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Abstract
ListNet is a well-known listwise learning to rank model and has gained

much attention in recent years. A particular problem of ListNet, however, is
the high computation complexity in model training, mainly due to the large
number of object permutations involved in computing the gradients. This
paper proposes a stochastic ListNet approach which computes the gradient
within a bounded permutation subset. It significantly reduces the computation
complexity of model training and allows extension to Top-k models, which is
impossible with the conventional implementation based on full-set
permutations. Meanwhile, the new approach utilizes partial ranking
information of human labels, which helps improve model quality. Our
experiments demonstrated that the stochastic ListNet method indeed leads
to better ranking performance and speeds up the model training remarkably.
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1 Introduction
Learning to rank aims to learn a model to re-rank a list of objects, e.g., candidate doc-
uments in document retrieval. Recent studies show that listwise learning delivers better
performance in general than traditional pairwise learning [1], partly attributed to its ca-
pability of learning human-labelled scores as a full rank list. A potential disadvantage of
listwise learning, however, is the high computation complexity in model training, which is
mainly caused by the large number of permutations of the objects to rank.

A typical listwise learning method is the ListNet model proposed by [2]. This model has
been utilized to tackle many ranking problems, e.g. modeling the hiring behavior in online
labor markets [3], ranking sentences in document summarization [4], improving detection
of musical concepts [5] and ranking the results in video search [6]. Basically, ListNet im-
plements the rank function as a neural network (NN), with the objective function set to be
the cross entropy between two probability distributions over the object permutations, one
derived from the human-labelled scores and the other derived from the model prediction
(network output). In order to deal with the high computation complexity associated with
the large number of permutations, [2] proposed a Top-k approach, which clusters the per-
mutations by the first k objects, so the number of distinct probabilities that need to evaluate
in model training reduces from n! to n!

(n−k)! , where n is the number of objects in the list.
To ensure efficiency, k = 1 was selected in the seminal paper [2] and in the open source

implementation of RankLib [7]. This Top-1 approach is a harsh approximation to the full
listwise learning and may constrain the power of the ListNet method. We therefore seek to
extend the Top-1 approximation to Top-k ( k > 1) models.

The major obstacle for the Top-k extension is the large number of permutations, or more
precisely, permutation classes in the Top-k setting. A key idea of this paper is that the rank
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information involved in the permutation classes is highly redundant and so a small number
such permutation classes are sufficient to convey the rank information required to train the
model. Meanwhile, the partial rank information associated with the subset of permutation
classes may represent more detailed knowledge for model training, leading to better ListNet
models.

Based on these two conjectures, we propose a stochastic ListNet method, which sam-
ples a subset of the permutation classes (object lists) in model training and based on this
subset to train the ListNet model. Three methods are proposed to conduct the sampling.
In the uniform distribution method, the candidate objects are selected following a uniform
distribution; in the fixed distribution method, the candidate objects are selected following a
distribution derived from the human-labeled scores; in the adaptive distribution method, the
candidates are selected following a distribution defined by the rank function, i.e., the neural
network output. Experimental results demonstrated that the stochastic ListNet method can
significantly reduce the computation cost in model training. In fact, if the size of the permu-
tation subset is fixed, the computation complexity is bounded, which allows training Top-k
models where k is large. Meanwhile, better performance was obtained with the stochastic
ListNet approach, probably due to the learning of partial rank information.

The contributions of the paper are three-fold: (1) proposes a stochastic ListNet method
that significantly reduces the training complexity and delivers better ranking performance;
(2) investigates Top-k models based on the stochastic ListNet, and studies the impact of a
large k; (3) provides an open source implementation based on RankLib.

The rest of the paper is organized as follows. Section 2 introduces some related works,
and Section 3 presents the stochastic ListNet method. Section 4 presents the experiments,
and the paper is concluded by Section 6.

2 Related Work
This work is an extension of the Top-k ListNet method proposed by [2]. The novelty is that
we propose a stochastic learing method which not only speeds up the model training but
also produces stronger models. The code is based on the Top-1 ListNet implementation of
RankLib [7].

