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Abstract

Research on multilingual speech recognition remains attractive yet challenging.
Recent studies focus on learning shared structures under the multi-task paradigm,
in particular a feature sharing structure. This approach has been found effective
to improve performance on each individual language. However, this approach is
only useful when the deployed system supports just one language. In a true
multilingual scenario where multiple languages are allowed, performance will be
significantly reduced due to the competition among languages in the decoding
space.

This paper presents a multi-task recurrent model that involves a multilingual
speech recognition (ASR) component and a language recognition (LR)
component, and the ASR component is informed of the language information by
the LR component, leading to a language-aware recognition. We tested the
approach on an English-Chinese bilingual recognition task. The results show that
the proposed multi-task recurrent model can improve performance of multilingual
recognition systems.

Keywords: Multilingual; Multi-task learning; Recurrent neural network; Speech
recognition

1 Introduction
Speech recognition (ASR) technologies develop fast in recent years, partly due to the

powerful deep learning approach [1, 2]. An interesting and important task within

the ASR research is recognizing multiple languages. One reason that makes the

multilingual ASR research attractive is that people from different countries are

communicating more frequently today. Another reason is that there are limited

resources for most languages, and multilingual techniques may help to improve

performance for these low-resource languages.

There has been much work on multilingual ASR, especially with the deep neu-

ral architecture. The mostly studied architecture is the feature-shared deep neural

network (DNN), where the input and low-level hidden layers are shared across lan-

guages, while the top-level layers and the output layer are separated for each lan-

guage [3, 4, 5]. The insight of this design is that the human languages share some

commonality in both acoustic and phonetic layers, and so some signal patterns at

some levels of abstraction can be shared.

Despite the brilliant success of the feature-sharing approach, it is only useful

for model training, not for decoding. This means that although part of the model
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structure is shared, in recognition (decoding), the models are used independently

for individual languages, with their own language models. Whenever more than one

language are supported, the performance on all the languages will be significantly

decreased, due to the inter-language competition in the decoding process. This

means that the feature-sharing approach cannot deal with true multilingual ASR,

or more precisely, multilingual decoding.

A possible solution to the multilingual decoding problem is to inform the decoder

which language it is now processing. By this language information, the multilin-

gual decoding essentially falls back to monolingual decoding and the performance

is recovered. However, language recognition is subject to recognition mistakes, and

it requires sufficient signal to give a reasonable inference, leading to unacceptable

delay. Another possibility is to invoke monolingual decoding for each language, and

then decide which result is correct, due to either confidence or a language recogniz-

er. This approach obviously requires more computing resource. In Deepspeech2 [6],

English and Chinese can be jointly decoded under the end-to-end learning frame-

work. However, this is based on the fact that the training data for the two languages

are both abundant, so that language identities can be learned by the deep structure.

This certainly can not be migrated to other low-resource languages, and is difficult

to accommodate more languages.

In this paper, we introduce a multi-task recurrent model for multilingual decoding.

With this model, the ASR model and the LR model are treated as two components of

a unified architecture, where the output of one component is propagated back to the

other as extra information. More specifically, the ASR component provides speech

information for the LR component to deliver more accurate language information,

which in turn helps the ASR component to produce better results. Note that this

collaboration among ASR and LR takes places in both model training and inference

(decoding).

This model is particularly attractive for multilingual decoding. By this model,

the LR component provides language information for the ASR component when

decoding an utterance. This language information is produced frame by frame, and

becomes more and more accurate when the decoding proceeds. With this infor-

mation, the decoder becomes more and more confident about which language it is

processing, and gradually removes decoding paths in hopeless languages. Note that

the multi-task recurrent model was proposed in [7], where we found that it can learn

speech and speaker recognition models in a collaborative way. The same idea was

also proposed by [8], though it focused on ASR only. This paper tests the approach

on an English-Chinese bilingual recognition task.

The rest of the paper is organized as follows: Section 2 describes the model ar-

chitectures, and Section 3 reports the experiments. The conclusions plus the future

work are presented in Section 4.

2 Models
Consider the feature-sharing bilingual ASR. Let x represent the primary input fea-

ture, t1 and t2 represent the targets for each language respectively, and c is the extra

input obtained from other component (LR in our experiments). With the informa-

tion c, the model estimates the probability P (t1|x, c) and P (t2|x, c) respectively,
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that makes the decoding of two languages absolutely separate. P (t|x, c) is truly re-

quired by multilingual decoding, where t means the targets for both two languages.

