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Abstract

One of the state-of-the-art approaches to speaker recognition is based on factor
analysis, especially the i-vector model. By representing a speech segment as a
vector in a low-dimensional vector space, the i-vector model can deal with the
complex correlation among components of the Gaussian mixture model (GMM).
On the other hand, it is well known that i-vectors contain both speaker and
session variances, and therefore additional discriminative approaches are required
to emphasize the speaker-dependent information in the ‘total variance’ space.
Among various methods, the probabilistic linear discriminant analysis (PLDA)
achieves the significant performance, partly due to its generative model
framework that represents the speaker and session variances in a hierarchical way.
A disadvantage of PLDA, however, lies in its Gaussian assumptions of the
speaker and session variables, which is not necessarily true in most situations.

This paper presents a discriminative scoring approach for i-vector-based speaker
recognition based on deep neural networks (DNN). This approach casts the
recognition task to a binary classification problem and employs the DNN model
to learn the complex decision boundary in the heterogeneous speaker space.
Compare with the PLDA-based approach, the new approach does not rely on any
artificial assumption on the distribution of data, and can optimize the model with
respect to the recognition task directly. Our experiments on the NIST SRE08
core test demonstrate that the DNN-based approach outperforms the
PLDA-based approach, and find that combining the DNN and PLDA scores leads
to further gains. Finally, we compare the DNN model with a discriminative but
shallow model, the support vector machine (SVM), and find that the DNN clearly
outperforms the SVM, confirming the advantage of deep learning.
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1 Introduction
Joint factor analysis (JFA) has gained much success in speaker recognition. This ap-

proach assumes that the speaker variance and session variance are derived from two

independent random variables (factors) that follow the standard Gaussian distribu-

tion as a prior (usually in a low-dimensional subspace). The speaker representation

of a speech segment is then derived by inferring the posterior probability of the

speaker factor given the speech signal [1]. Recent research reveals that speaker and

session variances may not be clearly separated by JFA, and the session factor in-

ferred from JFA may still contain some speaker information. A better approach

would be representing speaker and session variances as a single ‘total variance’

factor, so that more speaker information can be retained in the posterior infer-

ence. By this approach, a speech segment can be represented by an ‘i-vector’ which
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corresponds to the mean vector of the inferred posterior distribution of the to-

tal variance factor. This is widely known as the total variance model or i-vector

model [2]. PLDA [3] scoring method is widely used in i-vector and achieves the

significant performance. Also, some discriminative scoring method are utilized in i-

vector especially for speaker verification task. In the following sections, we’ll briefly

introduce PLDA scoring and discriminative scoring.

1.1 PLDA scoring

Involving both speaker and session variances is a particular advantage of the i-vector

model as more speaker-related information is retained; however, at the same time,

the disadvantage is also obvious: the ‘mixed’ representation leads to less discrimi-

nation among speakers. It is therefore important to employ some discriminative ap-

proaches to suppress the session variance and accentuate the speaker variance. For

example, the with-in class covariance normalization (WCCN) technique employs a

linear transform that is derived by optimizing a generalized linear kernel [4], and the

nuisance attribute projection (NAP) seeks a projection that minimizes the discrep-

ancy of signal pairs recorded in different channels [5]. These approaches, although

originally proposed for the SVM-based approach, have been demonstrated to be

effective in i-vector systems, as a post-processing to enhance speaker discrimination

with i-vectors [6].

Another approach that remarkably improves the representative power of i-vectors

is the probabilistic linear discriminant analysis (PLDA) [3]. On one hand, PLDA

is a probabilistic version of LDA and so inherits LDA’s discriminative nature; on

the other hand, PLDA is a generative model which places a Gaussian prior on the

underlying class variable, and so can model classes with very limited training data.

This is a big advantage of PLDA in speaker recognition, since in most situations

only very few utterances are available for enrollment and testing.

1.2 Discriminative scoring

In spite of the success of PLDA, there are still some limitations with this model. Par-

ticularly, the model assumes that the prior probability of the class variable and the

conditional probability of i-vectors are both Gaussian. This is not necessarily true

in practice. In addition, the speaker recognition task is essentially a classification

task, i.e., distinguishing genuine speakers and imposters, for which a discriminative

model is a more reasonable choice.

