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Abstract

This work tackles the face recognition task on images captured using thermal camera sensors which can operate in the
non-light environment. While it can greatly increase the scope and benefits of the current security surveillance systems,
performing such a task using thermal images is a challenging problem compared to face recognition task in the Visible Light
Domain (VLD). This is partly due to the much smaller amount number of thermal imagery data collected compared to the
VLD data. Unfortunately, direct application of the existing very strong face recognition models trained using VLD data into
the thermal imagery data will not produce a satisfactory performance. This is due to the existence of the domain gap between
the thermal and VLD images. To this end, we propose a Thermal-to-Visible Generative Adversarial Network (TV-GAN) that
is able to transform thermal face images into their corresponding VLD images whilst maintaining identity information which
is sufficient enough for the existing VLD face recognition models to perform recognition. Some examples are presented in
Figure 1. Unlike the previous methods, our proposed TV-GAN uses an explicit closed-set face recognition loss to regularize
the discriminator network training. This information will then be conveyed into the generator network in the forms of gradient
loss. In the experiment, we show that by using this additional explicit regularization for the discriminator network, the TV-
GAN is able to preserve more identity information when translating a thermal image of a person which is not seen before by
the TV-GAN.

1. Introduction
Face recognition is one of the most important tasks in a smart video surveillance systems and it has been extensively

studied in the visible light domain (VLD). Recently, the existing deep neural network based VLD face recognition systems
have achieved impressive performance [18, 24, 29]. This is due to the advent of extremely large face datasets [11, 30]. With
these great strides, it is imperative to extend the existing VLD based face recognition systems into the other less studied
domains such as near-infrared imaging (low-light) and thermal imaging (no-light).

The difference of these three domains is illustrated in Figure 2. Whilst, the thermal face has lost most of the texture
and edge information, the near-infrared face has very much similarity to the VLD face images. As such, performing face
recognition task in the thermal image domain is significantly more challenging than in the near-infrared image domain.

Unfortunately, the above-mentioned successes in the VLD domain could not be easily replicated in the thermal domain due
to relatively small amount of training data available in this domain and the domain gap between the thermal and the visible
light. As shown in our experiment, directly applying the VLD based face recognition systems will not achieve satisfactory
performance.

To this end, our strategy is to utilize image transformation techniques to the thermal query images. Once transformed, an
existing pre-trained VLD deep neural network face recognition model can be directly employed as a black box. So, instead of
using the thermal face, we use the hallucinated VLD face fed into the VLD face recognition model. With this pre-processing
strategy, we can achieve much better recognition results without changing or retraining the VLD model. The framework of
our proposed method is sketched in Figure 3.

To achieve good recognition performance, we train a generator network using the Generative Adversarial Network (GAN).
Here, we use an adversary network, here denoted as a discriminator network aiming to discriminate between real or fake/generated

1T. Zhang and A. Wiliem contributed equally to this work. Code will be available soon.
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Figure 1. Example results. The first column is input thermal faces and the second column are the generated faces. Note that all these
three people have never been seen in the model training phase. Comparing with the ground-truth from the last column, we can see that the
proposed method can recover considerable detail.

Figure 2. Randomly selected face image samples in three different domains.

images to train the generator. In order to preserve the identity information of the person in the transformed image, we add
an identity loss which is based on the closed-set face recognition task into the discriminator network. Unlike the previous
work in [32] that uses perception loss [8] to indirectly measure the identity loss, our identity loss is more explicit. Note



Figure 3. The proposed TV-GAN structure: Our discriminator not only provides the discrimination of fake and real, but also performs a
closed-set face recognition task. The generator network G aims to produce images (called “fake” images) that can “fool” the discriminator.
Note that our multi-task discriminator is composed of two networks with shared weights [D,Dy], where D discriminates whether Y is real
or not and Dy : X × Y 7→ {0, 1}N+1 performs the closed-set face recognition task.

that the perception loss requires training another classifier network such as VGG network [26] and thus makes the training
significantly more expensive.

