this test, we assume that the forecast errors are 

not contemporaneously correlated and are free from serial correlations. The test statistic for this test is distributed F with 2 and 

n – 2 degrees of freedom under the assumption of normality. 

Another parametric test of equal forecast accuracy is the MGN test. This test is recommended by Diebold and Mariano (1995) 

and is often employed when the assumption of contemporaneous correlation of errors is relaxed. The test statistics for this test 

can be computed using the equation 

12

12
)1(

)ˆ1(

ˆ
n

ρ

ρ
=MGN

sd

sd           (15) 

where sdρ̂  is the estimated correlation coefficient between 21 e+e=s , and 2ee=d 1 , with 1e  and 2e  the errors of models 

1 and 2, respectively. In this work, 1 represents the GARCH model and 2 the ANN model. The test statistics for the MGN test 

are distributed t with n – 1 degrees of freedom. For this test, if the forecasts are equally accurate, then the correlation between s 

and d will be zero. Forecast accuracy measures based on the AGS and MGN tests of the forecast equivalence of two competing 

models are shown in Table 6 for all the series. 

The results from the AGS and MGN tests shown in Table 6, which examines pairwise comparisons of the forecasts of the two 

competitive models (with ANNs and GARCH as benchmarks), reveal that the ANN shows statistically significant evidence of 

superior performance in predicting all the indexes evaluated in this study. These results confirm what was already indicated by 

traditional measures, that is, that the ANN outperforms the GARCH model in predicting the future trends of all the stock 

market indexes considered in this paper. 

Graphically, the results are shown in Figures 1-8. For each series we plot (a) the real value of the index with GARCH and 

ANN predictions and (b) the difference between the index values, with each model's result depicted as an error measure. All 

the results correspond to the validation set. 

 

 

                                                 
20  

The procedure for the AGS test is also described in Bradshaw and Orden (1990) and Kiani et al. (2005). 
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Table 6. AGS and MGN tests for pairwise forecast evaluations for all the indexes. 

Index Tests 

 AGS Test MGN Test 

 Statistic p-Value Statistic p-Value 

DOW 246.8763 (0.0001) 1.8923 (0.0001) 

S&P 566.7255 (0.0001) -2.2397 (0.0001) 

DAX 411.1202 (0.0001) -1.2863 (0.0001) 

CAC 398.7256 (0.0001) 3.8726 (0.0002) 

FTSE 137.7235 (0.0001) -1.9304 (0.0001) 

IBEX 509.8363 (0.0001) -0.1976 (0.0003) 

PSI 256.0982 (0.0001) 2.3223 (0.0000) 

IBOV 145.8726 (0.0001) -2.6398 (0.0001) 

 

 

 

    

Figure 1. Dow Jones: (a) Index and model predictions. (b) Differences between real and predicted values. 

 

 

    

Figure 2. S&P 500: (a) Index and model predictions. (b) Differences between real and predicted values. 
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Figure 3. DAX: (a) Index and model predictions. (b) Differences between real and predicted values. 

 

 

    

Figure 4. CAC 40: (a) Index and model predictions. (b) Differences between real and predicted values. 

 

 

 

    

Figure 5. FTSE: (a) Index and model predictions. (b) Differences between real and predicted values. 
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Figure 6. IBEX 35: (a) Index and model predictions. (b) Differences between real and predicted values. 

 

 

    

Figure 7. PSI 20: (a) Index and model predictions. (b) Differences between real and predicted values. 

 

 

    

Figure 8. IBOV: (a) Index and model predictions. (b) Differences between real and predicted values. 
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Figures 1-8 confirm the results described above. We can see that both methods are capable of predicting all the indexes 

evaluated, but when we see the difference between the real and predicted values obtained for each model, it is clear that the 

ANN outperforms the GARCH method. The ANN presents errors closer to zero, while the traditional statistical model results 

in larger errors. In terms of error measures, the intelligence artificial method has been shown to be a good way to predict 

financial time series. 