We therefore seek a discriminative model which relaxes the Gaussian assumption

and scores a trial by predicting the posterior that the trial is from the genuine

speaker. A possible approach of this category is to train a one-vs-all model for

each speaker; in the test phase, the confidence score of a trial is derived from these

speaker-dependent models. A popular discriminative model that is employed in this

way is the support vector machine (SVM) [5, 7, 8], which has been widely used in

the transform-based systems (e.g., based on MLLR spervectors [9, 10, 11]) and can

be easily migrated to i-vector systems [2, 12]. An obvious problem of this one-vs-all

strategy is that the positive samples are highly sparse and so the resulted model

may be highly biased. In addition, keeping an SVM for each speaker is awkward for

large-scale applications.
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A more ideal approach is to train a universal classifier for all speakers. The input

is a pair of i-vectors, with one i-vector representing the ascertained speaker and the

other representing the tested utterance, and the output is the probability of the

two i-vectors belonging to the same speaker. For example, an SVM can be used as

such a classifier, and with the cosine kernel, the SVM falls back to the widely used

cosine distance measure.

1.3 Motivation

Although complex kernels can be used to improve the discriminative power of the

SVM, such as with the Kullback–Leibler divergence, it was found in experiments

that the improvement is rather marginal. We argue that a possible reason is that

the i-vector space is heterogeneous, i.e., the decision boundary varies in a complex

way, so that it is difficult to be linearly separated even in the high-dimensional

projection space (represented by the kernel function implicitly). This shortage of

the SVM model in complex decision tasks is largely attributed to the fact that it

is a shallow model and the feature mapping (the mapping from the i-vector space

to the projection space, represented by the kernel function) is not trainable, so it

is difficult to learn complex decision boundaries, even with a non-linear kernel. A

better discriminative model would be capable of learning the feature mapping based

on the training data, and hence learns the decision boundary in a more flexible way.

Recently, deep learning gains tremendous success in machine learning and signal

processing. A representative model in the deep learning regime is the deep neural

network (DNN), which is essentially a neural network that involves many hidden

layers. A particular power of the DNN is that it can learn complex and high-order

features from primary features. This capability has been used in speech recognition

to learn more powerful features from the primary spectrum. The ‘learned feature’

has substituted for the conventional Mel frequency cepstral coefficient (MFCC) that

was deliberately designed by researches and has dominated speech recognition for

several decades. Interestingly, the DNN is particularly powerful in learning decision

boundaries in heterogeneous conditions, e.g., in the acoustic space with multiple

noises, as has been shown in [13].

In this paper, we present a DNN-based scoring approach for i-vector-based speaker

recognition. The basic idea is to employ the power of the DNN in learning high-order

features from primary inputs and its capability in learning heterogeneous conditions

to learn the complex decision boundary in the heterogeneous i-vector space. Specif-

ically, we first derive some primary discriminative features from the i-vector pairs,

and then train a DNN model that learns the genuine speaker/imposter decision

from the primary features. Our experiments demonstrated that this approach is

highly effective and can achieve better performance than the state-of-the-art PLDA

model in the NIST SRE08 core test.

Note that the idea of discriminative scoring by neural networks has been pub-

lished in [14]. This paper is an extension of that work with more materials on deep

models and a complete set of experiments. In addition, we notice a similar work was

proposed by [15] at the time this study was conducted. The difference is that our

work uses different discriminative features and focuses on comparison with PLDA.

The rest of the paper is organized as follows: Section 2 gives a brief introduction

for the i-vector, PLDA and DNN techniques, for the sake of completeness. Section 3
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presents the DNN-based scoring approach, and Section 4 presents the experiments.

The paper is concluded in Section 5.

2 Theory background
For presentation convenience, we’ll first go through the i-vector model and PLDA,

then we’ll briefly introduce deep neural network (DNN).

2.1 i-vector model

The conventional approach to speaker recognition is based on the universal back-

ground model-Gaussian mixture model (UBM-GMM) architecture. The i-vector ap-

proach is an extension to the UBM-GMM approach and assumes that both speaker

and session variances of a speech segment concentrate in a low-dimensional sub-

space of the model supervector (the concatenation of the mean vectors of all the

GMM components). This subspace is referred to as the total-variance space, and a

speech segment can be represented by an identity vector (i-vector) in this space.

