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Background

e Syntax Parser
* Pipeline method: first find POS, then use it to train parser
e disadvantages:
* The error of POS tagger will cascade to parser
« POS tagger cannot take into account the syntactic context
e two ways to solve this issue:
e avoid using POS during parsing, but poor performance

 jointly model both POS and parse trees, but sacrifice either
efficiency or accuracy



Main ldea

* S0, they propose a “stack-propagation” model, in which
the POS tags are used as regularisation instead of
features.

Traditional Stacking Stack-propagation
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for parser, features are discrete labels
and continuous hidden vectors
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* A window-based tagger network
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* A transition-based parser network
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Previously, these are all discrete
features(parser configuration):
words, labels(from previous
decisions), POS tags and

| morphological attributes.
But now, only labels are retained,
and hidden vectors from tagger
networks are added

b |

Embedding Layer (OO OTO 00) (OO OTO 00)

Feature Extractor - wo=fox,

~ Wo=jumps,

" which hidden vectors to add?



Detalls

 Dynamic many-to-many connection
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 how to handle the dynamic many-to-many connections
e how to incorporate the POS tags

* First one Is easy to tackle: unroll the gold trees into a
derivation of (state, action) pairs that produce the tree;
the connection of the feed forward network are
constructed incrementally as the parser state is updated.
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e Second issue: to incorporate the POS tag as a regularisation

max \ > log(Pe(y | x))+ {x, y} are POS tagging examples
xX,yeT

)" log (Po(a | c)) {C, a} are parser pairs
c,a€P (configuration, action)

« Optimise this objective stochastically by alternating between two updates:

« TAGGER: pick a POS tagging example and update the tagger network with
BP

 PARSER: Given a parser configuration ¢, BP the parsing loss through the
stacked architecture to update both parser and tagger.

10 epochs PARSER and 5 epochs TAGGER, and pre-train TAGGER one epoch
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* Universal Dependencies Treebanks

Method ar bg da de en e e fa fi fr hi id it iw =nl no pl pt sl AVG
NO TAGS

B’15LSTM  75.6 83.1 69.6 72.4 77.9 78.5 67.5 74.7 73.2 77.4 859 72.3 84.1 73.1 69.5 82.4 78.0 79.9 80.1 76.6
Ours (window) 76.1 82.9 70.9 71.7 79.2 79.3 69.1 77.5 72.5 78.2 87.1 71.8 83.6 76.2 72.3 83.2 77.8 79.0 79.8 77.3
UNIVERSAL TAGSET

B’15LSTM  74.6 82.4 68.1 73.0 77.9 77.8 66.0 75.0 73.6 78.0 86.8 72.2 84.2 74.5 68.4 83.3 74.5 80.4 78.1 76.2
Pipeline P, 73.7 83.6 72.0 73.0 79.3 79.5 63.0 78.0 66.9 78.5 87.8 73.5 84.2 75.4 70.3 83.6 73.4 79.5 79.4 76.6
RBGParser 75.8 83.6 73.9 73.5 79.9 79.6 68.0 78.5 65.4 78.9 87.7 74.2 84.7 77.6 72.4 83.9 75.4 81.3 80.7 77.6
Stackprop 77.0 84.3 73.8 74.2 80.7 80.7 70.1 78.5 74.5 80.0 88.9 74.1 85.8 77.5 73.6 84.7 79.2 80.4 81.8 78.9

* Window is better than RNN, and Stackprop is better
than pipeline
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» Stackprop vs. other representation

Method UAS LAS
NO TAGS

Dyer et al. (2015) 92.70 90.30

Ours (window-based) 92.85 90.77
UNIVERSAL TAGSET

Pipeline (P;qq) 92.52 90.50

Stackprop 93.23 91.30
FINE TAGSET

Chen & Manning (2014) 91.80 89.60

Dyer et al. (2015) 93.10 90.90

Pipeline (Piqg) 93.10 91.16

Stackprop 93.43 9141
Weiss et al. (2015) 93.99 92.05
Alberti et al. (2015) 9423 92.36

WSJ dataset

Stackprop achieves similar
accuracy using coarse tags as
fine tags, while the pipelined
baseline’s performance drops
dramatically

the most accurate models
which use a deeper model
and beam search

—
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e Stackprop vs. joint modeling

* An alternative to stackprop would be to train the final layer of our
architecture to predict both POS tags and dependency arcs.

Model Variant UAS LAS POS

Arc-standard transition system
Pipeline (Piqq) 81.56 76.55 95.14
Ours (window-based) 82.08 77.08 -
Ours (Stackprop) 83.38 78.78 -

Joint parsing & tagging transition system
Pipeline (Fiqq4) 81.61 76.57 95.30
Ours (window-based) 82.58 77.76 94.92
Ours (Stackprop) 83.21 78.64 95.43

better than jointly training;
better than only window-based
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 Reducing cascaded errors

LA

root advmod advmod amod dobj
Heterosexuals increasingly back gay marriage
NOUN ADV ADV ADJ NOUN

observe 10.9% gain in LAS on

(a) Tree by a pipeline model.

tokens where the pipelined
m ﬁ/\ POS tagger makes a mistake

nsubj advmod root amod dobj
Heterosexuals increasingly back gay marriage
NOUN ADV ADV ADJ NOUN

(b) Tree by Stackprop model.

Figure 5: Example comparison between predictions by a
pipeline model and a joint model. While both models pre-
dict a wrong POS tag for the word “back” (ADV rather than
VERB), the joint model is robust to this POS error and predict
the correct parse tree.
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e Decreased model size

e Stackprop model is reduced almost by halt compared
to the Pipeline model and is also roughly twice as fast

* Contextual embedding

Token married by a judge. Don’t judge a book by and walked away satisfied when I walk in the door
Neighbors mesmerizing as a rat.  doesn’t change the company’s tried, and tried hard upset when I went to
A staple! won’t charge your phone and incorporated into I mean besides me
day at a bar, then go don’t waste your money and belonged to the I felt as if I

Pattern a [noun] ‘nt [verb] and [verbled I [verb]
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