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1. Task Description: 
When we hold a position in the spot market, we sometimes wish to offset the changes of our spot position 
by buying or selling certain amount of the corresponding futures contracts. Dynamic hedge refers to the 
practice that we change the position in the futures market periodically in order to offset the changes in the 
spot market more efficiently. The key is to estimate the risk-minimizing hedge ratios for each period.  

2. Measurement of Performance: 

Suppose we hold long position of one unit in the spot market, and in the next period, the change of spot 
price is s(t), and the change of the futures price is f(t), the risk-minimizing hedge ratio (denote it as bt) is the 
number of units we want to sell in the futures market, the random return to this portfolio, x(t), is x(t) = s(t) - 
b(t)f(t). The smaller Var(x(t)) is, the better our methods of finding b(t) is. 

3. Baseline 

The baseline models were implemented in R. The packages used to implement the models were rugarch 
and rmgarch. 
Rugarch is for univariate GARCH models, and rmgarch for multivariate GARCH models. 
Both of them were created and maintained by Alexios Ghalanos. 

Baseline A. No Hedging: the variance of st. 
Baseline B. Naive Hedging: the variance of xt if the number of units in the futures market is equal to that 
of units in the spot market. 
Baseline C. Conventional Hedging: the variance of xt if we use a fixed hedge ratio calculated by  
  

  
 Cov(s, f) and Var(f) were estimated using all the past data before the time we hedge. 

 * For details about baseline C , please refer to my previous report on dynamic hedge or   
 the paper Time Varying Distribution and Dynamic Hedge with Foreign Currency Futures  
 written by K.F. Kroner and J. Sultan. 



Baseline D. Dynamic Hedging with bivariate error-correction GARCH model assuming constant 
conditional correlation between s and f (i.e. CCC GARCH) : the variance of xt if we calculate the 
dynamic hedge ratio in the following way: 

where Cov(st+1, ft+1), Var(ft+1) represent the the covariance of s and f in the next period, and the variance 
of f in the next period. They were estimated by the following models: 
    
  Mean Model :  

	 

	 where St-1 and Ft-1 are spot price and futures price of the last period respectively.


	 

  	 	  was  the error-correcting term. It is used to capture cointegration 


	 relationship between spot and future prices. The test for  
 cointegration is the Engle and Granger(1987) test for integration. 

	 In the experiment, on all the data sets I used, the conintegrating regression used to  
 conduct the conintegrating tests invariably gave δ close to 1. Therefore, I took δ = 1. 

          Volatility Model: 



	 	 

	 

	 where   represents the estimated Var(st)  

 is the estimated Var(ft) ,  is the estimated Cov(st, ft) 

           
 The model is bivariate GARCH, therefore we were supposed to implement it with the  



	 package rmgarch. However, rmgarch didn’t include constant conditional correlation   
 GARCH, but only dynamic conditional correlation GARCH. Therefore, I used  rugarch to  
 implement this model, which guarantees the constant correlation assumption and all    
 the other assumptions except the bivariate distribution assumption of st and ft. The   
 result of this model should not be much different from that of the model with the  
 bivariate distribution assumption. After all , the goal was to check constant conditional  
 correlation model. I suggest that if time permits, you may try implementing the model   
 with bivariate distribution assumption using other toolkits. 

	 * For details about baseline D , please refer to my previous report on dynamic hedge or  

	 the paper Time Varying Distribution and Dynamic Hedge with Foreign Currency Futures 

	 by K.F. Kroner and J. Sultan.


Baseline E. Dynamic Hedge with bivariate error-correcting GARCH model assuming dynamic 
conditional correlation between st and ft :(i.e. DCC GARCH)  
 In base line D, we assumed that there is constant conditional correlation between st and   
  ft . However, in reality, it is often not the case. In DCC GARCH, the conditional   
 correlation is not constant, and it is calculated for each period.  
  
 This model was implemented with rmgarch.  
 For details about DCC GARCH implemented in R, please refer to the following  
 document: https://cran.r-project.org/web/packages/rmgarch/vignettes/The_rmgarch_models.pdf 

4. Our Proposed Model (LSTM):  

Using models in GARCH families, previous researches have achieved satisfying results in dynamic 
hedge. However, GARCH model involves assumptions that were not necessarily true and several 
requirements for the data. For example, the (bivariate) normal distribution assumptions for asset returns, 
the linearity of the mean model and volatility model, the requirement for ARCH effects. Also, for 
different assets, we usually need to come up with different theories and models. For example, the error-
correcting term often needs to be incorporated for hedging models in currency market because of the 
conintegration relationship,  but not needed in commodity markets because cointegration relationship is 
not found in commodity market. 

