

Keyword Spotting

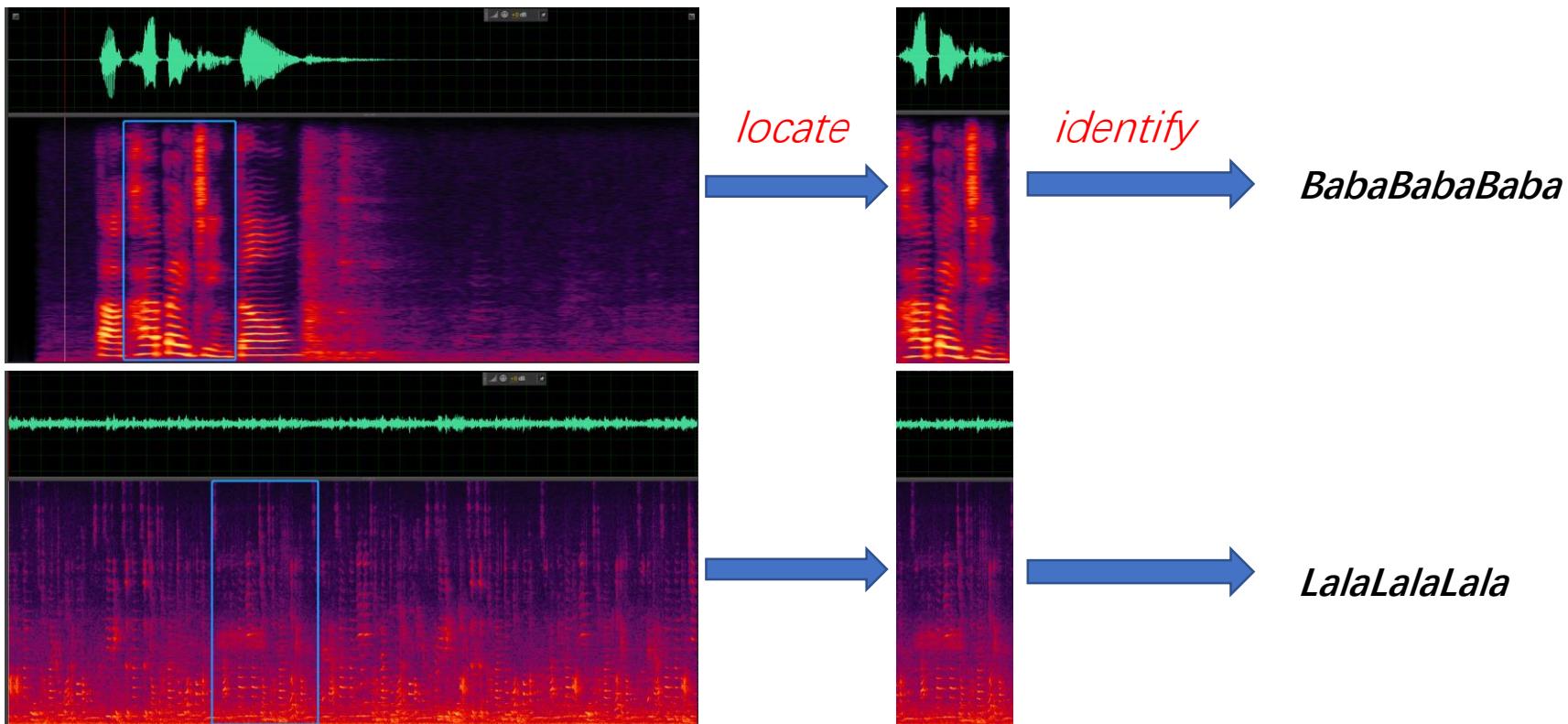
Zhiyong Zhang
2022.01.10

Outline

- Introduction to online KWS
- Anchor-aware KWS

What's KWS

- Problem statement
 - ✓ Locate and identify interesting word in continuous speech signal



