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Abstract

Car driving is a serious task and any distraction may lead to catastrophic
consequence. It is therefore very desirable to detect drivers’ mental distraction
and produce alter message when necessary. Psychologists have found that
human’s mental status can be featured by some representative signals of human
brain, and machine learning methods can be employed to discriminate a driver’s
mental status (normal or distracted) based on these signals. This paper
contributes in two directions for distraction detection: (1) we found using sparse
models can help discover the most significant signals and prevent from
over-fitting; (2) we found some simple signal processing techniques can find more
powerful features than those conventionally used by psychologists.

Keywords: sparse discriminative analysis; distraction detection

1 Introduction
Driver distraction is one of the leading causes of traffic crashes. The weight of

driver distraction on accident statistics varies depending on the criteria used to

attribute distraction [1, 2, 3, 4, 5]. A naturalistic driving study “100 car study”

released by the National Highway Traffic Safety Administration (NHTSA) reported

that failures of attention contributed to 78% of all crashes and 65% of all near-

crashes [6]. Visual, auditory, biomechanical, and cognitive distraction are four major

types of driver distraction. In comparison to the extensive body of research exam-

ining the attention principles that govern distraction by external stimuli (the first

three categories), the topic of cognitive distraction has been relatively understud-

ied. Cognitive distraction occurs when the driver’s mind is not focusing attention

on the driving task [7, 8, 9, 10]. Because the mental state of drivers is not ob-

servable, no simple measure can index cognitive distraction precisely. Currently,

researchers use subjective report measures, driver physiological measures, driver

physical measures, driving performance measures, and hybrid measures to assess

driver distraction [11]. Various physiological and biological measures such as elec-

troencephalography (EEG), electrooculogram (EOG), heart rate variability (HRV),

functional magnetic resonance imaging (fMRI), functional near infrared imaging

(fNIR), and galvanic skin response have been employed to detect cognitive state

changes [12, 13, 14]. However, EEG is the only physiological signal that has been

shown to accurately reflect subtle shifts in alertness and attention that can be i-

dentified and quantified on a second-by-second time-frame [15]. Compared to other

physiological and biological indices, EEG is a more direct and accurate technique to

indicate when a driver is thinking something unrelated to the driving tasks. Several
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ratios of EEG power bands (e.g., alpha, beta, theta, etc.) have been found to corre-

late with cognitive distraction [14, 16, 17, 18, 19, 20]. For example, Cunningham, et

al. [17] recorded the EEG activities from seven electrode sites and computed three

different band ratios: beta/alpha, beta/theta, and beta/(alpha+theta) at each site.

The authors observed significant increases from pre- to post- TUTs in two power

band ratios, beta/(alpha+theta) and beta/alpha from all parietal lobe sites (Pz,

P3, and P4). Although EEG has been found to correlate with cognitive distrac-

tion in a variety of tasks (e.g., vigilance, memory, reading comprehension, auditory

oddball, and signal detection), none of the existing researches involves a driving

task. Many technologies have been adopted to mitigate the effects of distraction.

One promising strategy involves developing algorithms/models to differentiate the

driver’s distracted state from normal driving conditions, and then using them to

adapt the in-vehicle technologies to detect driver distraction in real time. Machine

learning technology provides several algorithms of searching large volumes of data

for unknown patterns. It has been successfully applied to capture the differences in

driving behaviors and ocular activities when people drive normally and when they

are distracted. Different training methods, model characteristics, and feature selec-

tion criteria were presented and compared [21, 22, 23, 24, 25]. For example, Liang

and her colleagues applied support vector machines (SVMs) [25] and Bayesian net-

works [24] to develop a real-time approach for detecting cognitive distraction using

drivers’ eye movements and driving performance data. In these studies, data for

training the models were collected using a static driving simulator, with real hu-

man subjects performing a specific secondary task while driving. The objective of

the present study was to apply machine learning techniques to develop a real-time

approach for the detection of cognitive distraction, using drivers’ EEG data.