If we regard the extra input c as a language indicator, the model is language-aware.

Note that the language-aware model is a conditional model with the context c

as the condition. In contrast, the feature-sharing model, which can be formulat-

ed as P (t1|x) or P (t2|x), is essentially a marginal model
∑

c P (t2|x, c)P (c|x) or∑
c P (t2|x, c)P (c|x), which are more complex and less effective for listing c.

We refer the bilingual ASR as a single task, with respect to the single task of LR.

So P (t|x, c) is what we actually compute with the proposed model jointly training

ASR and LR, that indicates the two languages use the same Gaussian Mixture

Model (GMM) system for generative modeling, though the two languages still use

their own phone sets.

We first describe the single-task baseline model and then multi-task recurrent

model as in [7].

2.1 Basic single-task model

The most promising architecture for ASR is the recurrent neural network, especially

the long short-term memory (LSTM) [9, 10] for its ability of modeling temporal se-

quences and their long-range dependencies. The modified LSTM structure proposed

in [9] is used. The network structure is shown in Fig. 1.
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Figure 1 Basic recurrent LSTM model for ASR and LR single-task baselines. The picture is
reproduced from [9].



Tang et al. Page 4 of 9

The associated computation is as follows:

it = σ(Wixxt +Wirrt−1 +Wicct−1 + bi)

ft = σ(Wfxxt +Wfrrt−1 +Wfcct−1 + bf )

ct = ft � ct−1 + it � g(Wcxxt +Wcrrt−1 + bc)

ot = σ(Woxxt +Worrt−1 +Wocct + bo)

mt = ot � h(ct)

rt = Wrmmt

pt = Wpmmt

yt = Wyrrt +Wyppt + by

In the above equations, the W terms denote weight matrices and those associated

with cells were set to be diagonal in our implementation. The b terms denote bias

vectors. xt and yt are the input and output symbols respectively; it, ft, ot represent

respectively the input, forget and output gates; ct is the cell and mt is the cell

output. rt and pt are two output components derived from mt, where rt is recurrent

and fed to the next time step, while pt is not recurrent and contributes to the present

output only. σ(·) is the logistic sigmoid function, and g(·) and h(·) are non-linear

activation functions, often chosen to be hyperbolic. � denotes the element-wise

multiplication.

2.2 Multi-task recurrent model

The basic idea of the multi-task recurrent model is to use the output of one task

at the current frame as an auxiliary information to supervise other tasks when

processing the next frame. As there are many alternatives that need to be carefully

investigated. In this study, we use the recurrent LSTM model following the setting

of [7] to build the ASR component and the LR component, as shown in Fig. 2.

These two components are identical in structure and accept the same input signal.

The only difference is that they are trained with different targets, one for phone

discrimination and the other for language discrimination. Most importantly, there

are some inter-task recurrent links that combine the two components as a single

network, as shown by the dash lines in Fig. 2.

Fig. 2 is one simple example, where the recurrent information is extracted from

both the recurrent projection rt and the nonrecurrent projection pt, and the infor-

mation is applied to the non-linear function g(·). We use the superscript a and l

to denote the ASR and LR tasks respectively. The computation for ASR can be

expressed as follows:
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Figure 2 Multi-task recurrent model for ASR and LR, an example.
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and the computation for LR is as follows:

ilt = σ(W l
ixxt +W l

irr
l
t−1 +W l

icc
l
t−1 + bli)

f lt = σ(W l
fxxt +W l

frr
l
t−1 +W l

fcc
l
t−1 + blf )

glt = g(W l
cxx

l
t +W l

crr
l
t−1 + blc +W la

cr r
a
t−1 +W la

cpp
a
t−1)

clt = f lt � clt−1 + ilt � glt
olt = σ(W l

oxx
l
t +W l

orr
l
t−1 +W l

occ
l
t + blo)

ml
t = olt � h(clt)

rlt = W l
rmm

l
t

plt = W l
pmm

l
t

ylt = W l
yrr

l
t +W l

ypp
l
t + bly

3 Experiments
The proposed method was tested with the Aurora4 and Thchs30 databases labelled

with word transcripts. There are 2 language identities, one for English and the

other for Chinese. We first present the single-task ASR baseline and then report

the multi-task joint training model. All the experiments were conducted with the

Kaldi toolkit [11].