Good Properties of KWS

- Versatile

- ✓ Open vocabulary, keywords can be arbitrarily added or removed

- User-friendly

- ✓ Text or speech what you like

- Robust to OOVs

- ✓ Independent with training

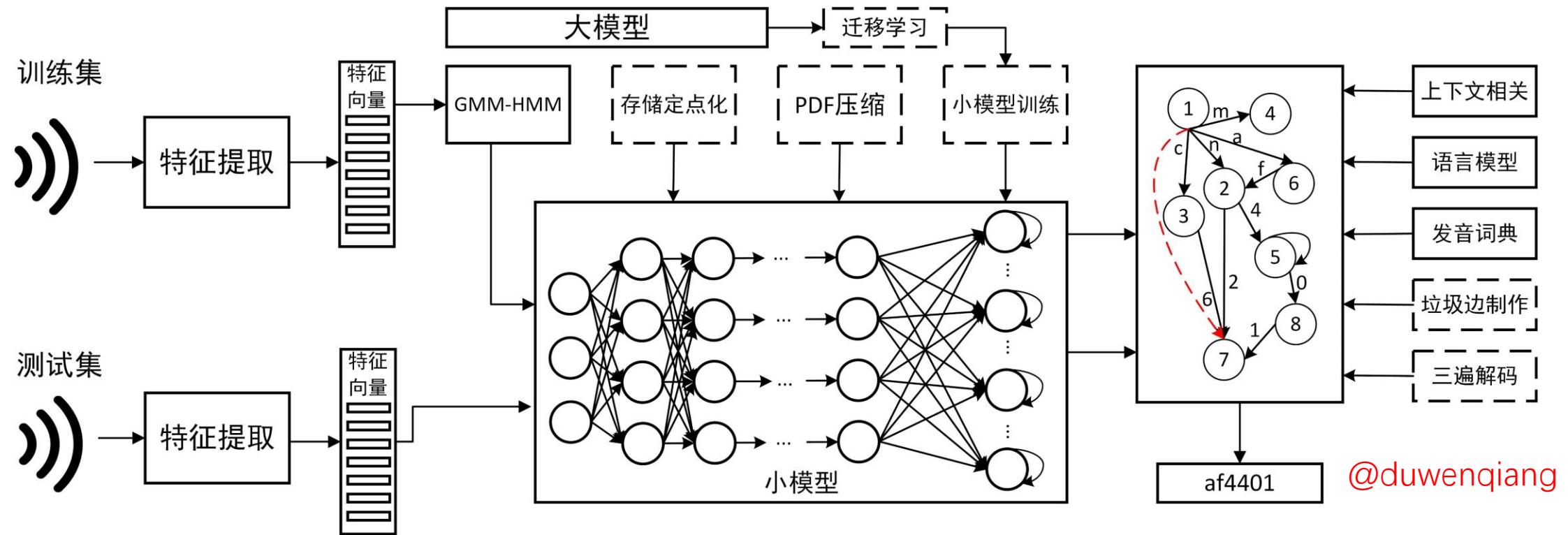
- Computationally-efficient

- ✓ Low memory occupation, high computation efficient

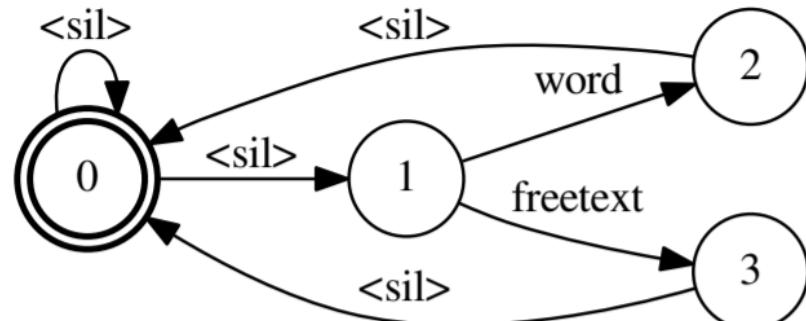
Sacchi, N. , Nanchen, A. , Jaggi, M. , & Cernak, M. . (2019). Open-Vocabulary Keyword Spotting with Audio and Text Embeddings. Interspeech 2019.

https://publications.idiap.ch/attachments/papers/2019/Sacchi_INTERSPEECH_2019.pdf

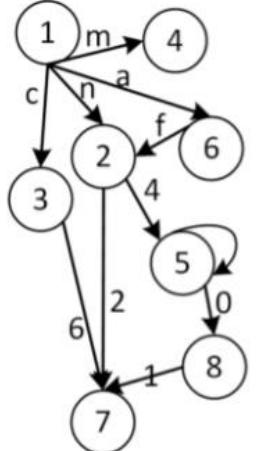
Framework of KWS



Keyword-filler KWS

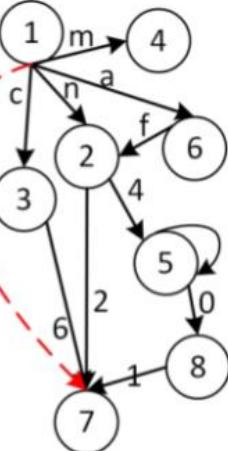


WAKE WORD DETECTION AND ITS APPLICATIONS
<https://jscholarship.library.jhu.edu/bitstream/handle/1774.2/64380/WANG-DISSERTATION-2021.pdf?sequence=1&isAllowed=y>

