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Abstract

Recent research shows that deep neural networks (DNNs) can be used to
extract deep speaker features that preserve speaker characteristics and can be
used in speaker verification. In this paper, we analyse the role of deep speaker
features extracted from different DNN layers in speaker verification task.
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1 Introduction
Speaker verification, also known as voiceprint recognition, is an important biometric

authentication technology that has been widely used to verify speakers’ identities.

According to the words that are allowed to speak in enrollment and test, speaker ver-

ification system can be categorized into either text-dependent or text-independent.

While a text-dependent system requires the same words/sentences to be spoken in

test and enrollment, a text-independent system permits any words to speakers. This

paper focuses on a semi text-independent scenario where the words for enrollment

and test are constrained in a limited set of short phrases, e.g., ‘turn on the radio’.

With this limitation, people can speak different sentences in enrollment and test

while the system performance keeping not deteriorated, which makes the system

more acceptable in practice.

Most of the successful approaches to speaker verification are based on generative

models and with unsupervised learning, e.g., the famous Gaussian mixture model-

universal background model (GMM-UBM) framework [1]. A number of advanced

models have been proposed based on the GMM-UBM architecture. The i-vector

model [2] [3] is among the most successful. Despite the impressive success, the

GMM-UBM model and the subsequent i-vector model share the intrinsic disad-

vantage of all unsupervised learning methods: the goal of the model training is to

describe the distributions of acoustic features, instead of discriminating speakers.

This problem can be solved in two directions. The first direction is to employ

various discriminative models to enhance the generative framework. For example,

the SVM model for GMM-UBMs [4], and the PLDA model for i-vectors [5]. All these

approaches provide significant improvement over the baseline. Another direction is

to look for more discriminative features, i.e., the features that are more sensitive

to speaker change and less sensitive to change of other irrelevant factors, such as

phone contents and channels [6]. However, the improvement obtained by the ‘feature

engineering’ is much less significant compared to the achievements obtained by the
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discriminative models such as SVM and PLDA. A possible reason is that most of

the features are human-crafted and thus tend to be suboptimal in practical usage.

Recent research on deep learning offers a new idea of ‘feature learning’. It has

been shown that with a deep neural network (DNN), task-oriented features can be

learned layer by layer from very raw features. For example in automatic speech

recognition (ASR), phone-discriminative features can be learned from spectrum or

filter bank energies (Fbanks). This learned features are very powerful and have

defeated the Mel frequency cepstral coefficient (MFCC) feature that has dominated

in ASR for several decades [7].

This favorable property of DNNs in learning task-oriented features can be utilized

to learn speaker-related features as well. A recent study shows that this is possible

at least in text-dependent tasks [8]. The authors constructed a DNN model and

set the training objective as to discriminate a set of speakers, and for each frame,

the speaker-related features were read from the activations of the last hidden layer.

They tested the method on a foot-print text-dependent speaker verification task

(only a short phrase ‘ok, google’). The experimental results showed that reason-

able performance can be achieved with the DNN-based features, although it is still

difficult to compete with the i-vector baseline.

In this paper, we extend the application of the DNN-based feature learning ap-

proach to semi text-independent tasks, and present a phone-dependent training

which involves phone posteriors obtained from an ASR system in the training.

The experimental results show that the DNN-based feature learning works well on

text-independent tasks, actually even better than on text-dependent tasks, and the

phone-dependent training offers marginal but consistent gains.

The rest of this paper is organized as follows. Section 2 describes the related work,

and Section 3 presents the DNN-based speaker feature learning. The experiments

are presented in Section 4, and Section ?? concludes the paper.

2 Related work
This paper follows the work in [8]. The difference is that we extend the application

of the DNN-based feature learning approach to semi text-independent tasks, and

we introduce a phone-dependent training. Due to the mismatched content of the

enrollment and test speech, our task is more challenging.

The DNN model has been employed in speaker verification in other ways. For

example, in [9], DNNs trained for ASR were used to replace the UBM model to

derive the acoustic statistics for i-vector model training. In [10], a DNN was used to

replace PLDA to improve discriminative capability of i-vectors. All these methods

rely on the generative framework, i.e., the i-vector model. The DNN-based feature

learning presented in this paper is purely discriminative, without any generative

model involved.

