
Human Language Technologies: The 2015 Annual Conference of the North American Chapter of the ACL, pages 314–323,
Denver, Colorado, May 31 – June 5, 2015. c©2015 Association for Computational Linguistics

Semi-Supervised Word Sense Disambiguation Using Word Embeddings
in General and Specific Domains

Kaveh Taghipour
Department of Computer Science
National University of Singapore

13 Computing Drive
Singapore 117417

kaveh@comp.nus.edu.sg

Hwee Tou Ng
Department of Computer Science
National University of Singapore

13 Computing Drive
Singapore 117417

nght@comp.nus.edu.sg

Abstract

One of the weaknesses of current supervised
word sense disambiguation (WSD) systems is
that they only treat a word as a discrete en-
tity. However, a continuous-space represen-
tation of words (word embeddings) can pro-
vide valuable information and thus improve
generalization accuracy. Since word embed-
dings are typically obtained from unlabeled
data using unsupervised methods, this method
can be seen as a semi-supervised word sense
disambiguation approach. This paper investi-
gates two ways of incorporating word embed-
dings in a word sense disambiguation setting
and evaluates these two methods on some Sen-
sEval/SemEval lexical sample and all-words
tasks and also a domain-specific lexical sam-
ple task. The obtained results show that such
representations consistently improve the ac-
curacy of the selected supervised WSD sys-
tem. Moreover, our experiments on a domain-
specific dataset show that our supervised base-
line system beats the best knowledge-based
systems by a large margin.

1 Introduction

Because of the ambiguity of natural language, many
words can have different meanings in different con-
texts. For example, the word “bank” has two differ-
ent meanings in “the bank of a river” and “a bank
loan”. While it seems simple for humans to iden-
tify the meaning of a word according to the con-
text, word sense disambiguation (WSD) (Ng and
Lee, 1996; Lee and Ng, 2002) is a difficult task
for computers and thus requires sophisticated means

to achieve its goal. Part of this ambiguity may be
resolved by considering part-of-speech (POS) tags
but the word senses are still highly ambiguous even
for the same part-of-speech. Machine translation
is probably the most important application of word
sense disambiguation. In machine translation, dif-
ferent senses of a word cause a great amount of am-
biguity for automated translation and it negatively
affects the results. Hence, an accurate WSD system
can benefit machine translation significantly and im-
prove the results (Chan et al., 2007; Carpuat and Wu,
2007; Vickrey et al., 2005). Moreover, Zhong and
Ng (2012) have shown that word sense disambigua-
tion improves information retrieval by proposing a
method to use word senses in a language modeling
approach to information retrieval.

The rest of this paper is organized as follows.
Section 2 gives a literature review of related work,
including a review of semi-supervised word sense
disambiguation and distributed word representation
called word embeddings. The method and frame-
work used in this paper are explained in Section 3.
Finally, we evaluate the system in Section 4 and con-
clude the paper in Section 5.

2 Related Work

The method that we use in this paper is a semi-
supervised learning method which incorporates
knowledge from unlabeled datasets by using word
embeddings. This section is a literature review of
previous work on semi-supervised word sense dis-
ambiguation and various methods of obtaining word
embeddings.

314

xxx
高亮

xxx
高亮



2.1 Semi-Supervised Word Sense
Disambiguation

Among various types of semi-supervised learning
approaches, co-training and self-training are prob-
ably the most common. These methods randomly
select a subset of a large unlabeled dataset and
classify these samples using one (self-training) or
two (co-training) classifiers, trained on a smaller
set of labeled samples. After assigning labels to
the new samples, these methods select the samples
that were classified with a high confidence (accord-
ing to a selection criterion) and add them to the set
of labeled data. These methods have been used in
the context of word sense disambiguation. Mihal-
cea (2004) used both co-training and self-training
to make use of unlabeled datasets for word sense
disambiguation. Mihalcea also introduced a tech-
nique for combining co-training and majority vot-
ing, called smoothed co-training, and reported im-
proved results. Another related study was done by
(Pham et al., 2005). In (Pham et al., 2005), some
semi-supervised learning techniques were used for
word sense disambiguation. Pham et al. employed
co-training and spectral graph transduction meth-
ods in their experiments and obtained significant im-
provements over a supervised method.