2 Preliminary
2.1 Challenge with distraction detection

Distraction detection can be cast to a problem of mental status classification, where

normal and distracted status are treated as two status that need to be classified

frame by frame. This classification task, as shown in [24], can be simply conduct-

ed by an off-the-shelf machine learning tool. However in practice, it is not such

easy. There are at least two problems preventing from a blind application of ma-

chine learning tools: firstly, the training data for each subject is often very limited,

so there is a serious over-fitting problem; second, the signals are from multiple

channels, which means, on one hand, the information received is redundant; and

on the other hand, many task-irrelevant signals are received. How to extract the

most representative information that is more related to mental status and that is

robust against noise (sensory noise, other psychological factors, etc.) is highly im-

portant. Traditional approaches use psychological knowledge to extract informative

features [17]; however, this psychologically-derived features can only solve the one-

channel problem; for multiple channels, the channel redundancy still exists. In this

paper, we propose to select features (from multi-channel input) by sparse models,

which automatically discovers the most related features by looking at their dis-

criminative power on the task in hand. Moreover, we assume psychological-driven

features may have lost some important information so are probably suboptimal.
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We study more general features derived from spectral processing, hoping that will

involve more information that would be discovered and utilized by the sparse mod-

els. Our experiments demonstrated that the general features plus feature selection

based on sparse models work much better than psychological features plus SVM,

an approach that has been demonstrated successful in previous studies [25].

2.2 Sparse models

Imposing an l1 or lasso penalty to achieve sparsity on features has been extensively

studied in both regression [26, 27] and classification [28, 29, 30, 31]. By adding an l1

regularization term to the original cost function, the coefficients of less important

feature dimensions are effectively driven to zeros, leading to a natural and efficient

feature selection approach which can be used for discovering the most important

channels and dimensions in the data of mental distraction. A remarkable advantage

of this sparsity-based approach is that the promising features are selected simulta-

neously as an entire group.

We investigate two sparse models in this paper: one is based on the simple linear

discriminative model while the other is based on the SVM model. The former is

simple and efficient, but the latter is more consistent with the detection component,

if the classifier used in the detection is an SVM.

2.2.1 Sparse linear discriminative analysis (SDA)

Following the formulation of [28], let X ∈ RN×P be a data matrix where N is

the number of observations and P is the dimension of the feature vector; further

let Y ∈ {0, 1}N×K be the class variables in which Ynk is an indicator variable for

which the n-th observation belongs to the k-th class. The optimal scoring criterion

for LDA involves recasting the classification problem as a regression problem by

turning the categorical target (class label) to a continuous target by multiplying a

score vector θk. The objective function takes the following form [28]:

minβk,θk{||Y θk −Xβk||22} s.t.
1

N
θTk Y

TY θk = 1, θTk Y
TY θl = 0 ∀l < k,

where θk is the K-dimensional score vector, and βk is a P-dimensional vector of

variable coefficients. Note that this is a sequential optimization problem where the

‘discriminative directions’ {βk} are attained one by one. To enforce sparsity in

the discriminative directions, [28] appended an l2 term and an l1 term to the cost

function, given by:

minβk,θk{||Y θk −Xβk||22 + γβTk Ωβk + λ||βk||1}

s.t.
1

N
θTk Y

TY θk = 1, θTk Y
TY θl = 0 ∀l < k,

(1)

where Ω is a positive definite matrix to avoid singularity when the observations are

mutually dependent or when the dimension is large, i.e., P > N , and λ and γ are

non-negative hyperparameters. Note that the l1 penalty introduced by the third
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term in the above equation enforces sparsity on βk, and more dimensions of βk are

driven to zeros with a larger λ [26].

In the case of a two-class classification problem, there is only one discriminative

direction β. The optimization problem is then simplified as follows:

minβ,θ{||Y θ −Xβ||22 + γβTΩβ + λ||β||1}

s.t.
1

N
θTY TY θ = 1.

(2)

Eliminating θ by a simple calculation leads to:

minβ{||Ŷ −Xβ||22 + γβTΩβ + λ||β||1}, (3)

where Ŷ is the normalized class indicator matrix whose elements are given by:

Ŷn,k =

√
N

Nk
,

where Nk is the number of observations of the k-th class. We see that the opti-

mization problem for the classification task equals to the optimization problem of

a regression task in the case of two classes, which has been stated in [32]. Further,

notice that Eq. (3) is an elastic net problem if Ω = I, and a generalized elastic

net problem for an arbitrary symmetric positive definite matrix Ω. This elastic net

problem can be solved by the algorithm proposed by [27].