3.1 Data

• Training set: This set involves the train sets of Aurora4 and Thchs30. It

consists of 17, 137 utterances. This set was used to train the LSTM-based

single-task bilingual system and the proposed multi-task recurrent system.

The two subsets were also used to train monolingual ASR respectively.

• Test set: This set involves ‘eval92’ from Aurora4 for English and ‘test’ from

Thchs30 for Chinese. These two sets consist of 4, 620 and 2, 495 utterances

and were used to evaluate the performance of ASR for English and Chinese

respectively.

3.2 ASR baseline

The ASR system was built largely following the Kaldi WSJ s5 nnet3 recipe, except

that we used a single LSTM layer for simplicity. The dimension of the cell was

1, 024, and the dimensions of the recurrent and nonrecurrent projections were set

to 256. The target delay was 5 frames. The natural stochastic gradient descent

(NSGD) algorithm was employed to train the model [12]. The input feature was the

40-dimensional Fbanks, with a symmetric 2-frame window to splice neighboring

frames. The output layer consisted of 6, 468 units, equal to the total number of pdfs

in the conventional GMM system that was trained to bootstrap the LSTM model.

The baseline of monolingual ASR is presented in Table 1, where the two languages

were trained and decoded separately. Then we present the baseline of bilingually-

trained system in Table 2, where a unified GMM system was shared. As for the latter

one, we first decoded the two languages with English and Chinese language models

(LMs) respectively, denoted as ‘mono-LM’, and further we merged together the two

LMs with a mixture weight of 0.5 using the tool ngram, so both languages can be

decoded within a single unified graph built with weighted finite-state transducers,

denoted as ‘bi-LM’.
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Table 1 Monolingual ASR baseline results.

Englsih Chinese
WER% 12.40 23.45

Table 2 Bilingual ASR baseline results.

Language Englsih Chinese
Model WER% WER%

Mono-LM 16.21 23.82
Bi-LM 17.80 23.84

3.3 Multi-task joint training

Due to the flexibility of the multi-task recurrent LSTM structure, it is not possible

to evaluate all the configurations. We explored some typical ones in [7] and report

the results in Table 3. Note that the last configure, where the recurrent information

is fed to all the gates and the non-linear activation g(·), is equal to augmenting the

information to the input variable x.

Table 3 Joint training results with Mono-LM.

Feedback Feedback English Chinese
Info. Input WER% EER%

r p i f o g√ √
16.33 23.96√ √ √
16.27 23.99√ √
16.15 23.97√ √ √
16.15 24.01√ √
16.14 23.90√ √ √
16.25 23.97√ √
16.09 23.69√ √ √
16.34 23.81√ √ √ √
15.65 23.82√ √ √ √ √
16.06 23.86√ √ √ √ √
16.14 23.89√ √ √ √ √ √
16.32 24.14

Table 4 Joint training results with Bi-LM.

Feedback Feedback English Chinese
Info. Input WER% EER%

r p i f o g√ √
17.81 24.05√ √ √
17.83 24.03√ √
17.62 24.02√ √ √
17.71 23.94√ √
17.62 23.86√ √ √
17.69 23.98√ √
17.54 23.71√ √ √
17.80 23.93√ √ √ √
17.21 23.84√ √ √ √ √
17.53 23.91√ √ √ √ √
17.63 23.93√ √ √ √ √ √
17.93 24.18

From the results shown in Table 3 and 4 decoded with mono-LM and bi-LM

respectively, we first observe that the multi-task recurrent model improves the per-

formance of English ASR more than that of Chinese. We attribute this to several

reasons. First, the auxiliary component was designed to do language recognition

and expected to provide extra language information only, but as the English and

Chinese databases are not from the same source, the speech signal involves too
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much channel information, that makes the effect of auxiliary language information

decrease when channel classification is done at the same time. Moreover, the chan-

nel classification was easily achieved by the regular DNN, then the superiority with

an additional LR component decays. Second, from the results in Table 2, we find

that when using their respective LMs, English gets gains of performance, while that

is not obvious for Chinese, even considering monolingual results in Table 1. Results

with mono-LM for Chinese in Table 4 were not far away from that of monolingual

and bilingual baselines. All imply that a method for improving speech recognition

wanting remarkable improvement for this database configuration may not work well.