Another related work is the SVM-based pairwise learning to rank model based on
stochastic gradient descent (SGD) [8]. In this approach, training instances (queries) are
selected randomly and for each query, a number of object pairs are sampled from the ob-
ject list. These pairs are used to train the SVM model. In the stochastic ListNet method
proposed in this paper, the randomly selected training samples are permutation classes (ob-
ject lists) rather than pairs of objects, and a set of object lists rather than a single pair forms
a training sample.

3 Methods
3.1 Review of ListNet

The ListNet approach proposed by [2] trains a neural network which predicts the scores
z(i) of a list of candidate objects x(i) given a query q(i), formulated by z(i) = fw(x(i)),
where fw stands for the scoring function defined by the NN. The objective function is given



Lo et al. Page 3 of 13

by:

L =
∑
i

L(y(i), z(i))

=
∑
i

∑
∀g∈Gk

Py(i)(g)log(Pz(i)(g)) (1)

where y(i) denotes the human-labelled scores, and Gk is the set of permutation classes
defined by:

Gk = {Gk(j1, j2, ..., jk)|jt = 1, 2, ..., n,

s.t. ju 6= jv for ∀u 6= v} (2)

where n is the number of candidate objects, jt is the object ranked at the t-th position, and
Gk(j1, j2, ..., jk) is a permutation class which involves all the permutations whose first k
objects are exactly (j1, j2, ..., jk). Following [2], the probability of Gk(j1, j2, ..., jk) can be
computed by:

Ps(G (j1, j2, ..., jk)) =

k∏
t=1

esjt∑n
l=t e

sjl
. (3)

where sjt is the score of object at position jt(t = 1, 2, , , k) at a certain permutation.
By this definition of permutation probability, Eq. (1) defines a cross entropy between the
distributions over permutations (precisely, permutation classes) derived from the human-
labelled scores and the NN-predicted scores. Therefore, optimizing the objective function
Eq. (1) with respect to the NN model fw leads to a scoring function that approximates the
human-labelled ranking.

3.2 Stochastic Top-k ListNet
A particular difficulty of the Top-k ListNet method is that it requires very demanding com-
putation in model training. Refer to Eq. (2), the permutation set Gk involves n!

(n−k)! mem-

bers, and for each member, computing its probability involves (2n−k+1)k
2 summations plus

k multiplications and divisions. To let the algorithm practical, k=1 was selected in [2], as
well as the public toolkit RankLib [7]. Although this is a good solution and reduces com-
putation dramatically, we argue that this approach largely buries the power of ListNet. In
fact, setting k=1 effectively marginalizes all the probabilities over the candidate objects of
a permutation class except the top one. By this approximation, Eq. (3) reduces to a softmax
over the candidate objects, which means that it actually focuses on how the probabilities
are distributed over individual objects, rather than how the probabilities are distributed over
object lists. This potentially loses much rank information involved in the human labels.

Another disadvantage of the Top-1 model is that it learns the rank information of the full
list, but ignores the rank information of partial sequences, which may lead to ineffective
learning. As an example, considering an object list where the score of the most relevant
object is much higher than the scores of others, then the learning is dominated by the
highest score, and largely throws away the rank information conveyed by the scores of
other objects. It would be quite helpful if the rank information involved in partial sequences
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of the candidate objects can be learned. Top-k models place distributions over object lists
(in length k), and so can learn partial sequences of objects.

We are interested in how to learn Top-k (k > 1) models while keeping the computation
tractable. To achieve the goal, we propose a stochastic ListNet approach, which samples a
small set of the Top-k permutation classes (object lists), and train the Top-k model based
on this small set instead of the full set of permutation classes. As a comparison, the full set
of permutation classes of the Top-k model is n!