Another semi-supervised learning method used
for word sense disambiguation is Alternating Struc-
ture Optimization (ASO), first introduced by (Ando
and Zhang, 2005) and later applied to word sense
disambiguation tasks by (Ando, 2006). This al-
gorithm learns a predictive structure shared be-
tween different problems (disambiguation of a tar-
get word). Semi-supervised application of the ASO
algorithm was shown to be useful for word sense
disambiguation and improvements can be achieved
over a supervised predictor (Ando, 2006).

This paper uses a different method proposed by
(Turian et al., 2010) that can be applied to a wide
variety of supervised tasks in natural language pro-
cessing. This method uses distributed word rep-
resentations (word embeddings) as additional fea-
ture functions in supervised tasks and is shown to
improve the accuracy of named-entity recognition
(NER) and chunking. In this paper, we also follow
the same approach for word sense disambiguation.
The key idea is that a system without a continuous-

space representation of words ignores the similar-
ity of words completely and relies only on their dis-
crete form. However, when a distributed representa-
tion for words is added to the system, the classifier
can make use of the notion of similarity of words
and learn the relationships between class labels and
words.

In addition to using raw word embeddings, we
also propose a method to adapt embeddings for each
classification task. Since word embeddings do not
include much task-specific discriminative informa-
tion, we use a neural network to modify word vec-
tors to tune them for our WSD tasks. We show that
this process results in improved accuracy compared
to raw word embeddings.

Recently, obtaining word embeddings in an un-
supervised manner from large text corpora has at-
tracted the attention of many researchers (Collobert
and Weston, 2008; Mnih and Hinton, 2009; Mikolov
et al., 2013a; Mikolov et al., 2013b). Subsequently,
there have been some published word embeddings
and some software for training word embeddings.

For word sense disambiguation, there are very
few open source programs. Since we are inter-
ested in a fully supervised WSD tool, IMS (It Makes
Sense) (Zhong and Ng, 2010) is selected in our
work. This system allows addition of extra features
in a simple way and hence is a good choice for test-
ing the effect of word embeddings as additional fea-
tures. Moreover, the scores reported for IMS are
competitive with or better than state-of-the-art sys-
tems (Zhong and Ng, 2010).

2.2 Word Embeddings
There are several types of word representations. A
one-hot representation is a vector where all com-
ponents except one are set to zero and the compo-
nent at the index associated with a word is set to
one. This type of representation is the sparsest word
representation and does not carry any information
about word similarity. Another popular approach
is to use the methods mainly applied in information
retrieval. Latent Semantic Analysis (LSA) and La-
tent Dirichlet Allocation (LDA) are such examples,
and word representations produced by these meth-
ods can also be used in other applications. However,
a dense distributed representation for words (word
embeddings) can learn more complex relationships

315



between words and hence, it can be useful in a wide
range of applications. We only focus on word em-
beddings in this paper and apply them to word sense
disambiguation.

Word embeddings are distributed representations
of words and contain some semantic and syntactic
information (Mikolov et al., 2013c). Such represen-
tations are usually produced by neural networks. Ex-
amples of such neural networks are (log-)linear net-
works (Mikolov et al., 2013a), deeper feed-forward
neural networks (Bengio et al., 2003; Collobert
and Weston, 2008), or recurrent neural networks
(Mikolov et al., 2010). Moreover, it has been shown
that deep structures may not be needed for word em-
beddings estimation (Lebret et al., 2013) and shal-
low structures can obtain relatively high quality rep-
resentations for words (Mikolov et al., 2013b).

In this paper, we have used the word embeddings
created and published by (Collobert and Weston,
2008). Throughout this paper, we refer to these word
embeddings as ‘CW’. This method is proposed in
(Collobert and Weston, 2008) and explained further
in (Collobert et al., 2011). The authors use a feed-
forward neural network to produce word representa-
tions. In order to train the neural network, a large
text corpus is needed. Collobert and Weston (2008)
use Wikipedia (Nov. 2007 version containing 631
million words) and Reuters RCV1 (containing 221
million words) (Lewis et al., 2004) as their text cor-
pora and Stochastic Gradient Descent (SGD) as the
training algorithm. The training algorithm selects a
window of text randomly and then replaces the mid-
dle word with a random word from the dictionary.
Then the original window of text and the corrupted
one is given to the neural network. The neural net-
work computes f(x) and f(x(w)), where x is the
original window of text, x(w) is the same window of
text with the middle word replaced by word w, and
f(.) is the function that the neural network repre-
sents. After computing f(x) and f(x(w)), the train-
ing algorithm uses a pairwise ranking cost function
to train the network. The training algorithm mini-
mizes the cost function by updating the parameters
(including word embeddings) and as a consequence
of using the pairwise ranking cost function, this neu-
ral network tends to assign higher scores to valid
windows of texts and lower scores to incorrect ones.
After training the neural network, the word vectors

Figure 1: The neural network architecture for adaptation
of word embeddings.

in the lookup table layer form the word embeddings
matrix. Collobert et al. (2011) have made this ma-
trix available for public use and it can be accessed
online1.