So it’s not strange that the performance of Chinese could not be improved much in

the enhanced model. Furthermore, we have done another test on part of the train

set and all the multi-task recurrent models perform better than the baseline on

both English and Chinese, which means the recurrent models overfit the train set

extremely, that demonstrates the ability of the proposed model.

We also observe that the multi-task recurrent model still has the potential to

exceed the baseline, such as when the recurrent information was extracted from

the recurrent projection and fed into the activation function, which led to a better

performance for both English and Chinese. We suppose, with many more carefully-

designed architectures, the baseline will be surpassed more easily.

4 Conclusions
We report a multi-task recurrent learning architecture for language-aware speech

recognition. Primary results of the bilingual ASR experiments on the Auro-

ra4/Thchs30 database demonstrated that the presented method can employ both

commonality and diversity of different languages between two languages to some

extent by learning ASR and LR models simultaneously. Future work involves using

more ideal databases from the same source, developing more suitable architecture

for language-aware recurrent training and introducing more than two languages

including source-scarce ones.

Acknowledgment
This work was supported by the National Science Foundation of China (NS-

FC) Project No. 61371136, and the MESTDC PhD Foundation Project No.

20130002120011.

Author details
1Center for Speech and Language Technology, Research Institute of Information Technology, Tsinghua University,

ROOM 1-303, BLDG FIT, 100084 Beijing, China. 2Center for Speech and Language Technologies, Division of

Technical Innovation and Development, Tsinghua National Laboratory for Information Science and Technology,

ROOM 1-303, BLDG FIT, 100084 Beijing, China. 3Department of Computer Science and Technology, Tsinghua

University, ROOM 1-303, BLDG FIT, 100084 Beijing, China.

References
1. G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N.

Sainath et al., “Deep neural networks for acoustic modeling in speech recognition: The shared views of four

research groups,” Signal Processing Magazine, IEEE, vol. 29, no. 6, pp. 82–97, 2012.

2. D. Yu and L. Deng, Automatic Speech Recognition - A Deep Learning Approach, ser. Signals and

Communication Technology. Springer, 2015.

3. J.-T. Huang, J. Li, D. Yu, L. Deng, and Y. Gong, “Cross-language knowledge transfer using multilingual deep

neural network with shared hidden layers,” in Proceedings of IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP). IEEE, 2013, pp. 7304–7308.

4. A. Ghoshal, P. Swietojanski, and S. Renals, “Multilingual training of deep neural networks,” in Proceedings of

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2013, pp.

7319–7323.



Tang et al. Page 9 of 9

5. G. Heigold, V. Vanhoucke, A. Senior, P. Nguyen, M. Ranzato, M. Devin, and J. Dean, “Multilingual acoustic

models using distributed deep neural networks,” in Proceedings of IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP). IEEE, 2013, pp. 8619–8623.

6. D. Amodei, R. Anubhai, E. Battenberg, C. Case, J. Casper, B. Catanzaro, J. Chen, M. Chrzanowski, A. Coates,

G. Diamos et al., “Deep speech 2: End-to-end speech recognition in english and mandarin,” arXiv preprint

arXiv:1512.02595, 2015.

7. Z. Tang, L. Li, and D. Wang, “Multi-task recurrent model for speech and speaker recognition,” arXiv preprint

arXiv:1603.09643, 2016.

8. X. Li and X. Wu, “Modeling speaker variability using long short-term memory networks for speech recognition,”

in Proceedings of the Annual Conference of International Speech Communication Association

(INTERSPEECH), 2015.

9. H. Sak, A. Senior, and F. Beaufays, “Long short-term memory based recurrent neural network architectures for

large vocabulary speech recognition,” arXiv preprint arXiv:1402.1128, 2014.

10. H. Sak, A. W. Senior, and F. Beaufays, “Long short-term memory recurrent neural network architectures for

large scale acoustic modeling,” in Proceedings of the Annual Conference of International Speech

Communication Association (INTERSPEECH), 2014, pp. 338–342.

11. D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel, M. Hannemann, P. Motlicek, Y. Qian,

and P. Schwarz, “The kaldi speech recognition toolkit,” in Proceedings of IEEE 2011 workshop on automatic

speech recognition and understanding. IEEE Signal Processing Society, 2011.

12. D. Povey, X. Zhang, and S. Khudanpur, “Parallel training of deep neural networks with natural gradient and

parameter averaging,” arXiv preprint arXiv:1410.7455, 2014.