(n−k)! , which is computationally prohibitive
if k > 1. With stochastic ListNet, a subset of the permutation classes that involves only
l members are randomly selected. Training the Top-k model based on this subset greatly
reduces the computation cost, even with a large k. In fact, the subset approach imposes a
bound of the computation cost that is largely determined by the the size of the subset (l),
while independent of the total number of objects n and the model order k.

Interestingly, the stochastic approach offers not only quick learning, but also a chance of
learning partial ranks. This is obvious because only a subset of the object lists are selected
in model training, and so the rank information involved in the subset of the permutation
classes can be learned. With the Top-1 model, partial ranks reduces to partial sequences
since each object list involves only one object. As we have discussed, learning partial se-
quences is an advantage of Top-k models with k > 1. This means that stochastic Top-1
ListNet possesses some advantages of Top-k ListNet, while the computation cost is much
lower.

3.3 Sampling methods for stochastic ListNet
The training process of stochastic ListNet starts from sampling l permutation classes, or ob-
ject lists. For each object list, k objects are sampled following a particular distribution. As
mentioned in Section 1, three distributions are studied in this paper: uniform distribution,
fixed distribution and adaptive distribution. They are presented as follows.

Uniform distribution sampling: In this method, all the k objects of a particular ob-
ject list are sampled with an equal probability. This sampling method is simple but biased
towards irrelevant candidates, since there are much more irrelevant objects than relevant
ones in the training data. A re-sampling approach is proposed to remedy the bias, as will
be discussed in Section 4.

Fixed distribution sampling: In this method, the objects are sampled following a distri-
bution proportional to the human-labelled scores. For instance, in the LETOR dataset that
is used in this study, each candidate object (document) is labelled as 2 (very relevant), 1
(relevant) or 0 (irrelevant). These scores are normalized by softmax and are used as the
probability distribution when sampling objects. Because the probabilities of relevant ob-
jects are larger than those of irrelevant objects, more relevant objects would be selected by
this sampling approach in model training.

Adaptive distribution sampling: The fixed distribution sampling mentioned above re-
lies on human-labelled scores, which may be impacted by label errors. Moreover, the ab-
solute values of human labels are not good measures of object relevance. To solve these
problems, we choose the outputs of the ‘current’ neural network as the relevance scores,
and sample the objects according to these scores. Note that the network outputs are nat-
ural measures of object relevance based on the present ranking model. As the model (the
neural network) keeps updated during model training, the relevance scores are accordingly
changed. In each iteration, the relevance scores are re-calculated, and the sampling is based
on the new scores in the next iteration.
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3.4 Gradients with linear networks
[2] optimized the ListNet model by gradient descent. For each query, the learn rule is
formuated by:

w = w − η∆w

where η is the learning rate, and w denotes the parameters of the model fw. ∆w denotes
the gradient and it can be computed as follows:

∆w =
∑
∀g∈Gk

∂Pz(i)(fw)(g)

∂w

Py(i)(g)

Pz(i)(fw)(g)
.

For simplicity, a linear NN model was used by [2]. This has been adopted in our study as
well, written by z(i) = fw(x

(i)
j ) = wTx

(i)
j , where x(i)j denotes the feature vector of the

j-th object of the i-th query. In the case of the Top-1 model, it shows that:

∆w =
∑
j

[σ(z(i), j)− σ(y(i), j)]x
(i)
j

where σ(s, j) is the j-th value of the softmax function of the score vector s, given by:

σ(s(i), j) =
es

(i)
j∑n(i)

t=1 e
s
(i)
t

.

In the case of the Top-k model, the gradient(Derivative of cross entropy between Pz(i) and
Py(i) when k >= 2) is a bit complex, but still manageable:

∆w =
∑
g∈Gk

[(

k∏
t=1

σ̂(y(i), t))·

(

k∑
f=1

{x(i)jf
−

n(i)∑
v=f

σ̂(z(i), v)x
(i)
jv
})]

(4)

where σ̂(·) defines a ‘partial’ softmax(The ‘partial softmax’ means that the σ(s, f) has a
similar form as softmax, however when computing the value for each f, the denominator is
not the summation from 1 to n, instead a ‘partial sequence’ from f to n.), given by:

σ̂(s(i), f) =
e
s
(i)
jf∑n(i)

t=f e
s
(i)
jt

.

