Weekly Report: Exploration of BCE

Junhui Chen

Parts

- Brief Introduction to global BCE and batch BCE
- Wrong properties of BCE and batch BCE without a optimal config
- Further experiments with a optimal config
 - reconsidered the implementation of batch BCE: group training
 - Promote to CE (useless?)
 - Testing in extreme scenarios: Lightweight Models and Complex Scenarios

Brief Introduction to BCEs

global BCE:

$$L ~=~ \lambda ~ \log(1 + \exp(-\cos~(heta_y)) ~+~ (1-\lambda) ~\sum_{i
eq y}^K ~\log~(1 + \exp(\cos~(heta_i))$$

The parameter λ is **fixed**.

But in fact, for **different positive examples**, The actual proportion of positive and negative samples **is different**:

$$\hat{\lambda} \; = \; rac{S_{pos}}{\sum \, S_{neg}}$$

Brief Introduction to BCEs

batch BCE: B is the set of speaking humans that appear in the current batch, b_ i is the i th speaker in B.

$$L ~=~ \lambda ~ \log(1 + \exp(-\cos~(heta_y)) ~+~ (1-\lambda) ~ \sum_{b_i}^B ~ \log~(1 + \exp(\cos~(heta_i)))$$

Advantages:

- Reduced the disparity in the proportion of positive and negative classes, thereby effectively reducing the sensitivity of λ .
- Compressing the 1: K-1 binary classifier into a 1: B-1 binary classifier, which reduces training difficulty and makes model convergence more stable.

Wrong Properties of BCEs without a optimal config

- Performance of global BCE is **sensitive to**
 - λ.
 - data distribution & cls_num.
 - batch size.

• Properties above are verified as <u>fake</u> in a optimal config!

Further experiments with a optimal config

- Although all experiments with a optimal config shows that global BCE ≥ batch BCE.
- Based on intuition, we still have confidence in the generalization performance of batch BCE.
- So we have reconsidered the implementation of batch BCE.

Reconsidered the implementation of batch BCE

- In the first version of batch BCE, we calculated the loss within the batch and subsequently updated **all parameters of the linear layer.**
- To maintain consistency with our hypothesis of ensemble learning, we group the parameters of the linear layer (emb, cls_num) with columns, while each group corresponding to a class.
- Additionally, this method can obviously be extended to CE.

- Unfortunately, the same experiments shows that the new version of batch BCE is still worse than global BCE.
- We believe that the reason why global BCE performs better in multiple classes is due to the **strong backbone(resnet34 + ASP)**
- So we hope to explore the performance of two types of BCE in extreme situations where there are
 - lightweight model (resnet34 + ASP -> resnet10 + TSP),
 - more classes (vox1 -> vox2 -> cnc),
 - less data per class (rho=1, utt_per_spk=10),
 - and more complex data (vox -> cnc).

<u>base</u>: Resnet34 + ASP Vox1 posterior SID & close set SV

	VC	ox1					
Loss	14/4 544		lace	Vox1-O			
	VVA	MA	1033	EER	MinDCF(0.01)	MinDCF(0.001)	
global_BCE	95.26%	95.79%	global_BCE	2.970%	0.33717	0.48708	
shuffle_batch_BCE_256	94.12%	94.52%	shuffle_batch_BCE_256	3.723%	0.40008	0.58797	
shuffle_batch_BCE_512	93.71%	94.25%	shuffle_batch_BCE_512	3.585%	0.37923	0.54420	
hatch DCC 250	04.150/	04 700/	batch_BCE_256	3.481%	0.37142	0.55600	
Datch_BCE_256	94.15%	94.78%	batch_BCE_512	3.654%	0.37764	0.52835	
batch_BCE_512	94.93%	95.37%					