3 Method

In this section, we first explain our novel task-
specific method of adapting word embeddings and
then describe our framework in which raw or
adapted word embeddings are included in our word
sense disambiguation system. To the best of our
knowledge, the use of word embeddings for semi-
supervised word sense disambiguation is novel.

3.1 Adaptation of Word Embeddings

Word embeddings capture some semantic and syn-
tactic information and usually similar words have
similar word vectors in terms of distance measures.
However, in a classification task, it is better for word
embeddings to also include some task specific dis-
criminative information. In order to add such in-
formation to word embeddings, we modify word
vectors using a neural network (Figure 1) to obtain
adapted word embeddings. This section explains
this process in detail.

The neural network that we used to adapt word
embeddings is similar to the window approach net-
work introduced by (Collobert and Weston, 2008).
This neural network includes the following layers:

1http://ml.nec-labs.com/senna

316

xxx
高亮



• Lookup table layer: This layer includes three
lookup tables. The first lookup table assigns a
vector to each input word, as described earlier.
The second lookup table maps each word to a
vector with respect to the capitalization feature.
Finally, the third lookup table maps each word
to its corresponding vector based on the word’s
POS tag.

• Dropout layer: In order to avoid overfitting, we
added a dropout layer (Hinton et al., 2012) to
the network to make use of its regularization ef-
fect. During training, the dropout layer copies
the input to the output but randomly sets some
of the entries to zero with a probability p, which
is usually set to 0.5. During testing, this layer
produces the output by multiplying the input
vector by 1 − p (see (Hinton et al., 2012) for
more information).

• Output layer: This layer linearly maps the input
vector X to a C-dimensional vector Y (equa-
tion 1) and then applies a SoftMax operation
(Bridle, 1990) over all elements of Y (equation
2):

Y = WX + b (1)

p(t|I) =
exp(Yt)∑C

j=1 exp(Yj)
1 ≤ t ≤ C (2)

where I is the input window of text and t is
a class label (sense tag in WSD). The output
of the output layer can be interpreted as a con-
ditional probability p(t|I) over tags given the
input text.

This architecture is similar to the network used by
(Collobert and Weston, 2008) but it does not include
a hidden layer. Since the number of training samples
for each word type in WSD is relatively small, we
did not use a hidden layer to decrease the model size
and consequently overfitting, as much as possible.
Moreover, we added the dropout layer and observed
increased generalization accuracy subsequently.

In order to train the neural network, we used
Stochastic Gradient Descent (SGD) and error back-
propagation to minimize negative log-likelihood
cost function for each training example (I, t) (equa-

tion 3).

− log p(t|I) = log(
C∑

j=1

exp(Yj))− Yt (3)

During the training process, the inputs are the win-
dows of text surrounding the target word with their
assigned POS tags. We used fixed learning rate
(0.01) during training, with no momentum.

Since the objective is to adapt word embeddings
using the neural network, we initialized the lookup
table layer parameters using pre-trained word em-
beddings and trained a model for each target word
type. After the training process completes, the mod-
ified word vectors form our adapted word embed-
dings, which will be used in exactly the same way
as the original embeddings. Section 3.2 explains the
way we use word embeddings to improve a super-
vised word sense disambiguation system.

3.2 Framework
The supervised system that we used for word sense
disambiguation is an open source tool named IMS
(Zhong and Ng, 2010). This software extracts three
types of features and then uses Support Vector Ma-
chines (SVM) as the classifier. The three types of
features implemented in IMS are explained below.

• POS tags of surrounding words: IMS uses the
POS tags of all words in a window size of 7,
surrounding the target ambiguous word. POS
tag features are limited to the current sentence
and neighboring sentences are not considered.