Mathematically, letting the UBM involve C Gaussian components, and the acous-

tic features of a speech segment associated with the c-th component follow a Gaus-

sian distribution with mean Mc and covariance Σc. The i-vector model assumes

that Mc is generated from a low-dimensional variable w ∈ RM which follows a

Gaussian distribution, via a linear transformation Tc:

Mc = mc + Tcw (1)

where mc ∈ RD is the mean of the c-th component of the UBM, and Tc ∈ RD×M is

the loading matrix associated with the c-th component. The speaker factor w follows

the standard normal distribution N (0, I). The loading matrices {Tc} can be trained

by an EM procedure [16]. Once {Tc} has been obtained, a speech segment X can

be represented by the posterior probability p(w|X) which can be inferred according

to (1). Specifically, since the prior p(w) is a Gaussian, the posterior p(w|X) is a

Gaussian as well:

p(w|X) ∼ N (w̄,Ξ) (2)

where the mean vector w̄ and covariance matrix Ξ can be computed from the zero-

and first- order statistics of X. Details of the derivation can be found in [2].

In speaker recognition, the mean vector w̄ is taken as the identity vector (i-

vector) of the speech segment, and the true/imposter decision is conducted based

on the distance (cosine distance is an often choice) between the i-vectors of the

test speech and the enrollment speech. Note that an i-vector involves both speaker

and non-speaker (e.g., channel, content, emotion) information. In order to improve

the discriminative capability of i-vectors for speakers, transform approaches such

as WCCN [4], NAP [5] and LDA [17] are usually applied before computing the

distance.
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2.2 PLDA

It is well known that the linear discriminant analysis (LDA) corresponds to a gen-

erative model given by:

wi,j = w̃i + Au

where wi,j is an observation vector (i-vector in speaker recognition) of the i-th class

(the i-th speaker in speaker recognition), w̃i is the mean vector of the class, and

u follows a Gaussian distribution: u ∼ N (0, I). This formulation implies that the

LDA assumes that the class conditional distributions p(wi,j |w̃i) are Gaussian and

share the same covariance matrices among classes. Ioffe [3] extended this model by

placing a Gaussian prior on w̃i, which leads to a hierarchical Bayesian model shown

in Figure 1.

N

Figure 1 The graphical model of PLDA, where N is the number of samples of class i.

By this extension, the class mean w̃i is treated as a continuous variable instead of

a discrete parameter as in the traditional LDA. This significantly improves model

generability and thus classes with very few samples can be well represented due to

the prior [3]. This is particularly attractive for speaker recognition where in most

cases only a few enrollment/test utterances (and hence i-vectors) are available for a

speaker. A multitude of researches reported that the PLDA can significantly improve

performance of i-vector systems and achieve the state-of-the-art performance [6].

2.3 DNN

Deep neural networks (DNN) have gained brilliant success in many research fields

including speech recognition, computer vision (CV), and natural language process-

ing (NLP) [18]. A DNN is a neural network (NN) that involves more than one hidden

layers. NNs have been studied in the speech community for a decade. For example

in speech recognition, the NN has been used to substitute for the GMM to produce

frame likelihood [19], or to produce long-context features that are used to substi-

tute for or augment to short-time features, e.g., MFCCs [20]. Although promising,

the NN-based approach did not deliver overwhelming superiority over the conven-

tional approaches. The revolution took place in the ASR community in 2010, after

a close collaboration between academic and industrial research groups, including

the University of Toronto, Microsoft, and IBM [18, 21, 22]. These researches found

that very significant performance improvements can be accomplished with DNNs

when appropriate initialization is conducted, e.g., by pre-training with restricted

Boltzmann machines (RBMs).
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Encouraged by the success in ASR, the DNN (and the unsupervised version,

deep Boltzmann machine (DBM)) model has been investigated in a wide range

of research fields of speech processing, including speech synthesis [23, 24], music

pattern analysis [25, 26], speech enhancement [27, 28], voice activity detection [29],

and music recommendation [30]. Particularly, a very recent study applies DNN

to speaker recognition [31, 32]. The basic idea is to use a DNN model trained

for speech recognition to substitute for the UBM, so that the rich information in

phones can be employed to build an accurate conditional probability model than the

Gaussian models of the GMM that are trained in an unsupervised way. In this paper,

we employ the capability of the DNN model in learning complex discriminative

functions to score the distance of i-vector pairs, i.e., the probability that a pair of

i-vectors belong to the same speaker.