<u>**lightweight: Resnet10 + TSP</u>** Vox1 posterior SID & close set SV</u>

locs	Vox1			
1055	WA	MA		
Global_BCE	90.06%	91.03%		
Batch_BCE_256	89.55%	90.46%		
Batch_BCE_512	89.92%	90.77%		
Batch_BCE_1024	89.31%	90.31%		
Global_CE_256	90.35%	91.34%		
Batch_CE_256	83.20%	84.93%		
Batch_CE_512	81.19%	82.83%		
Batch_CE_1024	73.96%	75.96%		

loss	Vox1-O				
	EER	MinDCF(0.01)	MinDCF(0.001)		
Global_BCE_256	5.462%	0.50189	0.71328		
Batch_BCE_256	5.760%	0.52181	0.65742		
Batch_BCE_512	6.148%	0.53587	0.68948		
Batch_BCE_1024	5.510%	0.51831	0.65863		
Global_CE_256	4.898%	0.50473	0.67698		
Batch_CE_256	6.965%	0.55812	0.71663		
Batch_CE_512	6.249%	0.55639	0.74130		

Note: batch CE seems useless.

Less data: Resnet10 + TSP Vox1 rho=1 utt_per_spk=10 posterior SID & close set SV

lass	Vox1			
IUSS	WA	MA		
Global_BCE_256	50.64%	51.83%		
Batch_BCE_256	51.38%	52.62%		
Batch_BCE_512	50.16%	51.48%		
Batch_BCE_1024	50.67%	51.91%		
Global_CE_256	46.96%	48.47%		
Batch_CE_256	21.04%	21.56%		
Batch_CE_512	18.76%	18.90%		
Batch_CE_1024	20.62%	20.84%		

loss	Vox1-O				
	EER	MinDCF(0.01)	MinDCF(0.001)		
Global_BCE_256	12.339%	0.72380	0.80346		
Batch_BCE_256	12.153%	0.73575	0.76891		
Batch_BCE_512	12.701%	0.73697	0.79745		
Batch_BCE_1024	12.754%	0.71959	0.81459		
Global_CE_256	12.366%	0.74180	0.83518		
Batch_CE_256	15.762%	0.82437	0.94227		
Batch_CE_512	16.841%	0.86867	0.92745		
Batch_CE_1024	14.881%	0.82198	0.89911		

Note: batch CE seems useless.

more classes: Resnet10 + TSP:

Vox2 rho=1 utt_per_spk=10 posterior SID & open set SV

loss		Vox2		line.	Vox1-O			
	1000	WA	MA	IOSS	EER	MinDCF(0.01)	MinDCF(0.001)	
	Global_BCE_256	73.37%	69.87%	Global_BCE_256	9.026%	0.68477	0.81707	
	Batch_BCE_256	64.33%	60.98%	Batch_BCE_256	10.924%	0.70687	0.79623	
	Batch_BCE_512	67.50%	64.13%	Batch_BCE_512	10.525%	0.70287	0.79553	
	Batch_BCE_1024	71.39%	68.07%	Batch_BCE_1024	10.100%	0.69580	0.81495	

Testing in extreme scenarios <u>More complex data & open set</u>: Resnet34 + TSP train: cn1 test: CNC-Eval-Core.lst

lass	S	V CNC-Eval-Core	Cos score SID ACC			
1055	EER	MinDCF(0.01)	MinDCF(0.001)	Top1	Top5	Top10
Global_BCE	20.698%	0.74417	0.81224	47.38%	61.16%	69.48%
Batch_BCE_256	19.640%	0.73951	0.81453	47.06%	61.15%	68.63%
Batch_BCE_512	20.873%	0.74741	0.82258	46.25%	60.11%	68.09%

Testing in extreme scenarios <u>more data</u>: Resnet34 + TSP: train: cn1+cn2 test: CNC-Eval-Core.lst

lass	loss nie	SV CNC-Eval-Core.lst			Cos score SID ACC		
1055	loss pic	EER	MinDCF(0.01)	MinDCF(0.001)	Top1	Тор5	Top10
Global_BCE_256		14.723%	0.62323	0.72317	58.33%	73.30%	80.08%
Batch_BCE_256		14.779%	0.65999	0.74448	54.32%	69.19%	76.55%
Batch_BCE_512		14.852%	0.65951	0.74191	54.85%	69.58%	77.01%

Conclusions

- Batch BCE can slightly surpass global BCE when the model is lightweight, the number of classes is small, and the data is scarce. At this point, batch BCE of different batch sizes will converge with global BCE.
- Except situation above, global BCE > batch BCE, and the batch size larger, the performence better.

Future work

• Perhaps we can further explore the effectiveness of batch BCE in Few-Shot Learning.