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* Introduction to online KWS
* Anchor-aware KWS



What's KWS

* Problem statement
v'Locate and identify interesting word in continuous speech signal




Good Properties of KWS

®\/ersatile
v'Open vocabulary, keywords can be arbitrarily added or removed

® User-friendly
v'Text or speech what you like

®Robust to OOVs
v'Independent with training

® Computationally-efficient
v'Low memory occupation, high computation efficient

Sacchi, N., Nanchen, A., Jaggi, M., & Cernak, M. . (2019). Open-Vocabulary Keyword Spotting with Audio and Text
Embeddings. Interspeech 2019.
https://publications.idiap.ch/attachments/papers/2019/Sacchi_INTERSPEECH_2019.pdf
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Framework of KWS
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Keyword-filler KWS

<sil>

freetext

WAKE WORD DETECTION AND ITS APPLICATIONS
https://jscholarship.library.jhu.edu/bitstream/handle/17
74.2/64380/WANG-DISSERTATION -
2021.pdf?sequence=1&isAllowed=y

A - Filler model

B - Keyword model

/

Filler HMM - Speech/Non-speech loop

Keyword HMM - "Keyword" phone state sequence
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D - Background mode/
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Comparison of Keyword Spotting Approaches for Informal Continuous Speech
https://www. fit.vutbr.cz/~szoke/papers/mimi_2005.pdf

) filler +
filler keyword

' keyword

(b)

STREAMING SMALL-FOOTPRINT KEYWORD
SPOTTING USING SEQUENCE-TO-SEQUENCE

MODELS

https://arxiv.org/pdf/1710.09617.pdf



Engine Performance Analysis
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Results
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O Some conclusion

Recognition accuracy is highly
related with parameter size.
Big-parameter does not mean
best result.

Performance is data-driven

O How to select appropriate model
structure and leverage its capacity

Data distribution

Local or global property of task
Chain/CNN/CRNN/Transformer/C
onformer/Audiomer



Different Keyword Spotting Systems
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Comparison of Keyword Spotting Approaches for Informal Continuous Speech
https://www fit.vutbr.cz/~szoke/papers/mlmi_2005.pdf



Anchor-Aware Keyword Spotting

* Selective Auditory Attention

* These remarkable ablilities are implemented with accurate processing of
low-level stimulus attributes, segregation of auditory information into
coherent voices, and selectively attending to a voice at the exclusion of
others to facilitate higher level processing

e Attention is not a static, one way information distillation process. It is
believed to be a modulation of focus between the bottom-up sensory-

driven factors:-
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What's Anchor

* Domain

* Noise

* Speaker

* Text

* Sound event



Domain aware KWS

*Domain Aware Training for Far-field Sma

l|-footprint Keyword Spotting
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Figure 1: Framework of the domain embedding system.
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Figure 3: Framework of the MTL system.

Data from target domain

Figure 2: Framework of the CORAL system.

Table 3: Performance of the baseline system (the false reject
(FR) rate (%) under one false alarm (FA) per hour)

Acoustic-feature: x = {x1, x2, - - - xTs}

Training set 025M IM  3M
Only 0.25M 129 291 116 WUW: w = {wl, w2 - - - wM}
Only IM 203 158 777
Only 3M 109 800 10.6 1 t
Mix of 0.25Mand IM 091 138 6.06 S (1) = — § : ey
Mixof 025M and 3M  1.54 197 5.60 w; (@) L Puw, (),
Mix of all distances 141  1.64 633 j=t—L-1

Table 4: Performances of models trained with different methods

on the test sets M s

Model name ___ 0.25M IM 3M h(z) = max I I Sw; (@ei)
EMBI L1l 159 49 1Sty <<ty <T ;-7
EMB2 1.21 1.02 4.1

CORALT .37 oS TES

CORAL2 1.19 1.41 502

CORALS3 1.09 1.52 5.97

CORAL4 127 1.47 521 . .

CORALS 121 141 478 Sim pIe IS best?
MTL 1.70 1.44 5.15

Wu, H., Jia, Y., Nie, Y., & Li, M. . (2020). Domain Aware Training for Far-field Small-footprint Keyword Spotting. Interspeech 2020.
https://indico2.conferencedme.psnc.pl/event/35/contributions/3468/attachments/1026/1067/Wed-2-2-4.pdf



Text-dependent KWD

*Text-Dependent Speech Enhancement for Small-Footprint Robust Keyword Detection
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https://ai.tencent.com/ailab/media/publications/Text-DependentSpeechEnhancementforSmall-FootprintRobustKeyword_Detection.pdf



Speaker extraction

*SpEx: Multi-Scale Time Domain Speaker Extraction Network
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Embeddmg Coefflmen

g - Concatenate Speaker vector repeatedly to the

iIntermediate representations along channel
dimension.

Si M; @ E;

f(E,g(z)) @ E;

Speaker encoder serves as the TOP-DOWN
voluntary focus in selective auditory attention.

https://arxiv.org/pdf/2004.08326.pdf
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Speaker & Text-Aware diarization

*Speaker embedding-aware neural diarization for flexible number of speakers with textual information
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Table 3: The world-level DER (%) of different models on the simu-
lation set. Table 1: The DERs (%) of different similarity metrics on the simu-

Model SC Training Text Grand Recognition lation set.

Exp 1 x  Recognition 3.12 3.28 Metrics DER(Con.) DER(Olp.)

Exp 2 X Grand 297 3.19 cosine 6.23 12.62

Exp 3 Vv Recognition 1.82 2.08 dot 3.63 8 42

Exp 4 Vv Grand 1.66 1.93 o-dot 423 787

https://arxiv.org/pdf/2111.13694.pdf
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