Once the optimal β is obtained, for a new observation x ∈ RP , a simple classifi-

cation can be conducted by setting a threshold on βTx. In this work, however, we

treat the SDA as a keyword selector instead of a classifier. First, notice that β is

sparse, which indicates that only a fraction of the dimensions of X contributes to

the decision. We therefore select the features (words) whose corresponding coeffi-

cients in β are not zero as keywords; these keywords are then used to build a new

low-dimensional text feature, based on which an SVM (non-linear in this work) is

constructed and is used as the classifier for distraction detection.

We finally note that it is only for a binary classification task that the SDA model

coincides with the elastic net regression proposed by [27]. For multiple classification

tasks, the SDA model is a general framework to derive sparse coefficients {βk}. In

this case, the non-zero dimensions of different βk are usually different, so the words

corresponding to all these non-zero dimensions of all the coefficients {βk} have to

be selected as keywords.

2.2.2 Sparse SVM

A shortcoming of the SDA-based approach resides in the discrepancy between the

objective functions used in the feature selection and the mental status classification:

the former is based on the minimum square error, and the latter is based on the

maximum margin, if SVM is used. A better approach is to use the same objective
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function/model to classify mental status. The sparse SVM model is a good candidate

because it is a sparse version of the SVM and both are based on the maximum

margin.

We follow the formulation in [32]. First, we define xn as a training sample and tn ∈
{+1,−1} as its label. The linear SVM holds a classification boundary wTx+ b = 0

where w and b are model parameters, and it predicts the target for xn (i.e., the

category assignment yn) as follows:

yn = wTxn + b. (4)

The model training involves optimizing the following regularized hinge function

with respect to w and b:

C

N∑
n=1

ξn +
1

2
||w||22 s.t. tnyn > 1− ξn, (5)

where N is the number of training samples, and ξn is a slack variable that represents

the cost term of xn: ξn = 0 if xn is inside or on the correct margin boundary,

otherwise ξn = |tn − yn|. In addition, ||w||22 is the regularization term, and C is a

tunable hyperparameter to trade off the cost and regularization. From the constraint

of Eq. (5), one can show that the distance from the margin to the decision boundary

remains to be 1, and so any data xn is misclassified if ξn > 1.

As pointed by [30], the l2 norm ||w||22 leads to a dense vector of the optimal w. In

order to obtain a sparse w, an l1 norm can be used to substitute for or append to

the l2 norm, leading to the following cost function:

N∑
n=1

ξn + γ||w||22 + λ||w||1, s.t. tnyn > 1− ξn, (6)

where γ and λ are two model hyperparameters for trading off the hinge cost and

the regularization. A larger λ drives more dimensions of w to zeros, which in turn

vanishes contributions of more features when conducting model inference, according

to Eq. (4). Therefore, a sparse SVM leads to a natural way for feature selection. As

in SDA, the words corresponding to the non-zero coefficients in w are selected as

significant dimensions, and the selected dimensions comprise the low dimensional

features to build a non-linear SVM model for mental status classification.

In this work, we employ the template first-order conic solver (TFOCS) to optimize

the sparse SVM. TFOCS is a general framework for solving a variety of convex cone

problems, including the problem of Eq. (6) [33].

We notice that using a linear sparse SVM to conduct feature selection has been

studied in some publications. For example, [30] proposed a quite similar approach

to ours, where a linear sparse SVM is used to choose significant dimensions and

a non-linear SVM conducts classification. The difference is that [30] worked on
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v-Support Vector Regression (SVR) and did not involve the l2 term in Eq. (6).

[31] provided another form of sparse SVM, where the maximum number of non-

zero dimensions was treated as a constraint, and a convex relaxation approach was

employed to optimize the model. To the authors’ best knowledge, this paper is the

first application of the sparse SVM model to distraction detection (mental status

classification).