One question proposed in this work is whether or not neural networks can incorporate heteroskedastic phenomena. Table 7 

shows the residual analysis of each series studied here. It includes a mean test, a test of normality (Jarque–Bera), and a test of 

correlations present in the residuals (Ljung–Box–Pierce Q-test), and it verifies heteroskedasticity in the residuals (Engle´s 

ARCH test)
21,22

. 

 

Table 7. Residuals analysis. 

Index Tests 

Mean Jarque–Bera Ljung–Box–Pierce Engle´s ARCH 

Value Statistically 

zero? 

Value Normal? Value Correlation? Value Homoskedasticity

? 

DOW 0.002 Yes 18.972 Yes 28.921 No 12.872 Yes 

S&P 0.008 Yes 16.982 Yes 29.990 No 9.8721 Yes 

DAX 0.092 Yes 57.923 Yes 30.912 No 14.765 Yes 

CAC 0.061 Yes 61.982 Yes 25.821 No 8.8216 Yes 

FTSE 0.076 Yes 25.897 Yes 26.732 No 12.872 Yes 

IBEX 0.072 Yes 56.932 Yes 33.812 No 15.876 Yes 

PSI 0.086 Yes 22.372 Yes 27.978 No 9.991 Yes 

IBOV 0.053 Yes 54.862 Yes 31.982 No 13.721 Yes 

 

Analyzing Table 7, we can see that the neural network residuals for all the indexes studied have a mean statistically equal to 

zero and a normal distribution, there is no correlation between the residuals, and, finally, the residuals are homoskedastic. The 

results show that the neural network structure proposed is capable of series modeling and forecasting, capturing 

heteroskedastic phenomena, and confirming the method's robustness.  

7. Conclusions 

This research analyzes the use of neural networks as a forecasting tool; specifically, it tests their ability to predict future trends 

of stock market indexes. North American, European, and Brazilian stock market indexes were studied and accuracy compared 

against a traditional forecasting method (GARCH). While only briefly discussing neural network theory, this study determines 

the feasibility and practicality of the individual investor using neural networks as a forecasting tool. It concludes that neural 

networks do have a powerful capacity to forecast all the stock market indexes studied, and, if properly trained, the individual 

investor could benefit from the use of this forecasting tool over current techniques for the following reasons. 

 When using multiple linear regressions, the governing regression assumptions must be true. The linearity assumption 

itself and normal distribution may not hold in most financial time series. Neural networks can model nonlinear 

systems and do not make any assumptions about the input probability distribution. 

 ANNs are universal function approximations. It has been shown that a neural network can approximate any 

continuous function to any desired accuracy. 

 ANNs are able to generalize. After learning the data presented to them, ANNs can often correctly infer the unseen 

part of a population, even if the sample data contain noisy information. 

 Compared with the GARCH model, neural networks are significantly more accurate, according to traditional 

measurements tests, and ANNs outperform GARCH models in statistical terms, as the AGS and MGN tests indicate. 

 ANNs can capture heteroskedastic phenomena. 

The next step in future work is to integrate neural networks and other techniques—such as genetic techniques, wavelet 

analysis, fuzzy inference, pattern recognition, and traditional time series models—for financial and economic forecasting. The 

advantages of genetic techniques include adaptiveness and robustness, and they avoid the problem of neural networks getting 
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  For more about these tests, see Brockwell and Davis (1991).  
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  Chebyshev's inequality test is applied to confirm the results about the residuals' probability distribution. For all the indexes, 

this was confirmed to be a normal distribution. 
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stuck at a local optimum. Once a network is trained, tested, and identified as being ―good,‖ a genetic algorithm can be applied 

to optimize its performance. The process of genetic evolution works on the neuron connection of a trained network by applying 

two procedures: mutation and crossover. The application of hybrid systems seems to be well suited for the forecasting of 

financial data. On the other hand, the discussion about input variables can be interpreted according to each dataset studied. 
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