3 DNN-based feature learning
This section presents the DNN-based feature learning. We first describe the main

structure of the model and the learning process, and propose the phone-dependent

learning. Finally the difference between the i-vector approach and the DNN-based

approach is discussed.
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3.1 DNN-based feature extraction

It is well-known that DNNs can learn task-oriented features from raw features layer

by layer. This property has been employed in ASR where phone-discriminative

features are learned from very low-level features such as Fbanks or even spectrum [7].

It has been shown that with a well-trained DNN, variations irrelevant to the learning

task are gradually eliminated when the input feature is propagated through the

DNN structure layer by layer. This feature learning is so powerful that in ASR,

the primary Fbank feature has defeated the MFCC feature that has been carefully

designed by people and dominated in ASR for several decades.

This property can be also employed to learn speaker-related features. Actually

researchers have put much effort in looking for features that are more discriminative

for speakers [6], but the effort is mostly vain and the MFCC is still the most popular

choice. The success of DNNs in ASR suggests a new direction that speaker-related

features can be learned from data instead of crafted by hand. The learning can be

easily done and the process is rather similar as in ASR, with the only difference

that in speaker verification, the learning goal is to discriminate different speakers.

Fbanks
(40*21 dims)

Fully-connected Relu hidden layers.

d-vector is the averaged activations from 
the hidden layers

P(spk1)

P(spk2)

P(spkN)

Figure 1 The DNN structure used for learning speaker-related features.

Figure 1 presents the DNN structure used for the speaker-related feature learning.

Following the convention of ASR, 40-dimensional Fbanks are extracted from each

frame and 21 frames are stacked together (10 frames for left and right context)

as the DNN input. There are 5 hidden layers, and each consists of 256 units. The

units of the output layer correspond to the speakers in the training data. The 1-hot

encoding scheme is used to label the target, and the training criterion is set to cross

entropy.

Once the DNN has been trained successfully, the speaker-related features can be

read from any hidden layer. The features are extracted for all the frames of the given

utterance, and the features are averaged to form a speaker vector. Following the

nomenclature in [8], we call this speaker vector as ‘d-vector’. Similar to i-vectors, a

d-vector represents the speaker identity of an utterance in the speaker space. The

same methods used for i-vectors can be used for d-vectors to conduct the test, for

example by computing the cosine distance or applying PLDA. In this paper, we

explore that features extracted from which hidden layer are more robustness and

generalization.



Li and Wang Page 4 of 13

3.2 Comparison between i-vectors and d-vectors

The two kinds of speaker vectors, the d-vector and the i-vector, are fundamentally

different. I-vectors are based on a linear Gaussian model, for which the learning is

unsupervised and the learning criterion is maximum likelihood on acoustic features.

In contrast, d-vectors are based on neural networks, for which the learning is su-

pervised, and the learning criterion is maximum discrimination for speakers. This

difference in model structures and learning methods leads to significant different

properties of these two vectors.

First, the i-vector is ‘descriptive’, which represents the speaker by construct-

ing a GMM (derived from the i-vector) to fit the acoustic features. In contrast,

the d-vector is ‘discriminative’, which represents the speaker by removing speaker-

irrelevant variance.

Second, the i-vector can be regarded as a ‘global’ speaker description, which is

inferred from ‘all’ the frames of an utterance; however the d-vector is a ‘local’

description, which is inferred from ‘each’ frame, and only the context information

is used in the inference. This means that the d-vector tends to be more superior

with a short utterance, while the i-vector tends to perform better with a relative

long utterance.

Third, the i-vector approach more relies on the enrollment data to form a rea-

sonable distribution that can be used to discriminate different speakers; whereas

the d-vector approach more relies on the ‘universal’ data to learn speaker-related

features. This means that a large amount of training data (labelled with speakers)

is much more important and useful for the d-vector approach.

4 Experiments
4.1 Database

• Development sets:

• WSJ-DEV: 200 speakers with 24, 031 utterances are randomly selected from

the WSJ database to train the i-vector, LDA and PLDA models. The same

data is also used to conduct the deep speaker feature learning.

• CSLT-C300-DEV: 200 female speakers with 20, 000 utterances are used as the

development set similar as WSJ-DEV.

• Evaluation set:

• WSJ-EVA: The evaluation set consists of 110 enrollment utterances and

14, 336 test utterances, and it is based on the pair-wised 1, 455, 960 trials,

including 13, 236 target trials and 1, 442, 724 imposter trials.