3.5 Stochastic Top-k ListNet algorithm
We present the stochastic Top-k ListNet algorithm, by employing the techniques described
above. The gradient descent (GD) approach is adopted. All the training samples are pro-
cessed sequentially in an iteration. The training runs several iterations until the convergence
criterion is reach. Another detail is that the learning rate is multiplied by 0.1 whenever the
objective function is worse than the previous iteration. The procedure is illustrated in Al-
gorithm 1, where L(t) denotes value of the objective function after the t-th iteration.
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Algorithm 1 Stochastic Top-k ListNet
Require:

Input:
D = {(q(1), x(1), y(1)), ..., (q(m), x(m), y(m))}: training data
T: number of iterations
η: learning rate

Ensure:
1: Randomly initialize w
2: for t = 1 to T do
3: for i = 1 to m do
4: select the i-th training instance (q(i), x(i), y(i)) ∈ D
5: Sample the permutation classes Gk

6: Compute ∆w according to Eq. (4)
7: Update fw: w = w − η∆w
8: end for
9: if L(t) < L(t− 1) then

10: η = 0.1η
11: end if
12: end for

4 Experiments
4.1 Data
The proposed stochastic Top-k ListNet method is tested on the document retrieval task
based on the MQ2008 dataset of LETOR 4.0 [9]. This database was released in early 2007
and has been widely used in learning to rank studies. It contains queries and corresponding
candidate documents. The human-labelled scores are among three values {0, 1, 2}, rep-
resenting little, medium, and strong relevance between queries and candidate documents,
respectively. The training set, validation set and test data all contain 784 queries. The doc-
ument features used in this study include term frequency, inverse document frequency,
BM25, and language model scores for IR. Some new features proposed recently are also
included, such as HostRank, feature propagation, and topical PageRank.

4.2 Experiment Setup
In our experiments, we consider Top-k models where k = 1, 2, 3, and 4. Although any k
is possible with the proposed stochastic ListNet, we will show that simply increasing the
model order k does not improve performance. The P@1 and P@10 performance is used as
the evaluation metric.

Specially, for all the three distribution sampling methods, the sampling process involves
two steps: pre-selection and re-sampling. The pre-selection step samples a list of documents
following a uniform distribution, and in the re-sampling step, document lists including
more relevant documents are retained with a higher probability. For example, denoting the
pre-selected document list by (v1,v2,...,vk) where k is the length of the list, and denoting
the corresponding human-labelled scores by (s1, s2,...,sk), the probability that the list is
retained is given by

∑k
i=1 si
kS

where S is the maximum value of the human-labelled scores, which is 2 in our case. The
re-sampling approach is designed to encourage document lists containing more relevant
documents, which is the most important for the uniform distribution sampling.
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In stochastic Top-k ListNet, the learning rate is set as 10−3 for k = 1, and 10−5 for k
> 1. These values are set to achieve the best performance on the validation set. Another
important parameter of the stochastic Top-k ListNet approach is the number of samples
of the document lists (or the size of subset of permutation classes selected), denoted by l.
Various settings of l are experimented with in this study. To eliminate randomness in the
results, all the experiments are repeated 20 times and the averaged performance is reported.

4.3 Experimental results
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Figure 1: The P@1 performance on the test data with the Top-1 ListNet utilizing the three
sampling approaches. The size of the permutation subset varies from 50 to 500.
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Figure 2: The P@1 performance on the test data with the Top-2 ListNet utilizing the three
sampling approaches. The size of the permutation subset varies from 5 to 500.

The P@1 results on the test dataset with different orders of Top-k ListNet are reported in
Figure 1 to Figure 4. In each figure, the number of document lists varies from 5 to 500. For
comparison, the results with the conventional ListNet are also presented. Note that the re-
sampling approach was not applied to the Top-1 model as we found it caused performance
reduction. This is perhaps because the sampling space is small with the Top-1 model, and
so re-sampling tends to cause over-emphasis on relevant documents.