Comparing the SDA-based and sparse SVM-based feature selection (Eq. (3) and

Eq. (6)), we notice that both are based on sparse constraints in the form of an

elastic net regularization. The only difference resides in the objective function when

optimizing the model coefficients β (in SDA) or w (in sparse SVM): the former is

the regularized square error while the latter is the regularized hinge cost. Since the

classifier in the detection component is an SVM in this work, the sparse SVM-based

approach tends to be more consistent to the classification component.

2.3 Mel Fbank extraction

Feature extraction from time series such as EEG data involves various signal pro-

cessing steps. The most popular processing scheme is perceptual-oriented filtering.

We borrow the Mel filter bank (Fbank) pipeline from speech processing research to

extract features for distraction detection. The main steps of Fbank extraction is p-

resented in Fig. 1. The signal is first split into equal-length segments, or frames, and

then passes a time-domain window to mitigate the boundary effect. Each windowed

frame is then converted to the frequency domain by fast Fourier transform (FFT),

and then a set of Mel filter banks are applied in the frequency domain to extract the

energy of each frequency band. These energies of subbands are then compressed by

logarithm, resulting in the Fbank features. Note that a property of Fbank features

is that the frequency resolution is higher in the low frequency area than in the high

frequency area. In speech processing, this matches the character of the human audi-

tory system as the former is more sensitive in low frequency. This character is also

attractive for processing EGG signals: it has been demonstrated that information

related to mental status is mostly within the low-frequency components of EEG

signals [14, 16, 17, 18, 19, 20].

Figure 1 Processing steps for Mel Fbanks
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3 Methods
3.1 Participants

Twelve healthy participants (6 males, 6 females) took part in the laboratory ses-

sion, which involved a driving simulator. Their average age was 32.3 years (range

from 25 to 39, SD=4.52). The average number of years since they obtained their

first driver licenses was 7.12 (SD=2.55), and the average estimated annual mileage

was 16152.63 kilometers (SD=6638.14). All participants had normal or corrected-

to-normal vision, a valid driver’s license, and reported being free of psychiatric

or neurological disorders. 2.2. Materials A STISIM R© driving simulator (STISIM-

DRIVE M100K) was used in the experimental study. The STISIM simulator was

installed on a Dell Workstation (Precision 490, Dual Core Intel Xeon Processor 5130

2GHz) with a 256MB PCIe×16 nVidia graphic card, Sound Blaster R© X-FiTM sys-

tem, and Dell A225 Stereo System. It includes a Logitech Momo R© steering wheel

with force feedback, a gas and a brake pedal. The driving scenario was presented on

a 27-inch LCD with 1920 × 1200 pixels resolution. A Neuroscan system including

one Quik-Cap, Nuamps Express, and SCAN software, was utilized to record EEG

activity and perform the EEG frequency analysis. Nuamps Express is a 40-channel

digital EEG recording system, and SCAN provides a full research-grade-data pro-

cessing tool to remove noise and artifacts or decompose complex signals. Electrodes

were also placed on each earlobe for use as reference points. In addition to the

driving simulator and EEG recording system, one more system (the stimuli gener-

ation computer) was used to synchronize driving behavioral and EEG data. The

initialization of each driving task and the timing of each keystroke were recorded

by the driving simulator, and read by the stimuli generation computer. These tim-

ings triggered signals that were coded accordingly and sent to the EEG recording

computer as markers simultaneously through LabJack R© interface (LabJack Corpo-

ration, Colorado, USA). These markers were used as bases of extracting frequency

features from the continuous EEG data and behavioral indices from continuous

driving signals.

3.2 Experimental task

3.2.1 Driving task

Participants drove along a straight suburban street with one lane in each direction.