• Surrounding words: Additionally, the sur-
rounding words of a target word (after remov-
ing stop words) are also used as features in
IMS. However, unlike POS tags, the words oc-
curring in the immediately adjacent sentences
are also included.

• Local collocations: Finally, 11 local colloca-
tions around the target word are considered as
features. These collocations also cover a win-
dow size of 7, where the target word is in the
middle.

All mentioned features are binary features and
will be used by the classifier in the next phase. Af-
ter extracting these features, the classifier (SVM) is

317

xxx
高亮

xxx
高亮

xxx
高亮

xxx
高亮



used to train a model for each target word. In the test
phase, the model is used to classify test samples and
assign a sense tag to each sample.

This supervised framework with separate feature
extraction and classification phases makes it easy to
add any number of features and in our case, word
embeddings. In order to make use of word embed-
dings trained by a neural network, we follow the
approach of (Turian et al., 2010) and include word
embeddings for all words in the surrounding win-
dow of text, given a target ambiguous word. We use
the words from immediately adjacent sentences if
the window falls beyond the current sentence bound-
aries. Since each word type has its own classification
model, we do not add the word embeddings for the
target word because the same vector will be used in
all training and test samples and will be useless.

After extraction of the three mentioned types of
features, d.(w − 1) features will be added to each
sample, where d is the word embeddings dimension
and w is the number of words in the window of text
surrounding the target word (window size). w is one
of the hyper-parameters of our system that can be
tuned for each word type separately. However, since
the training sets for some of the benchmark tasks are
small, tuning the window size will not be consistent
over different tuning sets. Thus, we decided to select
the same window size for all words in a task and
tune this parameter on the whole tuning set instead.
After augmenting the features, a model is trained for
the target word and then the classifier can be used to
assign the correct sense to each test sample.

However, since the original three types of features
are binary, newly added real-valued word embed-
dings do not fit well into the model and they tend
to decrease performance. This problem is addressed
in (Turian et al., 2010) and a simple solution is to
scale word embeddings. The following conversion
is suggested by (Turian et al., 2010):

E ← σ · E/stddev(E) (4)

where σ is a scalar hyper-parameter denoting the
desired standard deviation, E is the word embed-
dings matrix and stddev(.) is the standard devia-
tion function, which returns a scalar for matrix E.
However, different dimensions of word embedding
vectors may have different standard deviations and

Equation 4 may not work well. In this case, per-
dimension scaling will make more sense. In order to
scale the word embeddings matrix, we use Equation
5 in our experiments:

Ei ← σ · Ei/stddev(Ei), i : 1, 2, ..., d (5)

where Ei denotes the ith dimension of word embed-
dings. Like (Turian et al., 2010), we also found that
σ = 0.1 is a good choice for the target standard de-
viation and works well.

4 Results and Discussion

We evaluate our word sense disambiguation system
experimentally by using standard benchmarks. The
two major tasks in word sense disambiguation are
lexical sample task and all-words task. For each
task, we explain our experimental setup first and
then present the results of our experiments for the
two mentioned tasks. Although most benchmarks
are general domain test sets, a few domain-specific
test sets also exist (Koeling et al., 2005; Agirre et al.,
2010).

4.1 Lexical Sample Tasks
We have evaluated our system on SensEval-2 (SE2)
and SensEval-3 (SE3) lexical sample tasks and also
the domain-specific test set (we call it DS05) pub-
lished by (Koeling et al., 2005). This subsection de-
scribes our experiments and presents the results of
these tasks.

4.1.1 Experimental Setup
Most lexical sample tasks provide separate train-

ing and test sets. Some statistics about these tasks
are given in Table 1.

SE2 SE3 DS05
#Word types 73 57 41
#Training samples 8,611 8,022 -
#Test samples 4,328 3,944 10,272

Table 1: Statistics of lexical sample tasks

The DS05 dataset does not provide any training
instances. In order to train models for DS05 (and
later for the SE3 all-words task), we generated train-
ing samples for the top 60% most frequently occur-
ring polysemous content words in Brown Corpus,

318

xxx
高亮

xxx
高亮



using the approach described in (Ng et al., 2003;
Chan and Ng, 2005). This dataset is automatically
created by processing parallel corpora without any
manual sense annotation effort. We used the fol-
lowing six English-Chinese parallel corpora: Hong
Kong Hansards, Hong Kong News, Hong Kong
Laws, Sinorama, Xinhua News, and the English
translations of Chinese Treebank. Similar to (Zhong
and Ng, 2010), we obtained word alignments using
GIZA++ (Och and Ney, 2000). Then, for each En-
glish word, the aligned Chinese word is used to find
the corresponding sense tag for the English word.
Finally, we made use of examples from the DSO cor-
pus (Ng and Lee, 1996) and SEMCOR (Miller et al.,
1994) as part of our training data. Table 2 shows
some statistics of our training data.