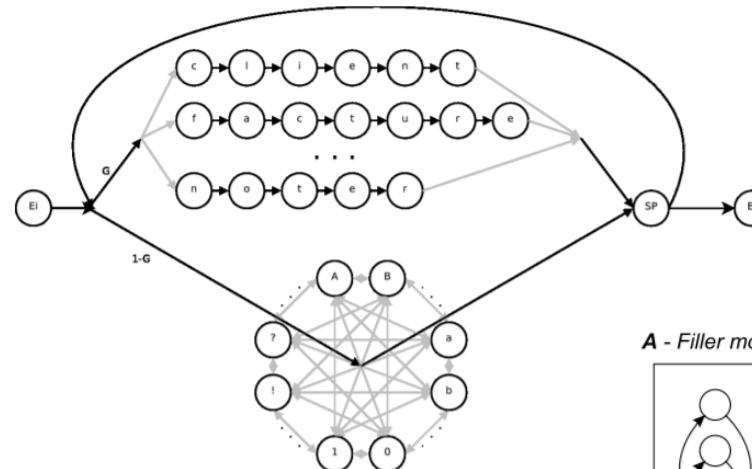


@duwenqiang

af4401



af4401

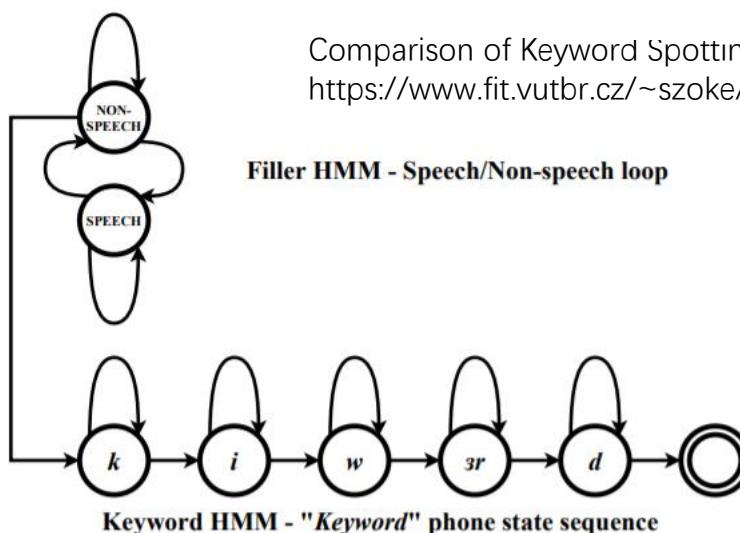


A - Filler model

B - Keyword model

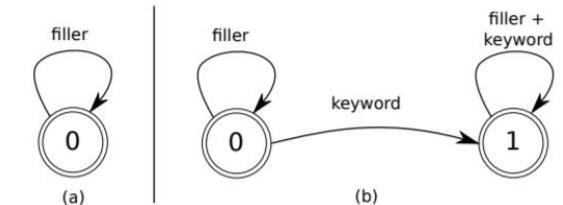
D - Background model

Comparison of Keyword Spotting Approaches for Informal Continuous Speech
https://www.fit.vutbr.cz/~szoke/papers/mlmi_2005.pdf



Filler HMM - Speech/Non-speech loop

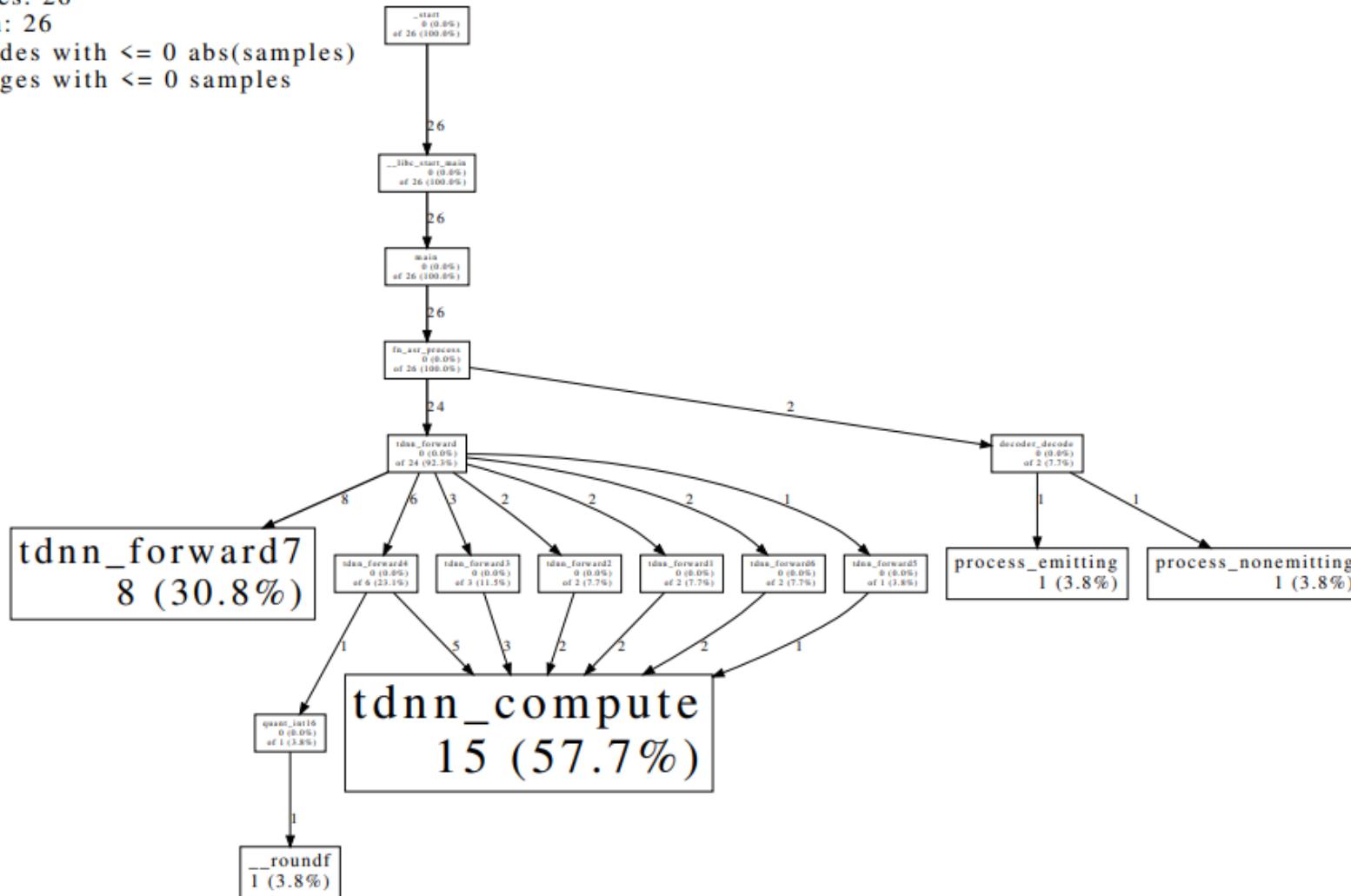
Keyword HMM - "Keyword" phone state sequence



STREAMING SMALL-FOOTPRINT KEYWORD SPOTTING USING SEQUENCE-TO-SEQUENCE MODELS
<https://arxiv.org/pdf/1710.09617.pdf>

Engine Performance Analysis

```
./asr_test
Total samples: 26
Focusing on: 26
Dropped nodes with <= 0 abs(samples)
Dropped edges with <= 0 samples
```