The subject vehicle (SV; vehicle driven by the participants) was equipped with a

simulated cruise control system that engaged automatically at 70 km/h and disen-

gaged when drivers pressed the brake pedal. The participants were instructed to

follow the vehicle in front of them (lead vehicle, LV) and to use the cruise control

as much as possible. The participants performed three driving tasks during each of

the six drives. The first task was to follow the LV and respond to six LV braking

events during each drive. The timing of each braking event was determined by the

status of the IVIS task. During the events, the LV braked at a rate of 0.2 g until it

reached a minimum speed of no more than 30 km/h and the participant had braked

at least once. Following a brief, random delay (0 to 5 s), the LV accelerated at a

rate of 0.25 g until it reached a speed of 40 km/h. The second task was to keep the

SV from drifting toward the lane boundaries and to drive in the center of the lane

as much as possible. The final task was to detect the appearance of a pedestrian on
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the right side of the road in the driving scene by pressing a button on the steering

wheel. The pedestrian appeared about three times per minute and was visible, on

average, for approximately 2.8 s.

3.2.2 Auditory IVIS Task

During four of the six drives, participants interacted with the IVIS: an auditory

stock ticker. The auditory, purely cognitively loading, task used in HASTE, was

based on the visual Continuous Memory Task, described in Veltman and Gail-

lard (1998). The task (henceforth referred to as the ACMT—Auditory Continuous

Memory Task) was to keep an updated count of two target sounds, presented in

sequence among two non-target sounds. Each target sound was counted separately,

so the subject had to keep track of two counts in parallel. The current sum was read

out aloud after each drive. The experimenter annotated their responses manually.

The subjects were trained before the experimental trials to distinguish between the

target and the non-target sounds.

3.3 Procedure

Upon arrival, participants completed an informed consent form, a questionnaire

inquiring their demographic information and driving experience along with a vision

test. Drivers with at least four years of driving experience and normal or corrected-

to-normal vision ability were allowed to participate in this experiment. Participants

were seated in a comfortable chair and wore the filtered Quik-Cap sensor cap.

The reference electrodes were placed on the left and right mastoids and the ground

electrode was placed mid-forehead. The horizontal and vertical EOGs were recorded

with electrodes placed 10 mm away from the outer canthi of both eyes and below

and above the left eye. Electrical impedances at each electrode site were reduced

to less than 5 kOhms. After the cap was set up, the participants were instructed

to sat quietly and close their eyes. EEG and EOG signals were sampled at 1000

Hz and continuously recorded for up to 15 minutes (i.e., baseline condition). After

the baseline recording, participants were provided with a brief description of the

experimental task. Participants then went through the 15-minute practice drive

session which allowed them to become familiar with the driving simulator controls

including steering wheel, speedometer, throttle, and brake pedal. They were free

to ask questions during the practice drive session. The formal experimental session

began after participants fully understood the task and felt comfortable operating the

driving simulator. It consisted of six test blocks and each lasted for 15-20 minutes.

Participants were given a 5-minute break between two test blocks. Continuous EEG,

EOG, and driving signals were recorded and synchronized. EEG and EOG data

and sampled at 1000 Hz and driving signals were sampled at 10 Hz. The whole

experiment was completed within 2 hours. All participants were paid at a rate of

$20.00 per hour.

4 Results
We cast the distraction detection task to a mental status classification task, i.e.,

train a classifier that discriminates normal and distraction status. The performance

is evaluated in terms of frame classification error rate (FER). The database involves
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EEG data from 8 subjects, and each subject recorded 6 session, where the first

four sessions are positive (distracted status), and the rest two sessions are negative

(normal status).

4.1 Psychology derived features

4.1.1 SVM approach on all channels

The first experiment employs psychology derived features. The most representative

3 features are derived from each channel, and there are 34 channels in total. The

features are derived from the alpha, beta and theta bands which have been shown

related to mental status. The sampling rate is 10 Hz. Positive samples (distraction)

and negative samples (normal) are balanced by random sampling some negative

data. The SVM model is selected as the classifier, for which the LibSVM package

is used for model training and inference[1].

Two experiments are conducted: the first ‘Single-subject’ experiment trains a

single SVM for each subject[2], and the second ‘Multi-subject’ experiment trains

a single SVM with the data from all the subjects, but test is conducted on each

subject[3].

The results are shown in Table 1. It can be seen that with either approach, the

performance on the training set is almost 100% correct, while the performance on

the test set is pretty low. This suggests severe over-fitting. It is understandable

as the training data is very limited (about 900 positive samples and 300 negative

sample per subject), and the dimensionality is pretty high (102). The over-fitting

problem exists with linear models as well.