3 DNN-based discriminative scoring
3.1 Concern for PLDA

In spite of the success of PLDA in speaker recognition, this model possesses some

limitations, particularly the underlying Gaussian assumption on the prior distri-

bution of the mean of the speaker classes and the conditional distribution of the

i-vectors of a speaker. There is little justification for this assumption, except the

concern on computational tractability in model training and inference. We notice

that this assumption can be relaxed to some extent by replacing Gaussians with

Gaussian mixtures, as mentioned in [33], however this will greatly improve model

complexity and the effectiveness has not yet been demonstrated in speaker recogni-

tion. Another concern for PLDA is the generative modeling itself: the optimization

objective is to fit the data. Although the fitting takes class discrimination into ac-

count, it is still suboptimal with respect to the recognition task, i.e., the task of

true/imposter decision. A desirable model should be discriminative in nature, and

the optimization criterion should be related to the true speaker/imposter decision

error rate.

A simple discriminative approach designs a one-vs-all classifier for each class, as

has been used in conventional SVM-based systems and migrated to i-vector sys-

tems [34]. This approach, however, needs to build many classifiers and suffers from

data sparsity and data imbalance, since the positive samples (i-vectors of genuine

speakers) are often rare and much less than the negative samples (i-vectors of im-

posters). An ideal approach is to build a single classifier that can make decisions

for all speakers, as the PLDA approach does. The most straightforward way is to

collect a number of i-vector pairs and label them as the same or different speakers,

and then train a discriminative model, e.g., SVM, to predict the posterior probabil-

ity that a pair of i-vectors belong to the same speaker. This approach, according to

our experiments, is promising on a small set of enrollment speakers; however, when

the number of speakers increase, the performance decreases drastically.

We argue that the difficulty with the i-vector pair modeling is two fold: firstly, the

i-vector pair is a purely raw feature, and it is hard to learn a reasonable discrim-

inative model based on the raw feature with limited training data. This is analog

to learning from raw speech signals in speech recognition where the performance

is usually bad. To solve this problem, a feature extraction, even if very simple, is
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necessary. Secondly, we argue that the SVM is a shallow model, so it can not deal

with the speaker space that becomes highly complex and heterogeneous when the

number of speakers becomes large. For such a problem, a deep model, such as DNN,

is more appropriate, due to its capability of learning complex feature mappings with

the low-level layers and complex decision boundaries with the high-level layers.

3.2 DNN-based scoring

We follow the argument in the previous section and design a new DNN-based dis-

criminative scoring approach for i-vector pairs. The main process involves two steps:

discriminative feature extraction and discriminative model training.

In the first step, the main task is to derive some features from the raw i-vector

pairs, and the goal is to make it easy for the discriminative model to learn the

decision boundary. The features should be simple and straightforward, and represent

as much discriminative information as possible. There might be many choices but

we choose the simple sub-vector Euler distance as presented in this section.

3.2.1 Primary discriminative feature extraction

First of all, a number of i-vector pairs {(vi,1, vi,2)} are collected and are labeled as

positive (+1) and negative (-1) samples according to whether or not vi,1 and vi,2

belong to the same speaker, leading to a training set ∆ = {(vi,1, vi,2; li)} where li

is the label of the i-th pair. In order to obtain the most discriminative information

while keeping the feature set compact, the LDA is applied to project the i-vector

pairs to a low dimensional subspace, resulting in a projected training set ∆′ =

{(v′i,1, v′i,2; li)} where v′ is the projection of v with the LDA.

A number of simple discriminative features are then extracted, leading to a ready-

to-use training set ∆′′ = {(fi; li)}, where fi is the feature set derived from the

pair (v′i,1, v
′
i,2). The sub-vector Euler distance was used as the features in this

work, computed on the first n dimensions of the two vectors in the pair, i.e.,

{fi(j) = |v′i,1(j) − v′i,2(j)|2; j = 0, ..., n − 1}. Note that v′i,1 and v′i,2 are in the

LDA projection space and hence their first n dimensions are assumed to retain the

most discriminative information. In addition, considering the success of the cosine

distance in i-vector systems, it is also taken as a feature. In summary, the feature

set involves n+ 1 elements:

[fi(0), fi(1), ...fi(n− 1),
< v′i,1, v

′
i,2 >

||v′i,1||||v′i,2||
] (3)

where

fi(j) = |v′i,1(j)− v′i,2(j)|2. (4)