- 88.5% computation ratio in NN
- Data move and mul. opt.
- 7.6% in decoding
- 2% in residual operation

Percent	
0.00	nop
50:	test %r11d,%r11d
0.26	↓ jle c8
2.96	xor %eax,%eax
24.03	xor %esi,%esi
4.18	nop
26.56	movswl (%rdi,%rax,2),%edx
9.42	movswl (%rcx,%rax,2),%r10d
26.31	add \$0x1,%rax
0.01	imul %r10d,%edx
0.83	add %edx,%esi
1.28	cmp %eax,%r11d
7c:	↑ jg 60
0.30	cvtssi2ss %esi,%xmm2
0.65	mulss %xmm0,%xmm2
0.77	mov 0x10(%rbp),%rsi
0.74	movswq %r12w,%rax
1.41	add -0x30(%rbp),%rcx
0.00	add \$0x1,%r12d
0.26	addss (%r8,%rbx,4),%xmm2
	maxss %xmm1,%xmm2
	subss (%r9,%rbx,4),%xmm2
	mulss (%rsi,%rbx,4),%xmm2
	add \$0x1,%rbx
	cmp %ebx,%r14d
	movss %xmm2,(%r15,%rax,4)
	mov %r12w,0x0(%r13)

Results

模型	字错误率	大小 (M)	pdf
1000-tdnn-f-chain-6layer_dim512_pdf4000	16.55%	20	3360
1000h-cmd-dim128-5layer_pdf500_outdim500	29.68%	2.9	440
1000h-cmd-dim128-5layer_pdf500_outdim300	29.65%	2.0	440
1000h-cmd-dim128-5layer_pdf2232	26.48%	3.1	2232
1800h-cmd-dim128-5layer_pdf500_outdim500	28.51%	2.9	448
1800h-cmd-dim128-5layer_pdf500_outdim300	28.20%	2.1	448

模型		AirportDaxingTest1	AirportDaxingTest2	size(M)
M1	1800h_tdnn_dim256-5layer_pdf856_outdim500	27.07%	28.69%	8.3
M2	1800h_tdnn_dim256-5layer_pdf448_outdim500	24.09%	26.64%	6.1
M3	1800h_tdnn_dim368-5layer_pdf448_outdim500	24.44%	26.99%	8.9
M4	1800h_tdnn_dim512-5layer_pdf448_outdim500	23.20%	26.87%	14
M5	1800h_tdnn-f_dim256_dim512_7layer_pdf3256_outdim800	18.97%	24.87%	22
M6	1800h_tdnn_dim128-5layer_pdf448_outdim300	27.65%	26.73%	2.1
M7	1800h_tdnn_dim256-5layer_pdf448_outdim300	28.73%	30.18%	3.9
M8	1800h_tdnn_dim368-5layer_pdf448_outdim300	24.01%	25.37%	8.9
M9	1800h_tdnn_dim512-5layer_pdf448_outdim300	22.23%	25.48%	14
M10	1800h_tdnn_dim1024-5layer_pdf448_outdim300	23.05%	26.03%	41

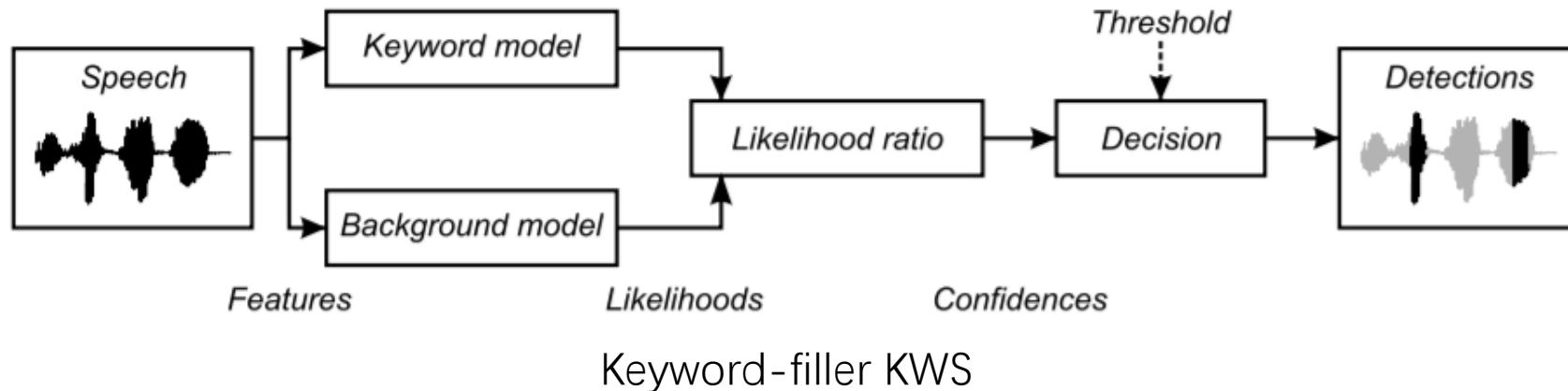
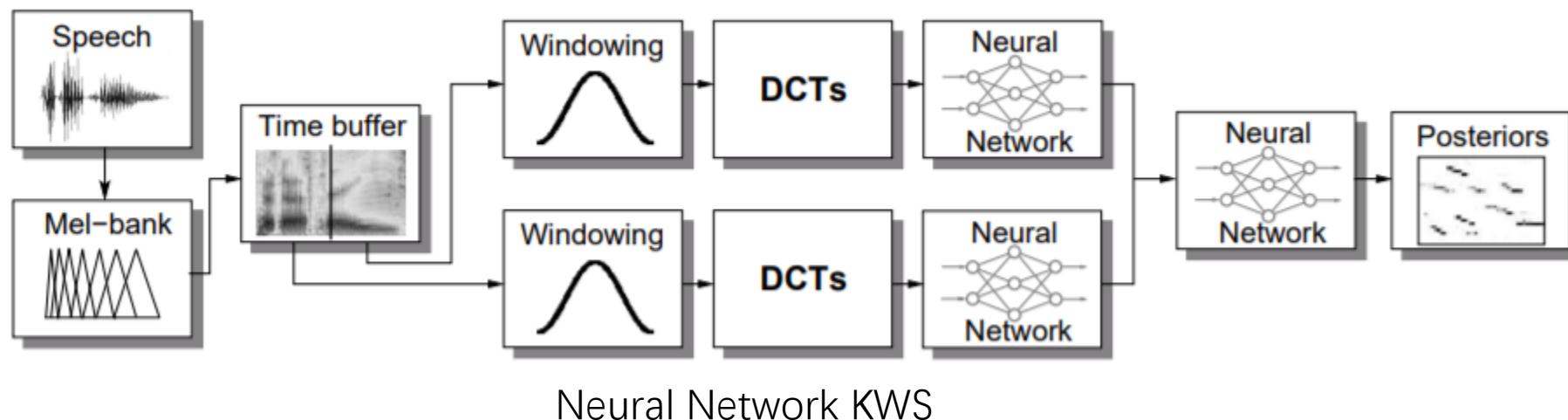
□ Some conclusion