It is a tedious and grueling task to look into the data of different assets and construct a suitable, but 
usually far from perfect, model for each. 

A natural idea is to modify the GARCH model by representing the mean model and/or volatility model 
using neural networks, which increases the ability of expression by adding non-linearity. This methods 
may be a good improvement for GARCH model, but not necessarily best for our hedging task, since we 
are still using past variances to estimate the future variances (this is what GARCH model does), from 
which we calculate the best ratio. However, variance is an indirect way to express volatility, not as 
direct as the real changes of prices（i.e. returns). We are more interested in real changes of prices 
because we wish to make x(t) = s(t) - b(t)f(t) as small as possible, thus making Var(xt) as small as possible. 

I believe that past returns reveals enough information and that past variances derived from past returns 
may not be necessary. Therefore, for our task that requires us to predict the future returns of spot and 
futures (since b(t)

optimal = s(t)/f(t ) ), we may be better off using neural networks that use past returns as 



inputs(s(t-1), f(t-1),s(t-2), f(t-2),s(t-3), f(t-3),… )directly, in the belief that neural networks are efficient enough to 
capture the information revealed by past changes of prices. 

Since we still need to calculate the predicted b(t) after predicting the future returns( s(t), f(t) ), we can use 
the predicted best hedge ratio as the output directly, skipping the calculation of it. 

Therefore, we came up with the following LSTM: 

    Note that inputs are past returns of spot and futures, b(t) is the predicted best hedge ratio. 
    The loss is equivalent to the random return to this portfolio x(t) = s(t) - b(t)f(t), since we want to  
    make x(t) as small as possible. 

The Model was implemented with Tensorflow in Python. 



It is an LSTM with 4 time steps and the only output at the last time step. After experimenting with 
different number of time steps, 4 is generally the best one. 

The hidden size ranges from 5 to 15, depending on the assets. So far, this is the only parameter that may 
need to be changed for different assets. 

When training the LSTM, the batch size is 1. Somehow it is a way to make the results stable. 

The hedge ratio was calculated for each day. The portfolio was also adjusted for each day according to the 
hedge ratio. 

5. Data: 

I used past daily prices of 5 different assets. The data were from Wind. They were Australian Dollar, 
British Pound, Canadian Dollar, and Euro from 2010-12-06 to 2017-07-05, and S&P 500 index from 1988-
1-4 to 1998-6-30 （I didn’t realize these were not up to date, but I believe the updated data would still 
perform well.） 

For both the LSTM model and the baseline model, I chose the last 80 data of each asset as testing set and 
the rest of data of that asset as training set.  For the LSTM model, the parameters were trained on the 
training set and not updated when we evaluate the performance on the testing set. However, for the 
GARCH models, to forecast the hedge for the following day, we need to run the model on all the previous 
data available, and use the latest parameters to forecast. This procedure is repeated as we roll over each of 
the 80 days in the testing set.  

6. Results 

The results of our model on the training set are not as good as those on the testing set.  
However, since investors are only concerned with how well they can do in the future, not how well they 
could have done in the past, the good performance on the testing indicated the effectiveness of LSTM 
model. 

With different initialization, the results given by the LSTM model are different. Therefore, I ran the 
LSTM model three times for each asset and took the average of the results. 

As can be seen from the results, for each asset, the variance given by Dynamic Hedge with LSTM were 
smaller than that given by any of the other 5 baseline models.  

Though making the model more complex by changing its structure and adding more features may make 
the performance even better, I believe that as long as the model can outperform the baselines, we can keep 
this simple model, since the simplicity would be more intuitive and convincing. 

What to do next?  



 As suggested by Professor Wang, we need to make baseline models that were developed more 
recently, and compare their results with the LSTM model. In fact, many of the more recently proposed 
methods were still based on the GARCH family, with only slight changes to the previous models, but did 
not necessarily outperform the previous ones.  Hopefully, the simple LSTM model would still beat the 
more recent models. If not, we first try different number of hidden states, then different time steps, and 
consider changing the structure of the LSTM and adding more features as the last resort. 
 Also, we need to run these models on various kinds of assets, since we would like to show that 
our proposed model is generally suitable for any kind of asset, not only the kinds of assets that satisfy the 
assumptions and requirements for GARCH models. 