3.2.2 Discriminative modeling

With the training data ∆′′, a discriminative model can be constructed and optimized

with respect to the decision error rate for genuine speakers and imposters. We

experimented with a shallow model, the SVM, and a deep model, the DNN. For

the SVM model, the primary discriminative features obtained from the previous
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section is projected to the high-dimensional space by the kernel function (implicitly)

where the decision is made by a linear model; for the DNN model, the primary

discriminative features are projected to a high-dimensional space by the low-level

layers of the DNN and the decision is made by a log-linear model at the top-level

layer (the soft-max layer). We argue that the feature projection implemented by

the DNN is trainable and hierarchical, so it is task-specific, and is able to learn

high-order features that are more invariable for heterogeneous speakers. The DNN

structure is shown in Figure 2, where the output snn corresponds to the posterior

probability that the input i-vector pair represents the same speaker.

L

D

A

Figure 2 Architecture of the DNN-based scoring.

It should be noted that training the DNN model requires a balanced training set

that involves the same positive and negative samples. With the balanced training

set, the output of the model is an unbiased posterior, i.e., genuine speakers and

imposters have equal priors. Therefore the model can not be used to make decisions

directly. A threshold on the posterior snn needs to be determined on a development

set to achieve the best performance in terms of the evaluation metric, which is the

equal error rate (EER) in our work. From this perspective, the DNN-based approach

is a scoring approach which extends the normally used cosine distance. In fact, if

the feature set involves only the cosine distance, this DNN-based approach falls

back to the cosine scoring.

We also highlight that the discriminative scoring architecture presented here is

an instance of the well-known generative kernel approach [35, 36], where a discrim-

inative model is based on a kernel machine, but the kernel function is derived from

a generative model. Here the generative model is the i-vector model, and the kernel

is the discriminative feature extraction process. The only difference is that we ex-

tended the architecture by using multiple kernels and use the kernels as blocks to

build a new kernel machine (in the SVM-based scoring) or a neural model (in the

DNN-based scoring).

3.3 PLDA-DNN combination

The advantage of the DNN-based approach, when compared with the PLDA ap-

proach, relies on the fact that it relaxes the Gaussian assumption of the later. This

advantage, however, is evident only when the speaker space is rather complex. In

many cases, the PLDA can model the speaker space well. In addition, the DNN
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Table 1 Evaluation conditions reproduced from [37]

Trial Number
condition of trials Description

c1 957 only interview speech in training and test
c2 17,941 interview speech from the same microphone type in training and test
c3 18,898 interview speech from different microphones types in training and test
c4 6,378 interview training speech and telephone test speech
c5 4,354 telephone training speech and noninterview microphone test speech
c6 22,152 only telephone speech in training and test
c7 10,607 English language telephone speech in training and test

c8 4,959
only English language telephone speech spoken by a native U.S. English
speaker in training and test

Total 56,343 All trials in evaluation set

requires sufficient training data. In the condition where the training data is limited,

the DNN approach is expected to be inferior to the PLDA approach, due to the

lack of prior knowledge for distributions of i-vectors.

It is a natural idea to combine the two approaches and leverage their respective

advantages. There are two possible ways to conducting the combination. In the

feature-domain combination, the PLDA score, denoted by splda, is augmented to

the original DNN inputs. The feature set hence is extended to:

[fi(0), fi(1), ...fi(n− 1),
< v′i,1, v

′
i,2 >

||v′i,1||||v′i,2||
, splda]. (5)

The second combination approach is in the score-domain, which combines the

PLDA score and the DNN score by linearly interpolation, given by:

scmb = αsnn + (1− α)splda (6)

where α is a tunable parameter that can be determined on a development set.

4 Experiments and Analysis
4.1 Databases

In the experiments, the Fisher telephone speech database is used for training the

systems, including the UBM model, the T matrix in the i-vector system, the LDA

transform matrix, the PLDA model, the SVM and the DNN model. The training

dataset involves 7, 196 female speech recordings, 12, 837 utterances in total.

The performance is evaluated on the core test of the NIST 2008 speaker recogni-

tion evaluation (SRE08) task [37]. All the experiments is conducted under speaker

verification task. All the evaluation data are recordings of females; each enrollment

segment and test speech segment consists a speech signal at least of 2 minutes.

