
Statistical Scoring for a D-vector Speaker Recognition System

Kenneth Li

Summer 2018 @Center for Speech and Language Technology
Tsinghua University, Beijing, China

July 19, 2018

kenneth.j.li@vanderbilt.edu

Abstract

Feature-based speaker recognition systems have tradi-
tionally used the simplistic cosine similarity approach for
scoring. To compete with end-to-end architectures, more
complex metrics leveraging discarded information like vari-
ance in data can improve this scoring task using statistical
distances. This paper explores the model-free usage of Z-
scores, Kullback-Leibler divergence, and other factors to re-
duce EER of a baseline scoring backend. Optimization of
simple linear factor combinations yield improvements of up
to 0.5% from baseline yet solutions are unstable and bene-
fits can diminish with large trial sizes. These require more
work for practical value. Model-based usage of statistical
features can be promising with significant EER reduction.

1 Introduction

A text-independent speaker verification system based on
convolutional time-delay deep neural networks [3] has been
shown to extract valuable features (d-vectors) from utter-
ances so speakers could be verified without an end-to-end
architecture. Although these learned features are versa-
tile for future exploration, their verification performance in
terms of equal error rate (EER) can use improvement. The
traditional method for scoring similarity of two speakers
consists of averaging all respective frame-level d-vectors by
utterance, averaging these results by speaker, and then tak-
ing the cosine distance between the final two vectors. This
approach is simple and effective, but does not take into ac-
count additional information, like variance between utter-
ance or frame-level vectors.

Past approaches to lowering EER of other systems that
produce learned features include PLDA variants and simi-
larity learning. Lei et al.[2] makes use of the Mahalanobis

metric to measure statistical distance between i-vectors of
speakers to increase performance of their scoring backend.
While this approach has been shown to be effective, there
is motivation to explore model-free metrics for a more sim-
plistic scoring backend.

The goal of this project was to identify other metric com-
binations that would result in a lower EER compared with
the cosine similarity baseline when leveraging additional
information like variance. Ideally, these metrics would be
easy to compute and would not involve additional machine
learning for sake of simplicity in the scoring backend of this
system. This approach takes several other statistics-based
metrics to form a linear combination with the baseline co-
sine metric and improve EER. This is a simple way of in-
corporating additional information and observing results.

With small samples, it was found that these factors made
significant reductions of about 0.5% to the baseline EER.
Machine learning is also briefly experimented with to ex-
plore the performance and the possibility of learning met-
rics with a model-based scoring backend.

Section 2 describes the proposed distances and meth-
ods implemented in this project. Section 3 more explicitly
details these methods, displays results of experiments, and
discloses motivations of certain procedures. Section 4 con-
cludes these findings and discusses future work.

2 Methods

2.1 Testing platform

Another focus of this project was to develop a robust
foundation for running experiments as the nature of this re-
search beckons quantity over quality. Multiple factors were
tested in rapid succession over a dataset 10’s of GBs large.
Since the memory capacity of available machines were rel-
atively small, practices with HDF5 files, sequential load-



ing, and dataset sampling were generously deployed. To
run experiments, the Dask multiprocessing library was used
to execute Python code in parallel and improved processing
speeds by up to 500%. The bulk of this project was actually
spent on pre-processing data and testing the full capabilities
of this library which has yet to gain popular feedback.

2.2 Factors

Speaker data is represented in the following fashion:
each line in a list of independent trials consists of an en-
rolled speaker, a test speaker, and a binary class indicating
whether the speakers were the same person or not. Each en-
rolled speaker had 5 unique utterances, and each utterance
had a variable number of 400-length d-vectors. The case for
test speakers is identical but each had 3 unique utterances.
The explored factors that appeared valuable are listed be-
low.

• Z-Score: Given a set of enrolled speaker vectors and a
single test speaker vector (usually the mean of speaker-
level vectors), get the column-wise Z-score vector.
Each test vector value is used as the test against the
sample distribution of enrolled vector values in the
same column. This produces a 400-length vector of
’z-scores’ in this case, and the mean of absolute val-
ues is taken to produce a single score for each trial pair
of speakers. In theory, a larger score would indicate
greater dissimilarity between speakers. This factor can
also be applied to frame-level vectors.

• KL Divergence: Kullback-Leibler divergence is known
to measure similarity between two distributions. Al-
though this is not a true distance metric, we can use
this measure in a crude way to gauge its potential on
this data. A speaker-level ”KL-score” is computed as
follows. Since enrolled speakers had 5 utterances and
test speakers had 3 utterances in this dataset, the 3 test
utterances were used as a ”sliding window” over the
5 enrolled utterances such that 3 KL-divergence vec-
tors would be obtained by comparing each pair of 3
utterances in each category. The mean of each vector
is taken, and the minimum is returned for each pair of
speakers. This factor can also be applied to frame-level
vectors.