• CSLT-C300-EVA: The evaluation set consists of 100 enrollment utterances

and 10, 000 test utterances, and it is based on the pair-wised 900, 000 trials,

including 9, 000 target trials and 891, 000 imposter trials.

4.2 Experimental results

4.2.1 Baseline of i-vector model with MFCCs

We first present the basic results obtained with i-vector models with cosine scor-

ing(Cosine), LDA and PLDA. The dimension of the i-vector is fixed to 400, and the

number of Gaussian components is set to 2, 048. Again, the dimension of the LDA

projection space is set to 150.
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Chi Eng Chi-Eng Eng-Chi ALL-Chi ALL-Eng
Cosine 1.32 0.94 10.30 4.27 1.09 0.82
LDA 1.13 0.62 4.91 3.44 0.89 0.69
PLDA 1.00 0.60 2.08 2.31 0.81 0.60
LDA-PLDA 1.04 0.65 2.08 2.51 0.93 0.65

Table 1 EER(%) results of MFCCs on the i-vector systems.

4.2.2 d-vector baseline

This experiment examines the d-vector approach on the text-independent task. The

d-vectors are extracted from varying hidden layers, and we attempt to explore the

effect of varying hidden layer position (1 to 5, respectively).

Chi Eng Chi-Eng Eng-Chi ALL-Chi ALL-Eng
Cosine 2.81 1.73 3.34 4.44 3.56 2.13
LDA 1.64 0.97 5.02 4.06 1.63 0.97
PLDA 4.67 3.11 4.31 5.14 5.98 3.00
LDA-PLDA 1.44 0.87 1.89 3.13 1.42 0.85

Table 2 EER(%) results of 1th-layer on the d-vector systems.

Chi Eng Chi-Eng Eng-Chi ALL-Chi ALL-Eng
Cosine 2.66 1.56 3.56 4.18 3.18 1.84
LDA 1.50 0.96 5.35 3.87 1.53 0.82
PLDA 3.89 2.43 3.32 4.43 5.06 2.34
LDA-PLDA 1.23 0.87 2.18 3.00 1.38 0.81

Table 3 EER(%) results of 2th-layer on the d-vector systems.

4.2.3 d-vector with bottleneck features
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Chi Eng Chi-Eng Eng-Chi ALL-Chi ALL-Eng
Cosine 2.58 1.67 3.51 4.06 2.79 1.63
LDA 1.36 0.88 5.27 4.62 1.44 0.90
PLDA 3.24 2.37 3.42 3.96 4.51 2.06
LDA-PLDA 1.13 0.85 2.49 4.16 1.36 0.88

Table 4 EER(%) results of 3th-layer on the d-vector systems.

Chi Eng Chi-Eng Eng-Chi ALL-Chi ALL-Eng
Cosine 2.57 2.24 3.43 4.08 2.87 2.08
LDA 1.38 0.95 4.80 4.26 1.31 0.93
PLDA 3.70 2.74 3.82 4.34 4.19 2.15
LDA-PLDA 1.17 0.94 2.61 3.72 1.20 1.05

Table 5 EER(%) results of 4th-layer on the d-vector systems.

Chi Eng Chi-Eng Eng-Chi ALL-Chi ALL-Eng
Cosine 4.90 4.05 3.81 4.64 5.42 3.87
LDA 1.26 1.08 5.11 4.90 1.20 1.10
PLDA 5.57 4.90 3.86 4.77 6.88 3.11
LDA-PLDA 1.18 1.15 2.98 4.40 1.19 1.32

Table 6 EER(%) results of 5th-layer on the d-vector systems.

Fbanks
(40*21 dims)

P(spk1)

P(spk2)

P(spkN)

d-vector is the averaged activations from 
the bottleneck layers

Fully-connected Relu hidden layers.

Figure 2 Deep speaker features extraction with the bottleneck structure.

Chi Eng Chi-Eng Eng-Chi ALL-Chi ALL-Eng
Cosine 3.88 2.09 2.92 4.44 4.41 2.16
LDA-30 2.41 1.43 5.26 6.13 2.74 1.58
PLDA 29.46 12.21 33.51 16.38 27.23 18.54
LDA-PLDA 2.30 1.42 2.28 5.16 2.52 1.53

Table 7 EER(%) results of 1th-layer bottleneck on the d-vector systems.