- Recognition accuracy is highly related with parameter size.
- Big-parameter does not mean best result.
- Performance is data-driven

□ How to select appropriate model structure and leverage its capacity

- Data distribution
- Local or global property of task
- Chain/CNN/CRNN/Transformer/Conformer/Audiomer

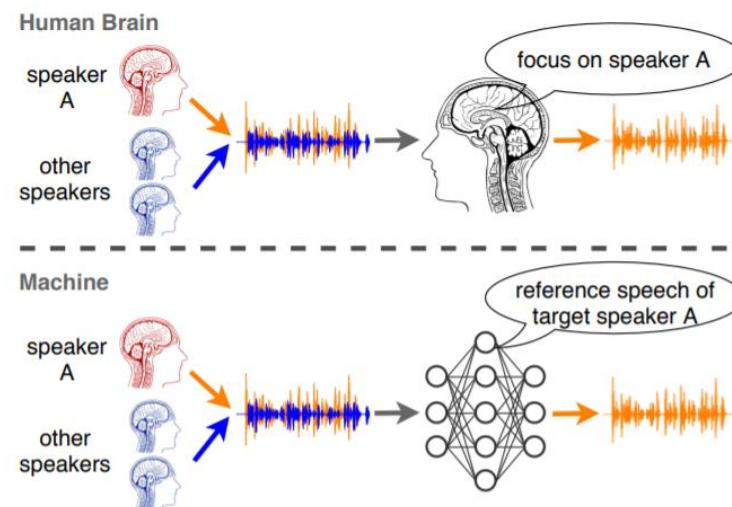
Different Keyword Spotting Systems



Comparison of Keyword Spotting Approaches for Informal Continuous Speech
https://www.fit.vutbr.cz/~szoke/papers/mlmi_2005.pdf

Anchor-Aware Keyword Spotting

- Selective Auditory Attention
 - These remarkable abilities are implemented with accurate processing of low-level stimulus attributes, segregation of auditory information into coherent voices, and selectively attending to a voice at the exclusion of others to facilitate higher level processing
 - Attention is not a static, one way information distillation process. It is believed to be a modulation of focus between the bottom-up sensory-driven factors…



What's Anchor

- Domain
- Noise
- Speaker
- Text
- Sound event

Domain aware KWS

*Domain Aware Training for Far-field Small-footprint Keyword Spotting

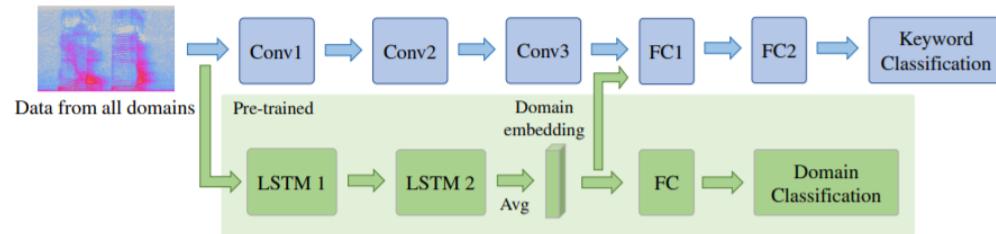


Figure 1: Framework of the domain embedding system.

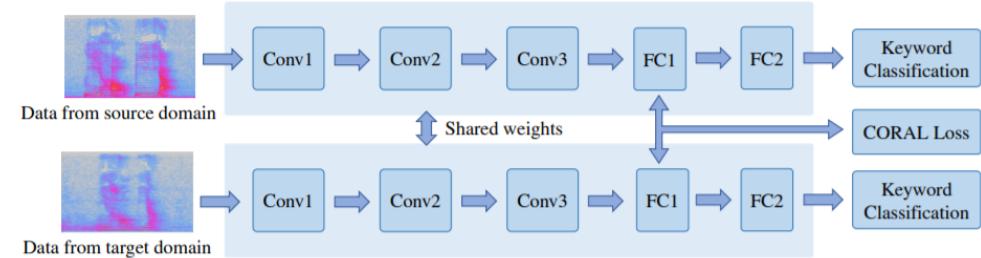


Figure 2: Framework of the CORAL system.

