
Step of Decoding-graph Creation on

Test Time by Kaldi Toolkit

• STEP 1 Preparing the initial symbol table words.txt

and phones.txt

(1)words.txt contains Ƹ “#0”

(2)phones.txt doesn’t contain Ƹ,but after create L.fst, Ƹ

in phones_disambig.txt

• STEP 2 Preparing the lexicon L

(1)Lexicon will be used to create L.fst which used in

training(No disambiguation symbols);lexcion created

with disambiguation symbols used in decoding-graph

creation

(2)Convert the lexicon without disambiguation symbols
into an FST.

The output of silence with probability 0.5

(3)Structure of lexicon

Final: one state(“loop state”)

Start:two transition to loop(silence & no silence)

Loop state:input –the first phone of a word

output—the word

(4)Create lexicon with disambiguation symbols

Add self-loops to the lexicon so disambiguation

symbols #0 from G.fst can be passed through the

lexicon.

Two ways: program fstaddselfloops

script make_lexicon_fst.pl

• STEP 3 Preparing the grammar G

The grammar G is for the most part an acceptor (i.e.
input and output symbols are identical on each arc) with
words as its symbols.

Exception--the disambiguation symbol #0 only appears
on the input side

steps running arpa2fst:

• remove the embedded symbols from the FST

• make sure there are no out-of-vocabulary words in the
language model

• remove "illegal" sequences of the start and end-of-
sentence symbols

• replace epsilons on the input side with the special
disambiguation symbol #0.

• STEP 4 Preparing LG

(1) composing L with G

(2)remove Ƹ

(3)minimization: the same as minimization algorithm

that applies to weighted acceptors; the only change

relevant here is that it avoids pushing weights, hence

preserving stochasticity

• STEP 5 Preparing CLG

Prepare an FST called CLG to get a transducer whose
inputs are context-dependent phones.

(1)Making the context transducer.

The basic structure of C is that it has states for all
possible phone windows of size N-1.

Beginning of utterance

Suppose: state <eps>/<eps> output symbol a

so the input is <eps>/<eps>/a

when P=1,the central element is <eps>

so , let input of arc be #-1

End of utterance :The context FST has, on the right (its

output side), a special symbol $ that occurs at the

end of utterances.

e.g. a/b/<eps> <eps> represents undefined context

Natural way: have a transition with

input a/b/<eps>

output <eps>

from state a/b to final state.

Instead:(1) use $ as the end-of-utterance symbol

(2) make sure it appears once at the end of each

path in LG

(3) replace <eps> with $ on the output of C and

the number of repetitions of $ is equal to N-P-1.

Achieved by: function AddSubsequentialloop()

program fstaddsubsequentialloop

If we wanted C on its own, need:

(1)a list of disambiguation symbols;

(2)work out an unused symbol id use for the
subsequential symbol

We could then create C with the following command

Need: a list of phones;

a list of disambiguation symbols;

id of the subsequential symbols.

(2)Composing with C dynamically-- use program

fstcomposecontext

(3) Reducing the number of context-dependent input

symbols.

After creating CLG.fst, there is an optional graph creation

stage that can reduce its size. Use program make-ilable-

transducer and output a new ilable_info(5%-20% reduction).

• STEP 6 Making the H transducer

H:input transition-id(encodes the pdf-id plus some

other information including the phone).

output context-dependent phones

Script that makes the H transducer

Called Ha.fst because it lacks self-loops.

• STEP 7 Make the HCLG that lacks self-loops.

• STEP 8 Adding self-loops to HCLG

The self-loop scale is the scale that we apply to the
self-loops add a self-loop with log-probability self-loop-
scale * log(p), and add (self-loop-scale * log(1-p)) to all
the other log transition probabilities out of that state