From these results, we first observe that stochastic ListNet with either fixed or adaptive
distribution sampling tends to outperform the conventional ListNet approach, particularly
with a large k. This confirms our argument that rank information can be learned from a
subset of the permutation classes that are randomly selected, and the partial rank learning
can lead to even better performance than the full rank learning, the case of conventional
ListNet. This is an interesting result and demonstrates the stochastic ListNet is both faster
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Figure 3: The P@1 performance on the test data with the Top-3 ListNet utilizing the three
sampling approaches. The size of the permutation subset varies from 5 to 500.
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Figure 4: The P@1 performance on the test data with the Top-4 ListNet utilizing the three
sampling approaches. The size of the permutation subset varies from 5 to 500.

and better than the conventional ListNet. It is also seen that the adaptive distribution sam-
pling performs slightly better than the fixed distribution sampling. This is not surprising as
the adaptive distribution sampling uses a more reasonable relevance score (neural network
output) to balance relevant and irrelevant documents. The uniform distribution sampling
performs a little worse than the other two sampling methods, probably caused by the less
informative uniform distribution.

Another observation is that in all the four figures, the performance of the stochastic List-
Net methods increases with more samples of the object lists. However if there are too many
samples, the performance starts to decrease. This can be explained by the fact that the sam-
pling prefers relevant documents which are more informative. A larger sample set often
includes more informative documents; however if the set is too large, many irrelevant doc-
uments will be selected and the performance is reduced. In the case that the number of
samples is very large (500 for example for Top-1), the stochastic ListNet falls back to the
conventional ListNet, and their performance becomes similar.

Comparing the results with different k, it can be seen that a larger k leads to a better
performance with stochastic ListNet. This confirms that high-order Top-k models can learn
more ranking information. However, this is not necessarily the case with the conventional
ListNet. For example, the Top-2 model does not offer better performance than the Top-
1 model. This is perhaps because high-order Top-k models consider a large number of
document lists and most of them are not informative, which leads to ineffective learning.
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Remind that the conventional ListNet is a special case of the stochastic ListNet with a
very large sample set, and we have discussed that an over large sample set actually reduces
performance.

The averaged training time and the performance in precession are presented in Table 1.
For precession, both P@1 and P@10 results are reported, though we focus on P@1 since it
is more concerned for applications such as QA. Note that for stochastic ListNet, the optimal
number of samples (document lists) has been selected according to the P@1 performance
on the validate set.

From these results, it can be seen that the conventional Top-1 ListNet is rather fast, how-
ever the Top-2 model is thousands of times slower. With k > 2, the training time becomes
prohibitive and so they are not listed in the Table. This is expected since the conventional
ListNet considers the full set of permutations which is a huge number with a large k. With
the stochastic ListNet, the training time is dramatically reduced. Even with a large k, the
computation cost is still manageable, because the computation is mostly determined by
the number of object lists, rather than the value of k. When comparing the three sampling
methods, it can be found the convergence speed of the uniform distribution approach is
the slowest, probably due to the ineffective selection for relevant documents. The adaptive
distribution sampling is the fastest, probably attributed to the collaborative update of the
model and the distribution.

As for the P@1 performance, the stochastic ListNet method generally outperforms its
non-stochastic counterpart, particularly with the adaptive distribution sampling. For exam-
ple, the best P@1 results obtained on the test data with the stochastic Top-1 ListNet is
0.4127, which outperforms the conventional Top-1 ListNet (0.4119). This advantage of
stochastic ListNet, as we argued, is largely attributed to its capability of learning partial
rank information with samples of partial sequences of the rank list.