Table 3: Performance of the baseline system (the false reject (FR) rate (%) under one false alarm (FA) per hour)

Training set	0.25M	1M	3M
Only 0.25M	1.29	2.91	11.6
Only 1M	2.03	1.58	7.77
Only 3M	10.9	8.00	10.6
Mix of 0.25M and 1M	0.91	1.38	6.06
Mix of 0.25M and 3M	1.54	1.97	5.60
Mix of all distances	1.41	1.64	6.33

Table 4: Performances of models trained with different methods on the test sets

Model name	0.25M	1M	3M
EMB1	1.11	1.59	4.99
EMB2	1.21	1.02	4.11
CORAL1	1.57	1.05	4.69
CORAL2	1.19	1.41	5.02
CORAL3	1.09	1.52	5.97
CORAL4	1.27	1.47	5.21
CORAL5	1.21	1.41	4.78
MTL	1.70	1.44	5.15

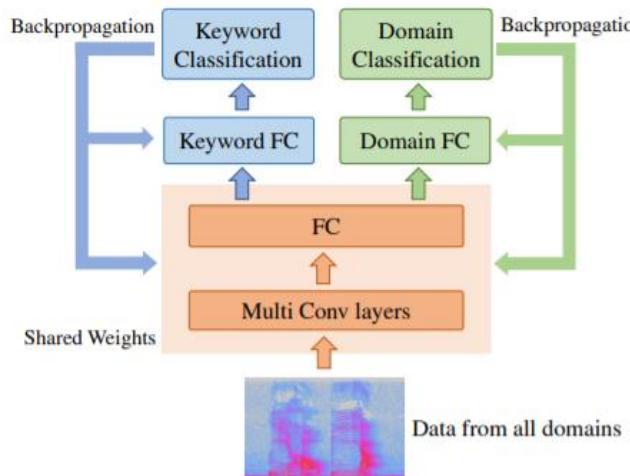


Figure 3: Framework of the MTL system.

Acoustic-feature: $x = \{x_1, x_2, \dots, x_{T_s}\}$
 WUW: $w = \{w_1, w_2, \dots, w_M\}$

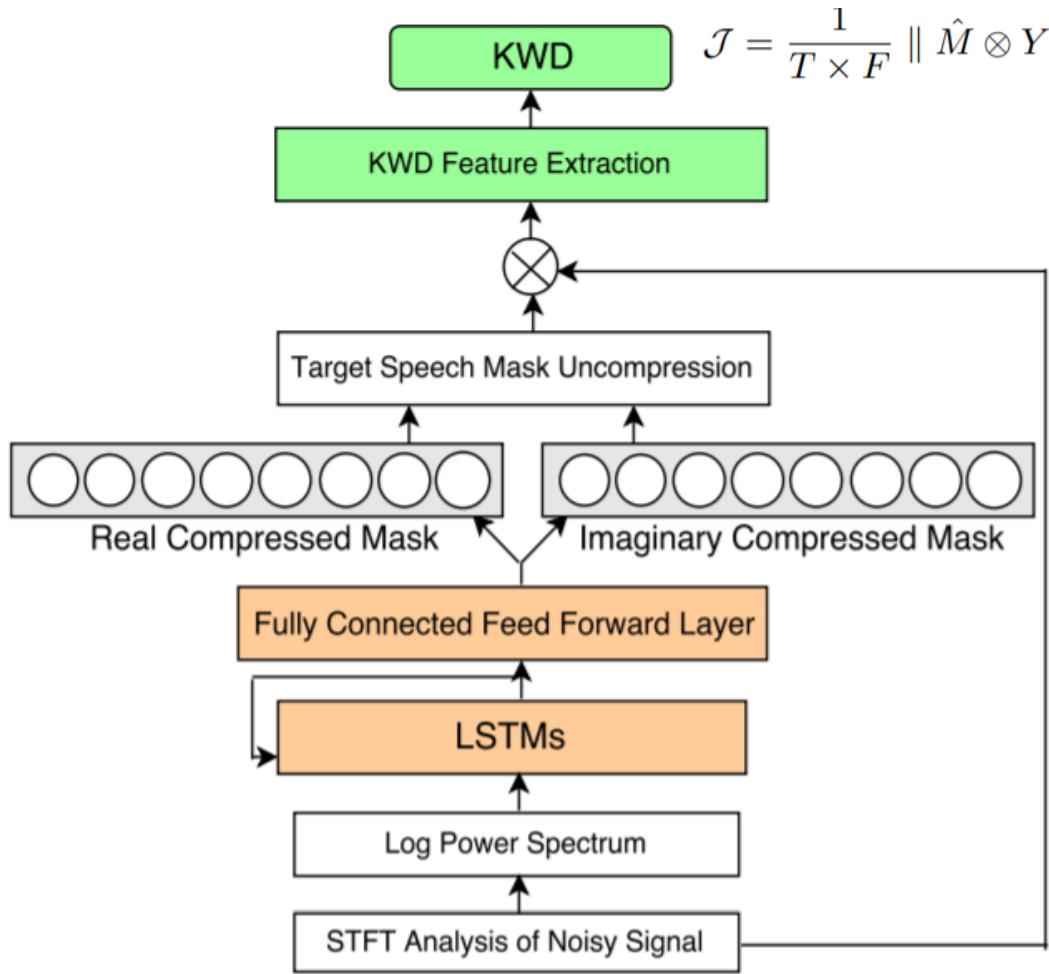
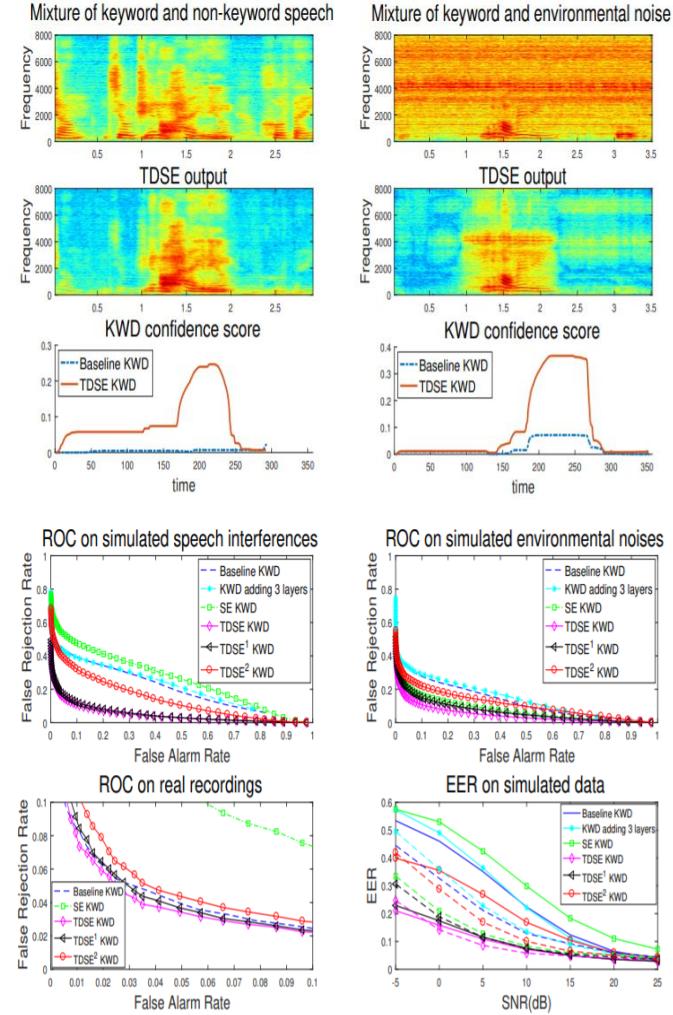
$$s_{w_i}(\mathbf{x}_t) = \frac{1}{L} \sum_{j=t-L-1}^t p_{w_i}(\mathbf{x}_j),$$