Contributions - Our contributions can be listed as follows. The main contribution is that we propose a novel Thermal-
to-Visible Generative Adversarial Network (TV-GAN) that is able to preserve sufficient identity information when trans-
forming thermal images into their corresponding VLD images. We draw our inspiration from the recent Pix2Pix [7] and
DR-GAN [27]. Our key insight is to train our discriminator to perform both the binary classification of fake or real and to
perform a closed-set face recognition task. We validate our method in challenging experiment scenarios and still achieve
good performance comparing to the other recent methods.

This paper is continued as follows: Section 2 will introduce the related works and the proposed approach is described in
Section 3. Experimental results are provided and discussed in Section 4. Finally, we conclude this paper in Section 5.

2. Related Works
As discussed above, face recognition is an extensively studied area in the visible light domain. Recently, many researchers

have attempted to address the same problem in other light domains such as near-infrared domain [31] [9] [12], polar-metric
thermal domain [5] [21] [25] and conventional thermal domain [23] [20] [16].

Before the deep learning era, a few works primarily aiming at training traditional classifiers and feature representation
were proposed. In [13], a simple method that hallucinates the visible face from the thermal face was proposed by exploiting
the local linearity in not only the image spatial domain but also the image manifolds. Choi et al. [1] presented a partial least
square (PLS) based regression framework to model the large modality difference in the PLS latent space. Similarly, Hu et
al. [4] used a discriminant PLS based approach by specifically building discriminant PLS gallery models for each subject by
using thermal cross examples.

Recent methods utilizing deep neural networks have been proposed. For instance, Sarfraz et al. [23] used a neural network
to learn the reverse mapping, from VLD to mid-wave and low-wave infrared, so that a thermal face image could be matched
to its VLD counterpart. This strategy has the disadvantage of having to apply the mapping to each VLD image in the dataset.
We propose to use a conditional generative adversarial network to transform a query thermal image into the VLD image.

A possible approach to address this is by reducing the domain gap between the thermal and visible light domains. This
can be done by training a deep neural network that can transform thermal images into the corresponding visible images.
For instance, Lezama et al. [12] proposed to use a patch-based transform CNN to hallucinate a visible face from a near-
infrared face. The work from [7], known as Pix2Pix, can transform images from domain A to domain B. The idea is to train



a Conditional Generative Adversarial Network (CGAN) that can “fool” domain B classifier using a processed image from
domain A. However, this work did not ensure that the identity information was preserved during the transformation.

Perhaps the most similar work to us is the work from Zhang et al. [32] which also employed GAN to generate faces from
the thermal input. However, there are significant differences between our framework and [32]. Firstly, their work calculates
the identity loss indirectly using high-level semantic features extracted from a classification network. This requires additional
network during training. Secondly, we consider a much more challenging scenario wherein the visible light images are in
color instead of grey scale and the faces have various pose and occlusion with eyeglasses. In addition, the images used in our
evaluation are not perfectly aligned and included head, neck, and part of the chest.

3. Proposed Framework
In this section, a brief description of the Generative Adversarial Networks will be presented. Then, the proposed TV-GAN

is elucidated.

3.1. Generative Adversarial Networks

Generative Adversarial Network (GAN) is first introduced in [2]. It comprises two models with competing tasks. The first
model, the generator model G, aims to generate an image which resemblances a real image. The aim for the second model,
the discriminator D is to separate between the fake images from the generator and the real images. Generally, both models
are represented by deep neural networks.

Since its first introduction, GAN has been extended into various applications. For instance, Mirza et al. [15] propose the
Conditional GAN of which the generator learns the data distribution condition upon an input. Radford et al. [19] proposed
a class of GAN that can stabilize the training. Recently GAN has also been extended for generating images from text
description [33], generating style and structure of natural indoor scene images [28] and translating an image from one domain
to the other [7].