There are 8 test conditions in total, as have been reproduced in Table 1 from the

NIST SRE2008 evaluation plan [37]. Note that part of the evaluation data have

been selected as the cross-validation (CV) set to choose the hyperparameters in the

DNN model, particularly the number of sub-vector distance features. The CV set

involves 100 speakers and about 3, 000 trials in total. The number of trials of each

condition in the evaluation has been shown in Table 1.
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4.2 Experimental setup and baseline

All the speech data used in this study (training, development, evaluation) are sam-

pled at 8 kHz and the sample precise is 16 bits. The acoustic feature used is the

19-dimensional Mel frequency cepstral coefficients (MFCC) together with the log

energy. The first and second order derivatives are augmented to the static features,

resulting in 60-dimensional feature vectors.

The UBM involves 2, 048 Gaussian components and was trained with about 4, 000

female utterances which were randomly selected from the training data (the Fisher

database). The T matrix of the i-vector system was trained with all the female

utterances in the training database, and the dimension of the i-vector is 400. The

LDA and PLDA models were trained with utterances of 7, 196 female speakers,

again randomly selected from the training database. The dimension of the LDA

projection is set to 150.

Table 2 presents the performance of three baseline systems, based on i-vector,

i-vector plus LDA and i-vector plus PLDA, respectively. The results shown in the

table are the EERs on the entire evaluation set. Fig 3 presents the performance on

all the 8 conditions. It is clear that both the LDA and PLDA systems outperform

the i-vector system, and the PLDA system obtains the best overall performance,

confirming the power of the PLDA model.

Table 2 Performance of three baseline systems on the entire evaluation set.

System EER%
i-vector 21.89
LDA 18.46
PLDA 17.22

Figure 3 Performance of the baseline systems on different conditions.

4.3 Discriminative feature selection

We start to experiment with discriminative scoring models (SVM and DNN). In

order to train the model, we select 32, 500 pairs of i-vectors (denoted by IP-TR)

that are extracted using speech segments that are randomly selected from the Fisher

database. As mentioned, the discriminative features are selected based on the first

n dimensions of the LDA-projected i-vectors. We build a DNN model with features
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selected with different n, then evaluate the performance of the DNN on the CV

set and select the best n. For simplicity, the DNN structure is fixed, by setting the

hidden layer to be 2 and the number of hidden units at each hidden layer to be 400.

Figure 4 shows the EER results on the CV set with different values of n. It can

be seen that n = 10 is a good trade-off: a smaller n is worse, perhaps because of

the lost of speaker information with the over compact LDA, and a larger n is also

worse, due to the over-fitting towards non-speaker variance.

0 5 10 1514.5

15.0

15.5

16.0

16.5

17.0

17.5

18.0

18.5
EE
R%

20
n

Figure 4 Performance of the DNN-based scoring as a function of the number of discriminative
features. Results are reported in terms of EER on the CV set.

To investigate the generability of the CV-based feature selection, the DNNs built

with different n are tested on three conditions (c1,c2,c3) of the evaluation task,

leading to the results illustrated in Figure 5. It is observed that the curves on the

evaluation set show similar patterns as on the CV set, although the optimal choices

of n are not exactly the same. This suggests that the feature selection based on the

CV set is well generalizable.
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Figure 5 Performance of the DNN-based scoring with various number of discriminative features.
Results are reported in terms of EER on three evaluation conditions, c1-c3.

4.4 DNN-based scoring

Based on the optimal number of discriminative features, i.e., n = 10, the DNN-based

system is constructed. To investigate the impact of the deep structure, we build

DNN systems with different number of hidden layers, and evaluate the performance
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on the CV set and the evaluate set (the entire evaluation data) respectively. The

EER results are presented in Figure 6, where L denotes the number of the hidden

layers of the DNN. We can see that with more hidden layers the performance is

indeed improved; however, L should not be larger than 4. This is reasonable since

the training data is limited, and an over-complicated network tends to cause over-

fitting.

1 2 3 4 5 6
14

14.5

15

15.5

16

Number of layers (L)

E
E

R
%

 

 

CV
Evalutation

Figure 6 The results in EER with DNN-based scoring, with the number of hidden layers (L)
varies from 1 to 6.

For comparison with the baseline systems, the EER result of the DNN system

with L=2 is presented in Table 3, in the row denoted by ‘DNN(n=2)’. It can be

seen that the DNN-based scoring significantly improves the performance.