$$h(\mathbf{x}) = \left[\max_{1 \leq t_1 < \dots < t_M \leq T_s} \prod_{i=1}^M s_{w_i}(\mathbf{x}_{t_i}) \right]^{\frac{1}{M}}$$

Simple is best?

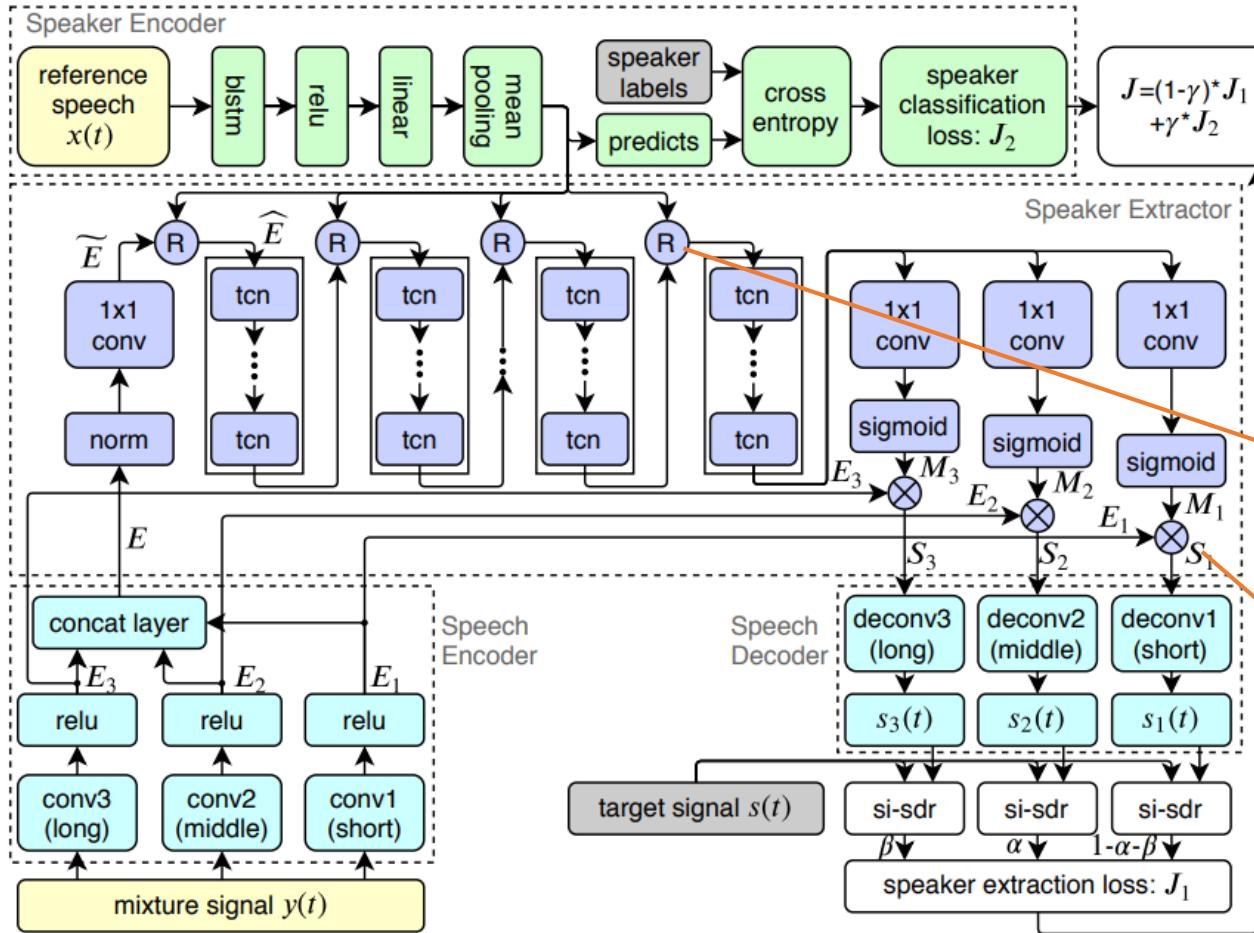
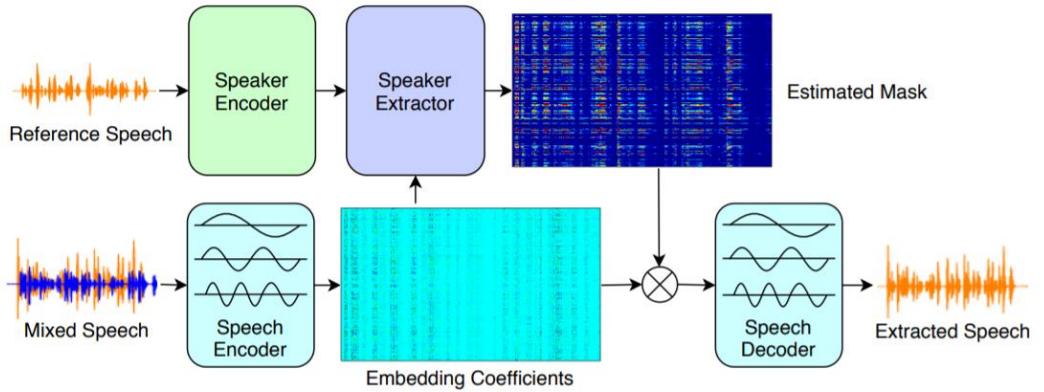
Text-dependent KWD