In this work, we use the conditional GAN framework that allows transforming an image from one domain to the other
domain. The GAN architecture used in this work can be briefly described as follows. Let D : X × Y 7→ {fake, real},
X,Y ∈ Rw×h be the discriminator function and G : X 7→ Y be the generator. Note that, unlike the original GAN
description in [2] using a Gaussian random vector z as the input for the generator function, we follow the GAN architecture
described in [7] which uses dropout to maintain the sample diversity. In addition, according to [7], the generator G will
generate a better image when it is trained with a discriminator D admitting two inputs: the original image X , and the
transformed image Y . The transformed image Y is from the ground truth when Y ∼Pdata, where Pdata is the distribution
generated from a set of real images, or generated by using G(X). The architecture is then trained using the following
objective:

LcGAN (G,D) = EX∼Pdata(X) [logD(X,Y )] +

EX∼Pdata
[log 1−D(X,G(X)] (1)

where LcGAN is the conditional GAN loss function.

3.2. TV-GAN: Thermal-to-Visible GAN

The goal of Thermal-to-Visible GAN (TV-GAN) is to train a generator G that will transform a thermal image X into its
corresponding visible image Y of which the visible image Y still carries sufficient identity information for face recognition
task. To this end, we base our method on Pix2Pix [7]. Pix2Pix is able to transform an image from one domain to the other
domain. Unlike the CGAN, Pix2Pix is able to generate sharper images due to its additional loss function that explicitly
penalizes the deviation of the generated image G(X) from the ground truth Y ∼Pdata. Unfortunately, Pix2Pix does not
have explicit regularization that helps to preserve the personal identity. Recent work in [27] that proposes Disentangled-
Representation GAN (DR-GAN) shows that it is possible to improve feature discrimination for face recognition task by
explicitly adding identity loss function to the discriminator training loss function. The efficacy of using identity loss has also
been shown in the GAN-based Visible Face Synthesis (GAN-VFS) [32]. The difference is that GAN-VFS calculates the loss
indirectly by using the perceptual loss [8] which uses high-level semantic features extracted from a classification network
such as the VGG network [26].

Different from GAN-VFS, we use the more explicit identity loss function similar to the DR-GAN which is aimed to learn
disentangled feature representation solely from VLD images. More specifically, we define our discriminator as a multi-task
discriminator that does not only provide the discrimination fake or real but also performs a closed-set face recognition task.



We note that although we train the discriminator to perform a closed-set face recognition task, the aim here is to use the
gradient information from the discriminator to train the generator so it can generate visible images with sufficient identity
information of the person for the recognition task. Later in the experiment part we will show that this approach is still effective
for performing the face recognition tasks where the query person has not been seen by the TV-GAN. Let y ∈ {0, 1}N+1

be a one-hot-encoding (N + 1)-dimensional identity vector wherein if the p-th element of vector yi is 1, then the image
Xi belongs to the p-th person; N is the number of subjects in the training set and we reserve additional dimension for the
generated images. This way, the discriminator only learns the identity information from the real images. Our multi-task
discriminator is composed of two networks with shared weights [D,Dy], where D discriminates whether Y is real or not and
Dy : X × Y 7→ {0, 1}N+1 performs the closed-set face recognition task.

The proposed TV-GAN training loss is defined as follows:

LTV−GAN (G,D,Dy) =

LcGAN (G,D) + λ1L`1(G) + λ2Lid(G,Dy), (2)

where LcGAN is defined in (1), L`1 is the additional loss function from Pix2Pix defined as:

L`1(G) = EX,Y ∼Pdata
[‖Y −D(X)‖1] . (3)

The identity loss function is defined as follows:

Lid(G,Dy) = EX,Y ∼Pdata
[log(Dy(X,Y )] (4)

As for the network architecture, we adopt both the Pix2Pix’s generator and discriminator networks without modification.
In particular, the generator network uses the U-Net network [22], which is an encoder-decoder with skip connection between
mirrored layers in the encoder and decoder stacks.

4. Experiments and Results
In this section, we first describe the implementation details and baselines. Then, the dataset and evaluation protocol will

be presented. Finally, we provide analysis based on the performance of various methods.

4.1. Implementation

All evaluations were done by using NVidia K40c GPU with the tensorflow framework. In addition, Adam optimizer [10]
was used with a batch size of 1. Following [7], all networks were trained from the scratch with learning rate of 0.0002,
β1 = 0.5. As for TV-GAN, we trained the network with 65 epochs. The hyperparameters λ1 and λ2 in [2] were set to 100 to
make the loss terms in the same scale.