• Manhattan Distance: Take the mean of all possible
combinations of enroll-test speaker-level vector pairs.
In this data, there would be 15 such pairs from 5 ut-
terances per enrolled speaker and 3 utterances per test
speaker.

Additional consideration included Mahalanobis distance,
and just about every other statistical distance [4]. The

former was tested from a variety of angles, but did not
yield consistent results because the data was too high-
dimensional. Even after dimension reduction with PCA,
Mahalanobis distance still failed to be a valuable factor on
its own. Other statistical distances were not implemented
due to lack of time or my belief that they would all yield
very similar results to aforementioned factors.

2.3 Common ML Models

As an addendum, simple features can be taken from a
pair of speakers and their vector data to create a model-
based classification task based on whether the pair was a
match or not. Factors may include cosine similarity be-
tween speakers and variance between rows of average ut-
terance vectors. Common models like SVM and Random
Forest were trained on these features and EER was evalu-
ated based on their predictions on test data. Although this
approach deviated from the goal of the project, the Random
Forest model was found to perform significantly better in
reducing EER than the non-model-based method above.

3 Experiments

Data is produced from the open speech database
THCHS-30 [1]. There are 11725308 total trials, with 17892
positive classes, or about 0.15% of the total. Since high ac-
curacy can be trivially obtained, EER is a more valuable
performance metric.

3.1 Individual Factor Performance

Speaker-level
EER Factor Sample

Size
Compute
Time

7.897 Cosine 1 10m
7.963 Cosine 0.5 5m
10.586 KL-Div 0.5 31m
21.466 Z-Score 0.5 33m
10.528 Manhattan 0.5 17m

Table 1. EER of individual factors

Results of frame-level experiments were discarded be-
cause they performed significantly worse than their speaker-
level counterparts. For 100k samples, KL Divergence on
frame-level data yielded an EER of 15%, as opposed to the
10% shown in Table 1. Z-score on frame-level data yielded
an EER upwards of 40% on an equally smaller sample size.
As these experiments also took significantly longer to com-
pute, usage of frame-level data on large sample sizes was
disregarded.

2



3.2 Factor Combination Performance

Optimization was run for the simple linear combination
with minimal EER:

α1Cos+ ...+ αi−1Factori−1 + αiFactori (1)

The following is a list of experimental setups.

1. CosZKL-F-100k: On a sample size of 100k tri-
als, speaker-level cosine score is complemented with
speaker-level Z-score and frame-level KL divergence.

2. CosZKL-100k: Same as CosZKL but all factors are
speaker-level.

3. CosZKL-1m: Same as CosZKL-100k but on a 10%
size sample of the full trials set.

4. CosZKLM-1m: Speaker-level cosine similarity, Z-
score, KL divergence, and Manhattan distance on 10%
sample.

5. ZKLM-1m: Same as CosZKLM-1m but the scalar to
cosine scores is a fixed constant of 100.

6. CosZKLM-5m: Same as CosZKLM-1m but on a 50%
sample.

Results displayed are from Powell’s method of optimiza-
tion since these yielded the lowest EER with a large degree
of consistency. A starting guess of 1 for cosine similarity
and -0.5 for all other factors was used for all setups to be
consistent and this oftentimes yielded the best minimization
results, which are reported in the table below. However, it
should be noted that other guesses may yield better results
for certain setups.

Opt
EER

Base
EER

Setup Solutions

8.247 9.104 CosZKL-F-
100k

[108, -0.49, -0.11]

7.299 9.104 CosZKL-
100k

[6.6, 0.10, -282.9]

8.000 8.507 CosZKL-
1m

[46.3, -0.27, -189]

7.849 8.507 CosZKLM-
1m

[113,-0.6, -3.8, 0.36]

7.932 8.507 ZKLM-1m [-0.68, 3.02, 0.21]
7.943 7.963 CosZKLM-

5m
[5.68, 77.2, 0.036, -
0.023]

Table 2. Results of optimized factor combina-
tions

While these scalar solutions shown in the above table
were found to minimize EER, it is noted that such solutions
can widely vary. On larger samples, it was found that EER
improvements from optimization were diminished signifi-
cantly. The different results between CosZKL-F-100k and
CosZKL-100k suggest that using frame-level data is overly
noisy and obtrusive to prediction. In many of these tri-
als, cosine remains as the ’dominant’ factor with the largest
scalar solution, which reflects results of Section 3.1. Dif-
ferent factors or functions should be explored to produce a
practical result.