Table 3 The results in EER of baseline systems on the entire evaluation set.

System EER%
i-vector 21.89
LDA 18.46
PLDA 17.22
DNN (L=2) 15.30
DNN(L=2) +PLDA: feature 15.18
DNN(L=2) +PLDA: score 15.24
SVM(linear) 17.92
SVM(polynomial) 17.59
SVM(RBF) 16.30

Further check the performance of the DNN-based scoring on different conditions.

Figure 7 shows the results. It can be seen that the DNN-based scoring generally

outperforms the i-vector and the LDA baselines, demonstrating that the DNN-based

scoring is indeed more powerful than the simple and shallow discriminative function

such as the cosine kernel and the LDA. When compare with the PLDA, we see that

in condition 1 to 3, the DNN-based scoring obtain better performance, however in

condition 4 to 7, the PLDA-based approach is clearly superior. This discrepancy on

different conditions may be attributed to the training process of the DNN model.

Specifically, since the discriminative feature selection (see the previous section) is

based on the CV set which is sampled from all the conditions, the DNN model tends

to optimize on the entire evaluation set instead of a particular condition.

Additionally, we notice that condition 1 to 3 are all microphone conditions and

the contents are interview. This is highly different from the condition under which
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the DNN is trained, where the training data are telephone speech, and the content

is conversation. The superiority of the DNN-based approach on these three condi-

tions seems to indicate that the DNN model is more powerful to learn discriminative

patterns in complex conditions such as with acoustic mismatch. For matched condi-

tions (between model training and evaluation), the PLDA model can deal with the

discrimination really well so the DNN model can not beat. This is consistent to our

argument that the DNN can learn complex decision boundaries in heterogeneous

speaker space. Nevertheless, the relatively low performance of the DNN model in

some conditions needs more investigation.

Figure 7 The results in EER with the DNN-based scoring on different conditions of the evaluation
set.

4.5 Combination of DNN and PLDA

Considering the relative advantages of the DNN-based and PLDA-based scoring

approaches, one can combine the two approaches to get better performance. Two

combination methods are studied in this section, one is in the feature-domain and

the other is in the score-domain.

4.5.1 Feature-domain combination

The first combination method is a feature-domain approach which augments the

PLDA score to the input vector of the DNN model. Following the same training

process, we obtain the performance on the evaluation set with different number of

hidden layers L, as shown in Fig 8. For comparison, the results without the PLDA

score are also shown. We see that more hidden layers offer better performance, given

that L is not over large. And it is clear that involving the PLDA score consistently

reduces the EER.

The fifth row in Table 3 (denoted by ‘DNN(L=2):feature’) presents the numerical

result with L=2. The results on different conditions of the evaluation are shown in

Figure 9. It can be observed that augmenting the PLDA score improves the DNN-

based scoring in almost all the conditions. With the PLDA score involved, the

DNN-based scoring equals to or outperforms the PLDA-based scoring in most of

the conditions, except condition 4, 5 and 7. In the conditions that involve the most

trials, i.e., condition 3 and 6, the DNN-based scoring outperforms the PLDA-based

scoring.
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Figure 8 The results in EER with the DNN-based scoring on the evaluation set with/without the
PLDA score.

Figure 9 The results in EER with the DNN-based scoring on different conditions of the evaluation
set, with the PLDA score augmented to the DNN input.

4.5.2 Score-domain combination

The second combination method uses linear interpolation to combine the DNN-

based and PLDA-based approaches in the score-domain, according to (6). In order

to choose the best interpolation factor α, we examine the EERs on the CV set by

varying α from 0.0 to 1.0. The results show that 0.99 is a good trade-off. We choose

this value to interpolate the DNN-based score and the PLDA score and test the

performance on the evaluation set. For easy comparison, the DNN with 2 hidden

layers is used in the experiment. The EER result on the entire evaluation set is

presented in Table 3, at the row denoted by ‘DNN(L=2)+LDA: score’. It can be

seen that the number is a bit higher than the result obtained by the feature-domain

combination, but it is lower than those obtained with the PLDA and the baseline

DNN system.

The EER results on various conditions are shown in Figure 10. Interestingly,

we observe that the score-domain combination generally outperforms the feature-

domain combination, although its result on the entire evaluation set is slightly worse.