Comparing the results with different k values, it can be seen that a larger k tends to offer
better P@1 performance on the training set, with either the conventional ListNet or the
stochastic ListNet. For example, with the conventional ListNet, the results are 0.4101 vs.
0.4119 with the Top-1 and Top-2 models respectively. However, the performance gap is
rather marginal, and the advantage with the large k does not propagate to the results on the
test data (as has been seen in Figure 1 and Figure 2). This indicates that for the conventional

P@1 P@10
Model Top-k Sampling Time (s) Train Val. Test Train Val. Test

C-ListNet k=1 - 2.509 0.4101 0.4107 0.4119 0.2684 0.2684 0.2676
S-ListNet k=1 UDS 0.753 0.4097 0.4106 0.4120 0.2680 0.2683 0.2676
S-ListNet k=1 FDS 0.391 0.4094 0.4090 0.4127 0.2679 0.2681 0.2676
S-ListNet k=1 ADS 0.375 0.4102 0.4097 0.4121 0.2680 0.2682 0.2670
C-ListNet k=2 - 2275.5 0.4119 0.4043 0.4043 0.2678 0.2674 0.2674
S-ListNet k=2 UDS 2.898 0.4140 0.4143 0.4130 0.2682 0.2686 0.2681
S-ListNet k=2 FDS 2.410 0.4145 0.4144 0.4164 0.2684 0.2688 0.2684
S-ListNet k=2 ADS 2.013 0.4162 0.4168 0.4145 0.2686 0.2689 0.2687
S-ListNet k=3 UDS 4.358 0.4167 0.4204 0.4152 0.2686 0.2681 0.2680
S-ListNet k=3 FDS 3.997 0.4137 0.4205 0.4131 0.2687 0.2695 0.2685
S-ListNet k=3 ADS 3.483 0.4184 0.4196 0.4177 0.2692 0.2697 0.2689
S-ListNet k=4 UDS 6.161 0.4145 0.4226 0.4104 0.2686 0.2694 0.2687
S-ListNet k=4 FDS 5.773 0.4145 0.4232 0.4150 0.2690 0.2695 0.2686
S-ListNet k=4 ADS 4.358 0.4149 0.4247 0.4164 0.2692 0.2700 0.2689

Table 1: Averaged training time (in seconds), P@1 and P@10 on training, validation (Val.)
and test data with different Top-k methods. ‘C-ListNet’ stands for conventional ListNet,
‘S-ListNet’ stands for stochastic ListNet.
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ListNet, the Top-1 model is not the only choice in the sense of computation complexity,
but also the best choice in the sense of P@1 performance.

For stochastic ListNet, the performance improves with k increases. In contrast to the con-
ventional ListNet, this improvement propagates to the results on the test data. For example,
with the adaptive distribution sampling, the P@1 results on the training set are 0.4102 vs.
0.4184 with the Top-1 and Top-3 models respectively, and the results on the test data are
0.4121 vs. 0.4177 respectively.
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Figure 5: The P@1 performance on the test data with the stochastic Top-k ListNet ap-
proach, where k varies from 1 to 100.

Nevertheless, the p@1 performance improvement with a large k is rather marginal, and an
over large k simply reduces the performance. To make it clear, we vary the value of k from
1 to 100 and plot the P@1 results in Figure 5). It can be seen that larger k (> 4) does not
offer any merit but causes performance instability, particularly with the adaptive sampling
approach. As we have discussed, with the stochastic ListNet, partial rank information can
be learned with simple Top-k models, even the Top-1 model. This capability of partial rank
learning with simple models reduces the necessity of employing complex Top-k models.
This is a highly valuable conclusion, and it suggests that a simple Top-1 or Top-2 model
is sufficient for the ListNet method, if the stochastic method is applied. Considering the
trade-off between computation cost and model strength, we recommend stochastic Top-2
ListNet which delivers better P@1 performance than the Top-1 model consistently, with
sufficiently fast computing. If more computation is affordable, stochastic Top-3 ListNet
can be used to obtain better performance.