Chi Eng Chi-Eng Eng-Chi ALL-Chi ALL-Eng
Cosine 2.83 1.64 2.79 3.88 3.20 1.69
LDA-30 1.97 1.06 5.98 5.22 2.22 1.15
PLDA 22.18 16.00 15.10 18.57 26.28 15.80
LDA-PLDA 1.86 1.13 2.63 4.70 2.48 1.42

Table 8 EER(%) results of 2th-layer bottleneck on the d-vector systems.

Chi Eng Chi-Eng Eng-Chi ALL-Chi ALL-Eng
Cosine 2.42 1.46 3.23 4.11 2.71 1.52
LDA-30 1.79 1.00 6.58 4.66 2.18 1.02
PLDA 16.31 13.08 21.72 18.97 16.62 9.65
LDA-PLDA 1.82 1.07 3.13 4.30 2.23 1.27

Table 9 EER(%) results of 3th-layer bottleneck on the d-vector systems.
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Chi Eng Chi-Eng Eng-Chi ALL-Chi ALL-Eng
Cosine 2.37 1.86 3.52 4.94 2.74 1.89
LDA-30 1.69 1.25 7.96 6.17 1.97 1.22
PLDA 12.57 8.60 19.14 14.80 16.11 9.44
LDA-PLDA 1.69 1.48 3.33 6.11 2.40 1.45

Table 10 EER(%) results of 4th-layer bottleneck on the d-vector systems.

Chi Eng Chi-Eng Eng-Chi ALL-Chi ALL-Eng
Cosine 3.07 3.12 4.21 5.87 3.00 3.02
LDA-30 2.00 1.82 7.83 7.11 2.50 2.00
PLDA 7.13 4.34 7.55 6.69 5.56 4.93
LDA-PLDA 2.00 1.96 3.60 8.30 2.63 2.15

Table 11 EER(%) results of 5th-layer bottleneck on the d-vector systems.
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4.2.4 i-vector with bottleneck features

Chi Eng Chi-Eng Eng-Chi ALL-Chi ALL-Eng
Cosine 9.73 4.31 31.11 16.68 6.11 3.51
LDA-150 8.70 4.47 26.28 17.32 6.06 3.74
PLDA 7.80 4.00 9.97 12.56 5.13 3.13
LDA-PLDA 7.54 3.71 9.15 12.70 5.48 3.13

Table 12 EER(%) results of 1th-layer bottleneck on the i-vector systems.

Chi Eng Chi-Eng Eng-Chi ALL-Chi ALL-Eng
Cosine 7.67 3.44 24.56 15.81 4.24 2.95
LDA-150 6.72 3.36 21.21 14.59 4.02 3.20
PLDA 5.76 2.61 9.26 8.50 3.28 2.39
LDA-PLDA 5.39 2.49 8.73 8.27 3.44 2.37

Table 13 EER(%) results of 2th-layer bottleneck on the i-vector systems.

Chi Eng Chi-Eng Eng-Chi ALL-Chi ALL-Eng
Cosine 5.68 2.83 28.00 16.40 3.72 2.64
LDA-150 5.09 2.78 22.64 15.58 3.64 2.83
PLDA 4.17 2.20 7.86 7.52 2.86 2.17
LDA-PLDA 3.97 2.04 7.31 7.57 2.81 2.08

Table 14 EER(%) results of 3th-layer bottleneck on the i-vector systems.

4.2.5 i-vector with BN + MFCC features
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Chi Eng Chi-Eng Eng-Chi ALL-Chi ALL-Eng
Cosine 4.58 2.84 23.94 14.74 3.07 2.60
LDA-150 3.86 2.92 18.70 14.18 2.97 3.10
PLDA 3.29 2.21 7.84 8.58 2.18 2.12
LDA-PLDA 3.07 2.12 7.31 8.71 2.33 2.16

Table 15 EER(%) results of 4th-layer bottleneck on the i-vector systems.

Chi Eng Chi-Eng Eng-Chi ALL-Chi ALL-Eng
Cosine 5.58 4.36 25.45 13.10 3.32 3.33
LDA-150 4.66 4.03 21.92 15.72 3.47 3.85
PLDA 4.08 3.29 8.77 12.29 3.04 3.11
LDA-PLDA 3.97 3.29 8.71 12.86 3.22 3.09

Table 16 EER(%) results of 5th-layer bottleneck on the i-vector systems.