*Text-Dependent Speech Enhancement for Small-Footprint Robust Keyword Detection



Speaker extraction

*SpEx: Multi-Scale Time Domain Speaker Extraction Network



Concatenate Speaker vector repeatedly to the intermediate representations along channel dimension.

$$\begin{aligned} S_i &= M_i \otimes E_i \\ &= f(E, g(x)) \otimes E_i \end{aligned}$$

Speaker encoder serves as the TOP-DOWN voluntary focus in selective auditory attention.

Speaker & Text-Aware diarization

*Speaker embedding-aware neural diarization for flexible number of speakers with textual information

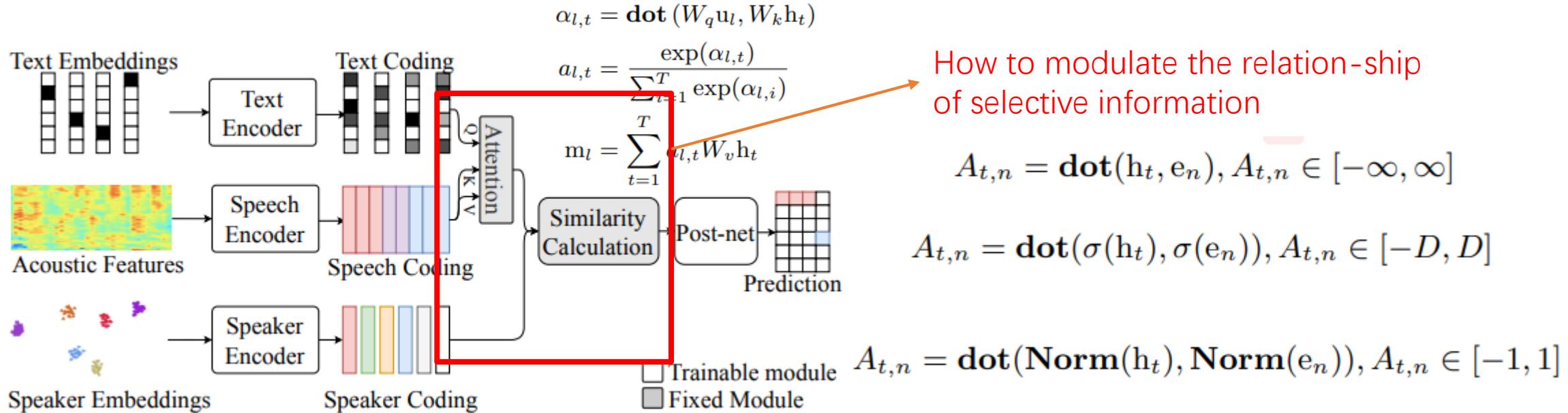


Table 3: The world-level DER (%) of different models on the simulation set.

Model	SC	Training Text	Grand	Recognition
Exp 1	×	Recognition	3.12	3.28
Exp 2	×	Grand	2.97	3.19
Exp 3	✓	Recognition	1.82	2.08
Exp 4	✓	Grand	1.66	1.93

Table 1: The DERs (%) of different similarity metrics on the simulation set.

Metrics	DER(Con.)	DER(Olp.)
cosine	6.23	12.62
dot	3.63	8.42
σ -dot	4.23	7.87

Thanks