Finally, we highlight that the conclusions obtained from the p@1 results and the P@10
results perfectly match. In fact, the P@10 results look more consistent between training
and test data, and the advantage of the stochastic approach seems more clear, particularly
with the adaptive sampling. This is not surprising as the optimization goal of ListNet is
essentially to form a good rank that involves multiple candidates, and so P@10 is apt to
measure the superiority of a better rank approach.

5 Discussion
An interesting observation with the stochastic ListNet approach is that sampling more rel-
evant documents improves performance. This can be explained by the data imbalance be-
tween relevant and irrelevant documents, i.e., there are much more irrelevant documents
than relevant documents in the training data. This imbalance leads to biased models that
tend to classify all documents as irrelevant. The re-sampling approach can be regarded as a
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way of balancing the two classes, and the fixed and adaptive distribution sampling can be
regarded as another way to achieve the goal. Note that in the fixed distribution sampling,
the distribution is solely dependent on the human-labeled scores. These scores are good
measures of the rank of relevance but not good measures of the relevance itself. A possible
way to solve this problem is to learn a scoring function that maps human-labelled scores
to more reasonable measures of document relevance, though we took a different way that
employs the network outputs as the relevance measures, which is what the adaptive distribu-
tion sampling method does. Note that the network output is a natural measure of document
relevance, so the adaptive distribution sampling works the best in our experiments.

Another related issue is the harsh labelling of the AM2008 dataset. In this dataset, doc-
uments are labelled by only three values {0, 1, 2}, which is rather imprecise and the rank
information is very limited. This harsh labeling is another reason why the uniform distribu-
tion sampling does not work: by uniform distribution sampling, there is a large probability
that the sampled object lists involve documents that are all labelled by 0. This leads to an
inefficient learning. Another consequence of the harsh labeling is that the power of compli-
cated ranking models is largely constrained. For example, with the Top-k (k > 1) ListNet
model, many of the k documents in a candidate list are labelled as the same score, resulting
in limited rank information for the Top-k model to learn. This is why Top-k models did
not exhibit much superiority to the Top-1 model in our experiments. We argue that top-k
models would provide more contributions with more thorough labels (e.g., scores in real
values). This is an ongoing research of our group.

Finally, we highlight that the stochastic approach is not limited to the ListNet model,
but any model for listwise learning. It is well known that listwise learning outperforms
pairwise learning, due to it is capability of learning full ranks [1]. However learning full
ranks requires unaffordable computation and so is infeasible in practice, even with the
Top-k approximation. Our work demonstrated that learning full ranks can be approximated
by learning partial ranks, and a limited number samples of such partial ranks is sufficient
to convey the rank information. This stochastic learning is very fast, and even delivers
better performance. It can be regarded as a general framework that treats both the pair-wise
learning and the full rank learning as two special cases. In fact, if the set of partial ranks
involves all the permutation classes, it reduces to the conventional listwise learning, and if
the set of partial ranks involves all object pairs, it resembles the pairwise learning. A wide
range of listwise learning methods can benefit from the idea of stochastic learning provided
in this paper.

6 Conclusion
This paper proposed a stochastic ListNet method to speed up the training of ListNet models
and improve the ranking performance. The basic idea is to approximate the full rank learn-
ing by learning a small number of partial ranks. Three sampling approaches were proposed
to select the partial ranks, and Top-k ListNet models with various complexity (k values)
were investigated.

Our preliminary results on the MQ2008 dataset confirmed that the stochastic ListNet
approach can dramatically speeds up the model training, and more interestingly, it can pro-
duce better ranking performance than the conventional ListNet. Especially, the adaptive
distribution sampling method delivered the best p@1 performance. An appealing obser-
vation is that the simple Top-2 model is very effective and more complex Top-k models
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seem not very necessary, considering the trade-off between training complexity and model
strength. This observation, however, is purely based on the MQ2008 dataset. As have been
discussed, more detailed human labels may require more complex models, for which the
stochastic method proposed in this paper is essential to conduct the model training. For the
future work, we plan to study Top-k ListNet models with other databases and apply the
stochastic learning approach to other listwise learning to rank methods.
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