3.3 ML Model Performance

A few experiments making explicit use of common clas-
sification models were conducted and detailed below. These
models primarily made use of features like cosine similarity
and variance between enrolled speaker-level vectors.

1. CosVar-SVM: A scalar cosine similarity score is ap-
pend to a 400-length variance vector computed by tak-
ing the column-wise variance of 5 speaker-level enroll-
ment vectors. Each trial then has 401 features from
these factors. An SVM model with a linear kernel is
trained using this data and trial classes.

2. CosVar-RF: A Random Forest classifier is trained us-
ing the same data as CosVar-SVM.

3. Cos-RF: A Random Forest classifier is trained using
just cosine similarity as a feature.

Results are displayed below. The first instance of each
setup indicate the training set, and all instances indicate pre-
diction results.

Pred
EER

Base
EER

Setup Sample Size

40.620 7.061 CosVar-SVM 0.01
0.033 7.061 CosVar-RF 0.01
0.229 8.507 CosVar-RF 0.10
0.055 7.061 Cos-RF 0.01
0.257 8.507 Cos-RF 0.10

Table 3. Results of trained models

It is almost comical and slightly alarming how the per-
formance of these models is so drastically dialed-up. While
ML models may provide huge performance value, the finer
relationships within the d-vector data are abstracted. A
model may not provide as much insight into the nature
of extracted features than straightforward distance metrics.
The future usage of an ML setup is up to the discretion of
system maintainers. The RF classifier took about 7 seconds
to train on a 0.01% size sample using CosVar features with

3



8 parallel jobs. While other factors like overfitting need to
be considered to scale a model, the RF model may be a can-
didate for a better scoring backend. Feature importance can
also be further explored in the random forest model.

4 Conclusion

Despite the intuition that factoring additional informa-
tion can reduce EER of this speaker system’s scoring back-
end, there is more research to be done on realizing the
potential of this claim as results demonstrate. Although
EER of individual proposed factors was poor, optimized
factor combinations can yield slight improvements to base-
line EER. Yet, these solutions can widely vary and such a
method is in need of more work before practical usage. The
usage and implementation of researched factors can be sig-
nificantly refined from their presented forms to boost per-
formance. There are an innumerable number of metrics to
experiment with and Sections 3.1, 3.2 suggest that the re-
lationship between variance and EER is nonlinear and non-
trivial. Because this interaction is difficult to precisely char-
acterize without rigorous mathematics, a model-based scor-
ing backend may be fit for further development.

5 Future work

Future work may include deeper analysis of the data it-
self to pave way for new factors better than traditional co-
sine similarity. Additionally, more complex factor combi-
nations can be explored to yield more consistent solutions
to optimized EER results. Metric and similarity learning
are also potential techniques to directly learn more valuable
distances. Closer analysis of the models briefly used can
also lend further insight into the nature of d-vectors.

6 Acknowledgements

Thank you to Professor Dong Wang for the opportunity
to work at CSLT on this project and the guidance to con-
duct capable research. Thank you to Dr. Zhiyuan Tang for
continuous feedback on my progress and encouragement on
results.

References

[1] Z. Z. Dong Wang, Xuewei Zhang. Thchs-30 : A free
chinese speech corpus, 2015.

[2] Z. Lei, Y. Wan, J. Luo, and Y. Yang. Mahalanobis met-
ric scoring learned from weighted pairwise constraints
in i-vector speaker recognition system. In Interspeech
2016, pages 1815–1819, 2016.

[3] L. Li, Y. Chen, Y. Shi, Z. Tang, and D. Wang. Deep
speaker feature learning for text-independent speaker
verification. CoRR, abs/1705.03670, 2017.

[4] Wikipedia contributors. Statistical distance —
Wikipedia, the free encyclopedia. https://
en.wikipedia.org/w/index.php?title=
Statistical_distance&oldid=843427668,
2018. [Online; accessed 19-July-2018].

4

https://en.wikipedia.org/w/index.php?title=Statistical_distance&oldid=843427668
https://en.wikipedia.org/w/index.php?title=Statistical_distance&oldid=843427668
https://en.wikipedia.org/w/index.php?title=Statistical_distance&oldid=843427668

	Introduction
	Methods
	Testing platform
	Factors
	Common ML Models

	Experiments
	Individual Factor Performance
	Factor Combination Performance
	ML Model Performance

	Conclusion
	Future work
	Acknowledgements