POS #word types
Adj. 5,129
Adv. 28
Noun 11,445
Verb 4,705
Total 21,307

Table 2: Number of word types in each part-of-speech
(POS) in our training set

Since the dataset used by (Zhong and Ng, 2010)
does not cover the specific domains of DS05 (Sports
and Finance), we added a few samples from these
domains to improve our baseline system. For each
target word, we randomly selected 5 instances (a
sentence including the target word) for Sports do-
main and 5 instances for Finance domain from the
Reuters (Rose et al., 2002) dataset’s Sports and Fi-
nance sections and manually sense annotated them.
Annotating 5 instances per word and domain takes
about 5 minutes. To make sure that these instances
are not the same samples in the test set, we filtered
out all documents containing at least one of the test
instances and selected our training samples from the
rest of the collection. After removing samples with
unclear tags, we added the remaining instances (187
instances for Sports domain and 179 instances for
Finance domain) to our original training data (Zhong
and Ng, 2010). We highlight this setting in our ex-
periments by ‘CC’ (concatenation).

We used the published CW word embeddings and

set the word embeddings dimension to 50 in all our
experiments. Finally, in order to tune the window
size hyper-parameter, we randomly split our train-
ing sets into two parts. We used 80% for training
models and the remaining 20% for evaluation. After
tuning the window size, we used the original com-
plete training set for training our models.

4.1.2 Results
In order to select a value for the window size pa-

rameter, we performed two types of tuning. The first
method, which (theoretically) can achieve higher ac-
curacies, is per-word tuning. Since each word type
has its own model, we can select different window
sizes for different words. The second method, on
the other hand, selects the same value for the win-
dow size for all word types in a task, and we call it
per-task tuning.

Although, per-word tuning achieved very high ac-
curacies on the held-out development set, we ob-
served that it performed poorly on the test set. More-
over, the results of per-word tuning are not stable
and different development sets lead to different win-
dow sizes and also fluctuating accuracies. This is be-
cause the available training sets are small and using
20% of these samples as the development set means
that the development set only contains a small num-
ber of samples. Thus the selected development sets
are not proper representatives of the test sets and the
tuning process results in overfitting the parameters
(window sizes) to the development sets, with low
generalization accuracy. However, per-task tuning
is relatively stable and performs better on the test
sets. Thus we have selected this method of tuning
in all our experiments. Mihalcea (2004) also reports
that per-word tuning of parameters is not helpful and
does not result in improved performance.

We also evaluated our system separately on the
word types in each part-of-speech (POS) for SE2
and SE3 lexical sample tasks. The results are in-
cluded in Table 3 and Table 4. According to these
tables, word embeddings do not affect all POS types
uniformly. For example, on SE2, the improvement
achieved on verbs is much larger than the other two
POS types and on SE3, adjectives benefited from
word embeddings more than nouns and verbs. How-
ever, this table also shows that improvements from
word embeddings are consistent over POS types and

319



both lexical sample tasks.

SE2
POS #word types baseline CW (17)
Adj. 15 67.45% 67.72%
Noun 29 69.39% 69.38%
Verb 29 60.45% 61.89%

Table 3: The scores for each part-of-speech (POS) on
SE2 lexical sample tasks. The window size is shown in-
side brackets.

SE3
POS #word types baseline CW (9)
Adj. 5 45.93% 47.81%
Noun 32 73.44% 73.83%
Verb 20 74.12% 74.17%

Table 4: The scores for each part-of-speech (POS) on
SE3 lexical sample tasks. The window size is shown in-
side brackets.