Table 1 Results of SVM, based on psychological features of all channels.

Training Approach Training subject Test subject Training FER Test FER
Multi 1-8 1 - 48.55
Multi 1-8 2 - 49.00
Multi 1-8 3 - 49.47
Multi 1-8 4 - 49.70
Multi 1-8 5 - 49.08
Multi 1-8 6 - 50.30
Multi 1-8 7 - 49.70
Multi 1-8 8 - 48.93
Multi 1-8 1-8 0.02 48.93

Single 1 1 0.00 48.54
Single 2 2 0.00 48.85
Single 3 3 0.00 38.16
Single 4 4 0.00 49.70
Single 5 5 0.00 41.54
Single 6 6 0.00 49.40
Single 7 7 0.00 49.70
Single 8 8 0.00 47.43

4.1.2 SVM approach on selected channels

To alleviate the sever over-fitting problem, the feature dimensionality needs to be

reduced. From previous studies, it has been shown that some channels are more

related to mental status change. By this knowledge, we choose the most prominent

5 channels, leading to 15 features.

[1]http://www.csie.ntu.edu.tw/ cjlin/libsvm/
[2]/nfs/disk/work/wangd/research/psychology/test/t2.2
[3]/nfs/disk/work/wangd/research/psychology/test/t2.3
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Again, a ‘Single-subject’ experiment that trains a single SVM for each subject[4],

and a ‘Multi-subject’ experiment that trains a single SVM for all subjects[5] are

conducted.

The results are shown in Table 2. It can be seen that the over-fitting is allevi-

ated a little bit, but the performance is still unacceptable. This indicates that the

psychology-based feature dimension is not ideal.

Table 2 Results of SVM, based on psychological features of selected channels.

Training Approach Training subject Test subject Training FER Test FER
Multi 1-8 1 - 42.42
Multi 1-8 2 - 51.77
Multi 1-8 3 - 46.46
Multi 1-8 4 - 47.45
Multi 1-8 5 - 48.92
Multi 1-8 6 - 53.45
Multi 1-8 7 - 54.29
Multi 1-8 8 - 48.64
Multi 1-8 1-8 9.70 49.29

Single 1 1 0.00 43.80
Single 2 2 0.15 49.92
Single 3 3 0.40 47.36
Single 4 4 0.00 45.35
Single 5 5 0.05 49.23
Single 6 6 6.90 57.06
Single 7 7 0.05 50.30
Single 8 8 0.15 49.24

4.1.3 SDA approach: Multi-subject model

In this experiment, we use the same psychologically derived data (all channels),

but employ SDA to select the most representative features (no-zero dimensions).

Once the features are selected, a simple linear model (logistic regression) is applied

to conduct the classification. The data from all the 8 subjects are used to train

the SDA and the classifier, and then test on each subject as well as the entire test

data. The results on the entire training set and test set are reported in Fig. 2 and

Fig. 3 respectively [6], where the sparsity of SDA is set in different values so that

the dimensionality of the selected features changes from 1 to 102. It can be seen

that on the training set, more dimensions lead to better performance, while on the

test set, there is an optimal dimensionality that leads to the best test performance.

This confirms the over-fitting problem, and indicates that SDA can help select most

prominent features so that the over-fitting problem can be alleviated. We can see

that the best performance with SDA is much better than with the simple SVM.

The results on each subject are presented in Fig. 4, where each subject is repre-

sented by a curve. We observe that there is a large variance among subjects: some

subjects can obtain very good performance, while others exhibit rather poor.

4.1.4 SDA approach: Single-subject model

Motivated by the great variance among subjects, we train a specific SDA for each

subject in this experiment. The results on the training sets and test sets are pre-

sented in Fig 5 and Fig. 6 respectively.[7]

[4]/nfs/disk/work/wangd/research/psychology/test/t2.2
[5]/nfs/disk/work/wangd/research/psychology/test/t2.3
[6]/nfs/disk/work/wangd/research/psychology/test/t4.0/model
[7]/nfs/disk/work/wangd/research/psychology/test/t4.0/model.single-subject
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From the results on the training data, it can be observed that the single models

can learn each subject very precisely, therefore obtains rather good performance for

each subject, compared to the multi-subject model shown in Fig. 2. The results on

test sets do not shown much advantage compared to those obtained with the multi-

subject model shown in Fig. 4; however, very bad subjects as Fig. 4 disappear. This

again suggests that subject variability is an important factor, and single-subject

modeling is necessary. However, the subject-specific model suffers from more data

sparsity, leading to more serious over-fitting. This is why the highest performance

obtained by the single-subject models is even worse than the one obtained with the

multi-subject model.