Chi Eng Chi-Eng Eng-Chi ALL-Chi ALL-Eng
Cosine 2.92 1.38 23.20 8.43 1.67 1.19
LDA-150 2.44 1.07 13.01 7.49 1.47 1.09
PLDA 1.74 0.78 3.16 4.03 1.07 0.80
LDA-PLDA 1.83 0.78 2.98 3.96 1.20 0.79

Table 17 EER(%) results of 1th-layer BN + MFCC on the i-vector systems.

Chi Eng Chi-Eng Eng-Chi ALL-Chi ALL-Eng
Cosine 2.52 1.03 20.44 7.39 1.33 1.00
LDA-150 1.98 0.82 9.97 5.51 1.19 0.91
PLDA 1.38 0.62 3.23 3.32 0.84 0.72
LDA-PLDA 1.41 0.69 3.17 3.46 1.06 0.73

Table 18 EER(%) results of 2th-layer BN + MFCC on the i-vector systems.

Chi Eng Chi-Eng Eng-Chi ALL-Chi ALL-Eng
Cosine 2.39 1.11 21.83 7.28 1.30 1.02
LDA-150 1.81 0.85 10.99 5.60 1.11 0.93
PLDA 1.19 0.70 3.33 3.30 0.81 0.74
LDA-PLDA 1.26 0.78 3.30 3.60 0.96 0.77

Table 19 EER(%) results of 3th-layer BN + MFCC on the i-vector systems.

Chi Eng Chi-Eng Eng-Chi ALL-Chi ALL-Eng
Cosine 2.16 1.20 21.60 7.64 1.23 1.04
LDA-150 1.74 0.95 10.89 5.96 1.19 1.00
PLDA 1.26 0.77 3.60 3.77 0.68 0.70
LDA-PLDA 1.29 0.82 3.61 4.00 0.84 0.74

Table 20 EER(%) results of 4th-layer BN + MFCC on the i-vector systems.

Chi Eng Chi-Eng Eng-Chi ALL-Chi ALL-Eng
Cosine 2.88 1.51 22.67 8.92 1.32 1.31
LDA-150 2.21 1.23 12.36 10.38 1.39 1.25
PLDA 1.74 0.99 4.35 5.29 1.00 0.97
LDA-PLDA 1.72 1.05 4.21 5.81 1.21 0.99

Table 21 EER(%) results of 5th-layer BN + MFCC on the i-vector systems.
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5 Conclusions
This paper investigated the DNN-based feature leaning for speaker recognition, and

studied the performance of this approach on a semi text-independent speaker verifi-

cation task. The experimental results demonstrated that this approach (d-vectors)

can offer reasonable performance, and outperformed the i-vector baseline with sim-

ple cosine distance. However, when discriminative normalization methods such as

LDA and PLDA are applied, the i-vector approach exhibits better performance.

Although it has not beat the i-vector approach at present, the d-vector approach

is quite promising. We argue that an obvious advantage of the i-vector system is

that it smartly combines the power of generative models (GMM) and discriminative

models (LDA, PLDA), which the current d-vector approach has to learn. Never-

theless, as has been demonstrated in this paper, the d-vector approach is potential

in learning speaker-related features with large amounts of universal data, which is

a big advantage compared to the i-vector approach for which the universal data is

used for inferring the speaker space only. Another merit with the d-vector approach

is that the local learning property, which enables speaker characters being identi-

fied with very short utterances. This is impossible for the i-vector approach which

requires much more data to infer the speaker characters.

The future work involves investigating strong statistical models for d-vectors. The

current average-based accumulation is too simple to model the statistical property

of speakers’ behavior, which is a major shortage compared to the i-vector model.

Another work is to utilize more universal data to learn speaker-related features, and

test on large scale text-independent tasks.

6 Experimental analysis
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Figure 3 The effect of varying layer position in Chinese test condition.
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Figure 4 The effect of varying layer position in English test condition.
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Figure 5 The effect of varying layer position in Chinese-English test condition.



Li and Wang Page 12 of 13

1 2 3 4 5
0

2

4

6

8

10

12

14
English−Chinese

Layer Position

E
E

R
(%

)

 

 

MFCC i−vector
BN i−vector
DNN
BN
BN+MFCC i−vector

Figure 6 The effect of varying layer position in English-Chinese test condition.
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Figure 7 The effect of varying layer position in ALL-Chinese test condition.
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Figure 8 The effect of varying layer position in ALL-English test condition.
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