As for the VLD face recognition network, we used pre-trained MatConvNet VGG-based model from [18] without any
fine-tuning. We call this VGG-face. The query of the VGG-face is a transformed image Y = f(X), where X is the image
in the thermal domain and Y is the transformed image. All the images in the gallery G = {Xm}Mm=1 are VLD images.

4.2. Baselines

In the evaluation, three baselines were used:
Plain Thermal - No transformation was applied on this baseline. In other words, for this baseline, the function f only does
the identity mapping, Y = X . Thus, essentially, this baseline will indicate the effect of the domain gap between thermal and
visible light to the face recognition models such as VGG-face trained solely under VLD images.
Patch based method - It has been shown in [12] that it is possible to learn transformation function f(·) for Near Infrared
Domain to VLD by using CNN based with encoder-decoder architecture. We apply this for thermal-to-visible conversion.
More specifically, a set of paired image patches were first extracted and then the CNN was trained based on these patches.
In this experiment, the patch size 25 × 25 was used. For a fair comparison, we did not apply the post-processing method
blending images from both domains to obtain better performance. As for the CNN architecture, we opted to use a more
recent CNN architecture called RedNet [14] which shares similarities to the U-Net [22]. The difference is that RedNet has a
skip connection the same as ResNet [3] whereas U-Net has a skip connection the same as DenseNet [6]. From our empirical
evaluation (not shown here) both skip connection types gave similar performance. We used RedNet20 which has 20 layers
and trained with 108 epochs. The difference between the Patch-based Transform and TV-GAN generator function G is how



the networks are trained. The Patch-based Transform method used the mean squared error loss, whereas TV-GAN used
Generative Adversarial loss.
Pix2Pix [7] - As mentioned in the previous section that Pix2Pix does not have the identity loss regularization in the training
whilst the proposed TV-GAN has this regularization. Since Pix2Pix is a GAN-based method, the transformation function f
is its generator function, f = G. We trained Pix2Pix using 85 epochs.

4.3. Dataset and evaluation protocol

We used the IRIS dataset [17] for the evaluation in which all images were captured by FLIR SC6700 (spectral range 3um
– 7 um). There were 29 subjects with 4,228 pairs of thermal/visible images. As the subjects have various poses, we excluded
repeated angles, extreme poses, expressions, and illumination for our experiments. In total, there were 695 pairs of roughly
aligned thermal/visible images (695× 2 = 1, 390 images in total) of 29 subjects used in our experiments for all methods.

In the experiment, we needed to measure how much identity information preserved by the transformation function f for
each method. To this end, recognition accuracy metric was used. We measured this based on the accuracy of the VGG-face
in recognizing the query Y = f(X) with the gallery G. More specifically, we used VGG-face to extract features from Y .
Then, nearest neighbor search with cosine distance metric was used.

There were two protocols used in the evaluation. Protocol A: each subject in the gallery only had one frontal face; and
Protocol B: each person in the gallery had four images covering several pose angles. The experiment was repeated multiple
times and the average performance was reported. In addition, we also reported rank one, three, five and seven performance.
For each repeat, the dataset was randomly divided into 8 subjects for testing and 21 subjects for training the transformation
function f (approximately 500 images). This protocol ensured that no subject images were in training and testing sets. The
gallery used by the VGG-face always contained 29 subjects with a different number of images (i.e. one image each subject
for protocol A and four images each subject for protocol B). The test set for each split was used as the queries for the
VGG-face. TV-GAN and Pix2Pix were trained on each split training set. For a fair comparison, we did not perform any
data augmentation such as horizontal flipping, rotation and cropping for the gallery images used by the VGG-face. The data
augmentation was only applied for training the transformation function f .

4.4. Results

Table 1. Average recognition accuracy (in %) for the setting where only one frontal face visible image for each person is available (Protocol
A).