4.2 Fbank features

The psychological features involve human-discovered information, however it is also

possible that the man-made features overlook some important information that

helps discriminating mental status. This experiment employs Fbanks for norm-

distraction classification. Fbanks are developed by signal processing society and

more concerns with auditory perception. We investigate whether the general features

can deliver reasonable performance with EEG data.

The window length is empirically set to 512, FFT length to 256, the number of

filer banks to 25. The original 36-channel EEG data are used, for which the sampling

rate is 1000 Hz. We experiment with two scenarios: in the first scenario, models are

constructed for each channel (single-channel model), and in the second scenario,

data from multiple channels are used (multi-channel model).

4.2.1 Single-channel SDA: Multi-subjects model

We first experiment with the scenario of single-channel (i.e., each channel is mod-

elled independently) and multi-subject (i.e., training data are from all subjects)

models. The performance is evaluate the entire training and test data. The dimen-

sionality of the selected features by SDA is changed from 1 to 25 (the number of

Fbanks), and the results are shown on each channel[8].

The results are shown in Fig. 7, where each curve represents a single channel,

and the x-axis shows the feature dimensionality from 1 to 25. We first that observe

different channels perform very differently. This is expected, as the sensors placed

on different positions on the head tend to receive very different signals. On the other

hand, it can be seen that sparsity impacts the performance significantly. When only

a small number of features are available, performance on different channels are much

more different; with more features selected, the variance among channels tends to

be small. This is perhaps because the training data involves multiple subjects, by

which the variety on subjects may alleviate the variety on channels.

For a more clear comparison on different channels, we choose the best sparsi-

ty on each channel, and presents the corresponding performance in Fig. 8. It can

be observed that channel 2 and 25 are the most discriminative. The best result is

25.39%, which is better than the best result (38.68%) obtained with the psycho-

logical features as shown in Fig 3. This is a highly promising result and indicates

that psychological knowledge is useful, but maybe not the best. Raw features like

[8]/nfs/disk/work/wangd/research/psychology/test/t4.1/model
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Fbanks derived from signal processing might be sufficiently good to deliver even

better results than man-made psychological feaures.

4.2.2 Single-channel SDA: Single-subject model

In the next experiment, we build SDA models for each subject and each channel.

This is motivated by the observation in the previous sections that there is great

variety among subjects. We present the results on each subject[9]. The results are

shown in Fig. 9 to Fig. 16. Each figure presents each subject, and in each picture,

each curve represents a single channel.

From these results, we can observe that for most subjects, the performance on

the best channel with the best sparsity can reach very high, almost close to zero.

This on the one hand indicates that the Fbank feature is very powerful in discrim-

inating mental status, with appropriate sparse constraints applied. On the other

hand, it also shows great variability among channels and subjects. The best chan-

nels are significantly different from one subject to another, which implies that the

spatial patterns on the EEG data for mental distraction are very complex and high-

ly depends on individuals. It is difficult to design a unified model to achieve good

detection for all people, and we must train subject-dependent models.

To further analyze the variety of subjects, the best channel and the corresponding

PER of each subject are presented in Table 3. It can be seen that for every subject,

the best channel is very unique, and the best performance that can be achieved is

also quite different.

Table 3 The best channel and FER on test data on each subject. The model is single subject and
single channel.