Finally, we evaluated the effect of word embed-
dings and the adaptation process. Table 5 summa-
rizes our findings on SE2 and SE3 lexical sample
tasks. According to this table, both types of word
embeddings lead to improvements on lexical sample
tasks. We also performed a one-tailed paired t-test to
see whether the improvements are statistically sig-
nificant over the baseline (IMS). The improvements
obtained using CW word embeddings over the base-
line are significant (p < 0.05) in both lexical sample
tasks. Furthermore, the results show that adapted
word embeddings achieve higher scores than raw
word embeddings. We have included the scores ob-
tained by the first and the second best participating
systems in these lexical sample tasks and also the
Most Frequent Sense (MFS) score. The results also
show that the Dropout layer increases performance
significantly. The reason behind this observation is
that without Dropout, word embeddings are overfit-
ted to the training data and when they are used as
extra features in IMS, the classifier does not gen-
eralize well to the test set. Since adaptation with-
out Dropout leads to worse performance, we include
Dropout in all other experiments and only report re-
sults obtained using Dropout.

Similarly, Table 6 presents the results obtained

SE2 SE3
IMS (baseline) 65.3% 72.7%
IMS + CW 66.1%* (17) 73.0%* (9)
IMS + adapted CW 66.2%* (5) 73.4%* (7)

– Dropout 65.4% (7) 72.7% (7)
Rank 1 system 64.2% 72.9%
Rank 2 system 63.8% 72.6%
MFS 47.6% 55.2%

Table 5: Lexical sample task results. The values inside
brackets are the selected window sizes and statistically
significant (p < 0.05) improvements are marked with ‘*’.

from our experiments on the DS05 dataset. In this
table, as explained earlier, ‘CC’ denotes the addi-
tional manually tagged instances. For comparison
purposes, we included the results reported by two
state-of-the-art knowledge-based systems, namely
PPRw2w (Agirre et al., 2014) and Degree (Ponzetto
and Navigli, 2010).

Table 6 shows that IMS performs worse than
PPRw2w on Sports and Finance domains but IMS +
CC outperforms PPRw2w. One of the reasons be-
hind this observation is unseen sense tags. For ex-
ample, in the sentence “the winning goal came with
less than a minute left to play2”, the sense tag for
word ‘goal’ is ‘goal%1:04:00::’. However, the train-
ing data for IMS does not contain any sample with
this sense tag and so it is impossible for IMS to as-
sign this tag to any test instances. On the other hand,
the manually annotated instances (CC) include sam-
ples with this tag and therefore IMS + CC is able to
associate a target word with this sense tag.

According to Table 6, adding word embeddings
results in improved performance over the baseline
(IMS + CC). Moreover, adapting word embeddings
is found to increase accuracy in most cases.

4.2 All-Words Task

We also evaluated the performance of our system on
the SensEval-3 (SE3) all-words task. Next, we ex-
plain our setup and then present the results of our
evaluation.

2This example is taken from WordNet v3.1.

320



BNC Sports Finance Total
IMS 48.7% 41.4% 53.4% 47.8%
IMS + CC (baseline) 51.7% 55.7% 62.1% 56.4%
IMS + CC + CW (3) 51.9% 56.1%* 62.3% 56.7%*

IMS + CC + adapted CW (3) 52.3%* 57.1%* 62.0% 57.1%*

PPRw2w 37.7% 51.5% 59.3% 49.3%
Degree - 42.0% 47.8% -

Table 6: DS05 task results. The values inside brackets are the selected window sizes and statistically significant (p <
0.05) improvements over ‘IMS + CC’ are marked with ‘*’.

4.2.1 Experimental Setup
All-words tasks do not provide any training sam-

ples and only include a test set (see Table 7). In order
to train our system for SE3 all-words task, we used
the automatically labeled training samples used ear-
lier for training models for DS05 (see section 4.1.1).
Table 2 shows some statistics about our training set.

SE3
#Word types 963
#Test samples 2,041

Table 7: Statistics of SE3 all-words task

Similar to the lexical sample tasks, we tune our
system on 20% of the original training set. After ob-
taining window size parameter via tuning, we train
on the whole training set and test on the given stan-
dard test set.

4.2.2 Results
The results of the evaluation on SE3 all-words

task are given in Table 8. This table shows that
CW word embeddings improve the accuracy. Sim-
ilar to the results obtained for the lexical sample
tasks, we observe some improvement by adapting
word embeddings for SE3 all-words task as well.
For comparison purposes, we have included the offi-
cial scores of rank 1 and rank 2 participating systems
in SE3 all-words task and the WordNet first sense
(WNs1) score.