Accuracy Rank 1 Rank 3 Rank 5 Rank 7
Plain Thermal 3.5 12.2 21.9 27.2
Patch based 8.9 18.9 26.9 36
Pix2Pix 12.1 28.8 39.2 47
TV-GAN 13.9 33 46.8 53.4

Table 2. Average recognition accuracy (in %) for the setting where four face visible images for each person are available (Protocol B)
Accuracy Rank 1 Rank 3 Rank 5 Rank 7
Plain Thermal 4.9 15.6 21.45 26.5
Patch based 14.6 23.5 30.1 35.7
Pix2Pix 16 30.7 37.3 44.9
TV-GAN 19.9 35.8 45.6 50.9

The results for protocol A are presented in Table 1 and Figure 4. The results for protocol B are reported in Table 2 and
Figure 5. As we can see from these results the proposed TV-GAN outperforms all the methods. Also, it is noteworthy to
mention that all methods outperform the plain thermal method by a large margin. This suggests the importance of reducing
the domain gap existed between thermal and VLD images if one plans to utilize face recognition system trained solely in the
VLD for recognizing faces in the thermal domain.

The improvement from patch-based method to GAN-based methods such as Pix2pix and the proposed TV-GAN suggests
the efficacy of the GAN loss for this application. Upon a closer look, the generators trained using GAN loss could generate
much better images compared to the patch-based method. We conjecture that this might be caused by the following factors:
(1) The thermal images may not carry sufficient information compared to the near infrared images; (2) the dataset contains



large pose angles and (3) the paired thermal and visible images in the training data are not well aligned. As stated in [12] that
this method requires well-aligned pair of images.

Finally, as the proposed TV-GAN outperforms Pix2Pix, this indicates that the closed-set face recognition regularization is
more effective to train the generator that can preserve the personal identity in the generated images.

Figure 4. The gallery setting: one visible light image per person (protocol A). We run 3 splits and calculate the average results.

Figure 5. The gallery setting: four visible light image per person (protocol B). We run 3 splits and calculate the average results.

Visualization - Here we present some visualization of all the methods. As we can see from Figure 6, the patch-based
method generate the worst visible images. Both Pix2Pix and TV-GAN are able to generate reasonable visualization. However,
it is noteworthy to mention that both TV-GAN and Pix2Pix do not always generate the correct attributes. For instance, the
race of subject C and the age of subject D are incorrectly inferred. This could be due to the absence of regularization guiding
the GAN training in preserving these face attributes.

Role of training data - Despite its good performance, the proposed TV-GAN method is trained using a relatively small



Figure 6. Visualization of selected results

Table 3. We deliberately exclude all people with eye glasses from training set but put them all in the testing set to undermine the generator
network of GAN.

Accuracy Rank 1 Rank 3 Rank 5 Rank 7
Plain Thermal 12.57 36.65 46.07 54.97
Pix2Pix 7.85 22.51 36.13 41.88
TV-GAN 12.04 24.08 31.41 37.7

amount of images. Here we show the importance of having sufficient amount training data. To emulate data starvation
environment we deliberately exclude all people with eyeglasses from the training data. The results are reported in Table 3.
The results suggest that both Pix2Pix and TV-GAN could not achieve good performance. Surprisingly, the plain thermal
method outperforms both GAN methods. This could be due to the fact that the subjects in the testing set wear eyeglasses in
both query and gallery images. This information may have been picked up by the features extracted from the VGG-face.

5. Conclusion
Thermal to visible face recognition/verification task is a challenging problem as not many data available and applying face

recognition model exclusively trained on visible light domain images produces a non-satisfactory performance. In this paper,
we developed a GAN-based method that can apply pre-trained VLD deep learning models with no further fine tuning. More
specifically, a generator network was trained using the Generative Adversarial Network framework which has two networks
such as generator and discriminator networks trained against each other. The discriminator guided the generator via its
gradient information. Our key insight was that by using a closed-set face recognition task loss inserted into the discriminator,
it allowed the generator learned the transformation function that preserved sufficient identity information for the VLD face
recognition system. Despite the existence of challenges such as occlusions, high pose, different skin tone and limited training
data, in our experiment, we showed that our TV-GAN method outperformed the other methods.

Our proposed TV-GAN method is still far from perfect as it still did not ensure the correct transfer of the other face
attributes such as race and age in the transformed images. This will be investigated in the future.
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