Subject Best Channel Test FER
1 11 2.46
2 23 1.25
3 17 0.00
4 33 17.08
5 28 23.36
6 16 0.00
7 2 0.00
8 26 0.00

4.2.3 Multi-channel SDA: Single-subject model

In this experiment, we try to use data from multiple channels. Again, Fbanks of

25 dimensions are derived from each channel, and then the Fbanks from all the 36

channels are concatenated together. The SDA model is trained for each subject, and

a logistic regression model is trained as the classifier[10]. We test several sparsity

settings (the number of non-zero dimensions in SDA): 10, 20, 30, 40, 50. The results

for the 8 subjects on training and testing data are shown in Table 4. It can be seen

that for all the subjects, the performance on the training sets are almost 100%, while

on test sets, the performance is pretty bad for most subjects. This suggests severe

over-fitting. More robust approaches such as group sparsity are under investigation.

[9]/nfs/disk/work/wangd/research/psychology/test/t4.1/model.single
[10]/nfs/disk/work/wangd/research/psychology/test/t4.2/model.t2
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Table 4 PER on each subject with SDA based on Fanks. The model is single subject and multiple
channel.

Subject FER%
1 9.90 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 1.04 0.04 0 0
5 0 0 0 0 0
6 0 0 0 0 0
7 0 0 0 0 0
8 0 0 0 0 0
1 100 56.95 55.24 55.47 50.09
2 12.38 26.05 27.27 27.47 27.46
3 14.40 7.59 7.61 9.71 7.44
4 63.18 51.61 35.84 31.60 32.47
5 49.70 49.83 49.80 49.80 49.75
6 48.28 46.34 29.38 29.59 29.06
7 0 0 0 0 0
8 41.99 87.58 84.35 73.45 70.00

5 Conclusions
We investigated the problem of distraction detection in car driving, using EEG data.

Our experiments showed that simply applying regular machine learning methods

such as SVM suffers from very severe over-fitting problem and can not be prac-

tically used. We therefore employ SDA to select the most promising features in a

group fashion. Experiments demonstrated that the SDA-based feature selection is

highly effective. Additionally, we found general Fbanks features can achieve much

better performance compared to the psychologically derived features, demonstrat-

ing the capability of signal processing methods in psychological analysis. Finally,

we observed a large variety among subjects: the most discriminative channels are d-

ifferent for different subjects, and the optimal sparsity levels are also different. This

suggests that in order to get an effective distraction detection, the system must be

carefully tuned to suite each individual.
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Figure 2 PER on the entire train set, with SDA based on psychological features of all channels.
Models are trained on data of all subjects.
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Figure 3 PER on the entire test set, with SDA based on psychological features of all channels.
Models are trained on data of all subjects.
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Figure 4 PER on each subject, with SDA based on psychological features of all channels. Models
are trained on data of all subjects.
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Figure 5 PER on training data of each subject, with SDA based on psychological features of all
channels. Models are trained on data of each subject.
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Figure 6 PER on test data of each subject, with SDA based on psychological features of all
channels. Models are trained on data of each subject.
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Figure 7 PER on entire test data set, with SDA based. The model is single-channel and
multi-subject. Each curve represents a channel.
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Figure 8 Best PER on entire test data set with optimal sparsity, with SDA based on Fbank. The
model is single-channel and multi-subject.
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Figure 9 PER on test data for subject 1, with Fbank as features and model trained with the data
of this subject. Each curve represents the model trained with the data of a particular channel.
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Figure 10 PER on test data for subject 2, with Fbank as features and model trained with the data
of this subject. Each curve represents the model trained with the data of a particular channel.
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Figure 11 PER on test data for subject 3, with Fbank as features and model trained with the data
of this subject. Each curve represents the model trained with the data of a particular channel.
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Figure 12 PER on test data for subject 4, with Fbank as features and model trained with the data
of this subject. Each curve represents the model trained with the data of a particular channel.
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Figure 13 PER on test data for subject 5, with Fbank as features and model trained with the data
of this subject. Each curve represents the model trained with the data of a particular channel.
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Figure 14 PER on test data for subject 6, with Fbank as features and model trained with the data
of this subject. Each curve represents the model trained with the data of a particular channel.
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Figure 15 PER on test data for subject 7, with Fbank as features and model trained with the data
of this subject. Each curve represents the model trained with the data of a particular channel.
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Figure 16 PER on test data for subject 8, with Fbank as features and model trained with the data
of this subject. Each curve represents the model trained with the data of a particular channel.