With this combination, the DNN-based scoring outperforms the PLDA baseline in

most conditions, except in condition 5 and 7 which composes only a small propor-
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tion of the test trials. The inferior of the score-domain combination on the entire

evaluation set and its superior on the multiple conditions again indicate that the

DNN-based scoring over-fits to the ‘entire-set optimization’, less considering indi-

vidual conditions.

Figure 10 The results in EER on different conditions of the evaluation set, with the PLDA score
interpolated with the DNN score.

4.6 Comparison between DNN and SVM

The last experiment compares the DNN, a deep model, and the SVM, a represen-

tative shallow model. As discussed in Section 3, the deep model such as DNN can

learn flexible hierarchical features, while the shallow model such as the SVM relies

on a kernel function that is predefined. It is then expected that the DNN can learn

complex patterns in the heterogeneous speaker space.

We experimented the SVM model with three kernels: the linear kernel, the poly-

nomial kernel, and the radio basis function (RBF) kernel. The feature is the same as

the one used in the feature-domain DNN+PLDA combination (ref. (eq:feat-ext)).

The EER results on the entire evaluation set are presented in Table 3. It can be

seen that the SVM-based scoring also works and obtains better performance than

the i-vector (using the cosine distance) and the LDA baseline. The RBF kernel is

the most powerful and it actually outperforms the PLDA baseline. However, the

SVM-based scoring can not beat the DNN-based scoring, even the baseline DNN

without combination with the PLDA.

The EER results on different conditions of the evaluation set are presented in

Figure 11. It can be observed that with different kernels, the SVM-based scoring

behaves quite different. The most powerful RBF kernel, although obtains the best

performance on the entire evaluation set, performs rather bad in some conditions.

The polynomial kernel shares the same characteristics though it looks more stable

than the RBF kernel. The linear kernel, although the most simple, is the most stable.

With this kernel, the SVM-based scoring obtains better performance than the DNN-

based scoring in conditions where the DNN-based scoring does not perform well,

e.g., in condition 4 and condition 5. But in most conditions, the SVM-based scoring

can not beat the DNN-based scoring, and it is generally worse than the PLDA

baseline.
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The above results demonstrate that the SVM is not so powerful to learn the

complicated decision boundary of i-vector pairs, and the DNN is more suitable in

such tasks. As in the DNN experiments, we again find a clear discrepancy between

the result on the entire dataset and the results in individual conditions: it seems that

a powerful model tends to gain a good performance on the entire evaluation data,

but may not work in some conditions. This double confirms our conjecture that the

criterion that we used in feature selection and model training, i.e., to optimize the

global performance, may be biased. A condition-dependent discriminative training

would be helpful if we want to optimize for a particular condition.

Figure 11 The results in EER on different conditions of the evaluation set, with the SVM-based
scoring.

5 Conclusions
This paper present a DNN-based discriminative scoring approach to speaker recog-

nition based on i-vector. We argue that by relaxing the Gaussian assumption of

general models such as PLDA and optimizing the model with respect to the deci-

sion task directly, the DNN-based approach may achieve better performance than

the PLDA in situations where the i-vector space is complicated. Furthermore, the

DNN and PLDA approaches are complementary and so can be combined to acheive

further gains. The experiments conducted on the SRE08 core test demonstrated

that the DNN-based scoring outperforms the PLDA-based scoring on the entire

evaluation data, and it also outperforms a popular shallow model, the SVM. The

results on individual conditions are not very consistent and the DNN-based ap-

proach exhibits obvious advantage in conditions with acoustic mismatch between

model training and evaluation. The combination of the DNN-based and the PLDA-

based approaches, particularly the combination in the score-domain, has resulted

in further performance improvement on the entire evaluation set and most of the

individual conditions.

There is much work left. First of all, we found significant discrepancy with the

DNN-based scoring with the entire evaluation and individual conditions, and dis-

crepancy among different conditions. This discrepancy, as we argued, is probably at-

tributed to the global optimization criterion we used in feature selection and model

training. Nevertheless, this needs to be verified by testing condition-dependent DNN
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models, for which the data sparsity is a problem right now. Second, the discrimina-

tive features used in this work are still rather simple. It is interesting to know better

features that can offer more discriminative information, e.g., the covariance matri-

ces accompanied to i-vectors. Third, better approaches to combining the PLDA or

other generative models deserve careful study.
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