
 Stack-propagation: Improved
Representation Learning for Syntax

Yuan Zhang CSAIL, MIT David Weiss Google Inc

Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 1557–1566,
Berlin, Germany, August 7-12, 2016.

Zhang Shiyue
2016.9.30

Background
• Syntax Parser

• Pipeline method: first find POS, then use it to train parser

• disadvantages:

• The error of POS tagger will cascade to parser

• POS tagger cannot take into account the syntactic context

• two ways to solve this issue:

• avoid using POS during parsing, but poor performance

• jointly model both POS and parse trees, but sacrifice either
efficiency or accuracy

Main Idea
• So, they propose a “stack-propagation” model, in which

the POS tags are used as regularisation instead of
features.

parser
network

tagger
network

hidden
vector

Details
• Basic unit

ReLU

concatenated

for parser, features are discrete labels
and continuous hidden vectors

Details
• A window-based tagger network

Details
• A transition-based parser network

Previously, these are all discrete
features(parser configuration):
words, labels(from previous
decisions), POS tags and
morphological attributes.
But now, only labels are retained,
and hidden vectors from tagger
networks are added

which hidden vectors to add?

Details
• Dynamic many-to-many connection

Details
• Learning with Stack-propagation

• two issues to address:

• how to handle the dynamic many-to-many connections

• how to incorporate the POS tags

• First one is easy to tackle: unroll the gold trees into a
derivation of (state, action) pairs that produce the tree;
the connection of the feed forward network are
constructed incrementally as the parser state is updated.

Details
• Second issue: to incorporate the POS tag as a regularisation

• Optimise this objective stochastically by alternating between two updates:

• TAGGER: pick a POS tagging example and update the tagger network with
BP

• PARSER: Given a parser configuration c, BP the parsing loss through the
stacked architecture to update both parser and tagger.

• 10 epochs PARSER and 5 epochs TAGGER, and pre-train TAGGER one epoch

{x, y} are POS tagging examples

{c, a} are parser pairs
 (configuration, action)

Performance
• Universal Dependencies Treebanks

• Window is better than RNN, and Stackprop is better
than pipeline

Performance
• Stackprop vs. other representation

WSJ dataset

Stackprop achieves similar
accuracy using coarse tags as
fine tags, while the pipelined
baseline’s performance drops
dramatically

the most accurate models
which use a deeper model
and beam search

Performance
• Stackprop vs. joint modeling

• An alternative to stackprop would be to train the final layer of our
architecture to predict both POS tags and dependency arcs.

better than jointly training;
better than only window-based

Performance
• Reducing cascaded errors

observe 10.9% gain in LAS on
tokens where the pipelined
POS tagger makes a mistake

Performance
• Decreased model size

• Stackprop model is reduced almost by half compared
to the Pipeline model and is also roughly twice as fast

• Contextual embedding

Thanks!