5 Conclusion

Supervised word sense disambiguation systems usu-
ally treat words as discrete entities and consequently
ignore the concept of similarity between words.
However, by adding word embeddings, some of the

SE3
IMS (baseline) 67.6%
IMS + CW 68.0%* (9)
IMS + adapted CW 68.2%* (9)
Rank 1 system 65.2%
Rank 2 system 64.6%
WNs1 62.4%

Table 8: SE3 all-words task results. The values inside
brackets are the selected window sizes and statistically
significant (p < 0.05) improvements over the IMS base-
line are marked with ‘*’.

samples that cannot be discriminated based on the
original features (surrounding words, collocations,
POS tags) have more chances to be classified cor-
rectly. Moreover, word embeddings are likely to
contain valuable linguistic information too. Hence,
adding continuous-space representations of words
can provide valuable information to the classifier
and the classifier can learn better discriminative cri-
teria based on such information.

In this paper, we exploited a type of word embed-
dings obtained by feed-forward neural networks. We
also proposed a novel method (i.e., adaptation) to
add discriminative information to such embeddings.
These word embeddings were then added to a super-
vised WSD system by augmenting the original bi-
nary feature space with real-valued representations
for all words occurring in a window of text. We
evaluated our system on two general-domain lexical
sample tasks, an all-words task, and also a domain-
specific dataset and showed that word embeddings
consistently improve the accuracy of a supervised
word sense disambiguation system, across different
datasets. Moreover, we observed that adding dis-

321



criminative information by adapting word embed-
dings further improves the accuracy of our word
sense disambiguation system.

Acknowledgments

This research is supported by the Singapore Na-
tional Research Foundation under its International
Research Centre @ Singapore Funding Initiative
and administered by the IDM Programme Office.

References
Eneko Agirre, Oier Lopez de Lacalle, Christiane Fell-

baum, Shu-Kai Hsieh, Maurizio Tesconi, Monica
Monachini, Piek Vossen, and Roxanne Segers. 2010.
SemEval-2010 task 17: All-words word sense disam-
biguation on a specific domain. In Proceedings of the
5th International Workshop on Semantic Evaluation,
pages 75–80.

Eneko Agirre, Oier López de Lacalle, and Aitor Soroa.
2014. Random walks for knowledge-based word
sense disambiguation. Computational Linguistics,
40(1):57–84.

Rie Kubota Ando and Tong Zhang. 2005. A framework
for learning predictive structures from multiple tasks
and unlabeled data. Journal of Machine Learning Re-
search, 6:1817–1853.

Rie Kubota Ando. 2006. Applying alternating structure
optimization to word sense disambiguation. In Pro-
ceedings of the Tenth Conference on Computational
Natural Language Learning, pages 77–84.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A neural probabilistic lan-
guage model. Journal of Machine Learning Research,
3:1137–1155.

John S Bridle. 1990. Probabilistic interpretation of feed-
forward classification network outputs, with relation-
ships to statistical pattern recognition. Neurocomput-
ing, pages 227–236.

Marine Carpuat and Dekai Wu. 2007. Improving sta-
tistical machine translation using word sense disam-
biguation. In Proceedings of the 2007 Joint Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and Computational Natural Language Learn-
ing, pages 61–72.

Yee Seng Chan and Hwee Tou Ng. 2005. Scaling up
word sense disambiguation via parallel texts. In Pro-
ceedings of the 20th National Conference on Artificial
Intelligence, pages 1037–1042.

Yee Seng Chan, Hwee Tou Ng, and David Chiang. 2007.
Word sense disambiguation improves statistical ma-
chine translation. In Proceedings of the 45th Annual

Meeting of the Association for Computational Linguis-
tics, pages 33–40.

Ronan Collobert and Jason Weston. 2008. A unified ar-
chitecture for natural language processing: Deep neu-
ral networks with multitask learning. In Proceed-
ings of the 25th International Conference on Machine
Learning, pages 160–167.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
Journal of Machine Learning Research, 12:2493–
2537.

Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2012. Im-
proving neural networks by preventing co-adaptation
of feature detectors. Computing Research Repository,
abs/1207.0580.

Rob Koeling, Diana McCarthy, and John Carroll. 2005.
Domain-specific sense distributions and predominant
sense acquisition. In Proceedings of the Conference
on Human Language Technology and Empirical Meth-
ods in Natural Language Processing, pages 419–426.

Rémi Lebret, Joël Legrand, and Ronan Collobert. 2013.
Is deep learning really necessary for word embed-
dings? In Neural Information Processing Systems:
Deep Learning Workshop.

Yoong Keok Lee and Hwee Tou Ng. 2002. An empiri-
cal evaluation of knowledge sources and learning algo-
rithms for word sense disambiguation. In Proceedings
of the 2002 Conference on Empirical Methods in Nat-
ural Language Processing, pages 41–48.

David D. Lewis, Yiming Yang, Tony G. Rose, and Fan
Li. 2004. RCV1: A new benchmark collection for text
categorization research. Journal of Machine Learning
Research, 5:361–397.

Rada Mihalcea. 2004. Co-training and self-training for
word sense disambiguation. In Proceedings of the
8th Conference on Computational Natural Language
Learning, pages 33–40.

Tomas Mikolov, Martin Karafiát, Lukáš Burget, Jan
Černockỳ, and Sanjeev Khudanpur. 2010. Recurrent
neural network based language model. In Proceedings
of the Eleventh Annual Conference of the International
Speech Communication Association.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word represen-
tations in vector space. In Proceedings of Workshop
at International Conference on Learning Representa-
tions.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado,
and Jeffrey Dean. 2013b. Distributed representations
of words and phrases and their compositionality. In
Advances in Neural Information Processing Systems
26, pages 3111–3119.

322



Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013c. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies, pages 746–751.

George A. Miller, Martin Chodorow, Shari Landes, Clau-
dia Leacock, and Robert G. Thomas. 1994. Using a
semantic concordance for sense identification. In Pro-
ceedings of the Workshop on Human Language Tech-
nology, pages 240–243.

Andriy Mnih and Geoffrey E. Hinton. 2009. A scalable
hierarchical distributed language model. In Advances
in Neural Information Processing Systems 21, pages
1081–1088.

Hwee Tou Ng and Hian Beng Lee. 1996. Integrat-
ing multiple knowledge sources to disambiguate word
sense: An exemplar-based approach. In Proceedings
of the 34th Annual Meeting of the Association for
Computational Linguistics, pages 40–47.

Hwee Tou Ng, Bin Wang, and Yee Seng Chan. 2003.
Exploiting parallel texts for word sense disambigua-
tion: An empirical study. In Proceedings of the 41st
Annual Meeting of the Association for Computational
Linguistics, pages 455–462.

Franz Josef Och and Hermann Ney. 2000. Improved sta-
tistical alignment models. In Proceedings of the 38th
Annual Meeting of the Association for Computational
Linguistics, pages 440–447.

Thanh Phong Pham, Hwee Tou Ng, and Wee Sun
Lee. 2005. Word sense disambiguation with semi-
supervised learning. In Proceedings of the 20th
National Conference on Artificial Intelligence, pages
1093–1098.

Simone Paolo Ponzetto and Roberto Navigli. 2010.
Knowledge-rich word sense disambiguation rivaling
supervised systems. In Proceedings of the 48th Annual
Meeting of the Association for Computational Linguis-
tics, pages 1522–1531.

Tony Rose, Mark Stevenson, and Miles Whitehead.
2002. The Reuters Corpus Volume 1 – from yes-
terday’s news to tomorrow’s language resources. In
Proceedings of the Third International Conference on
Language Resources and Evaluation, pages 827–832.

Joseph Turian, Lev-Arie Ratinov, and Yoshua Bengio.
2010. Word representations: A simple and general
method for semi-supervised learning. In Proceed-
ings of the 48th Annual Meeting of the Association for
Computational Linguistics, pages 384–394.

David Vickrey, Luke Biewald, Marc Teyssier, and
Daphne Koller. 2005. Word-sense disambiguation for
machine translation. In Proceedings of the Conference
on Human Language Technology and Empirical Meth-
ods in Natural Language Processing, pages 771–778.

Zhi Zhong and Hwee Tou Ng. 2010. It Makes Sense: a
wide-coverage word sense disambiguation system for
free text. In Proceedings of the 48th Annual Meeting
of the Association for Computational Linguistics Sys-
tem Demonstrations, pages 78–83.

Zhi Zhong and Hwee Tou Ng. 2012. Word sense disam-
biguation improves information retrieval. In Proceed-
ings of the 50th Annual Meeting of the Association for
Computational Linguistics, pages 273–282.

323




