Toward Deep Statistical Speaker
Representation



Content

 Theory introduction
* Application to speaker recognition



How we represent data?

* Data observed are always noisy

 We need a way to extract abstract representation
— Representation is the first requirement
— Second is invariance, which is task-dependent

—



Methods known

* Heuristic approach (strong knowledge)

— FFT, geometric features, histogram...

e Bayesian approach (medium knowledge)
— PCA, FA, clustering, tSNE...
— HMM, hierarchical Bayesian

* Neural model approach (weak knowledge)
— Deep feature learning
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Both are with limitations

* Bayesian approach is basically shallow,
otherwise the structure will be complex.

* Neural net approach is knowledge-blind,
whose actions is not predictable.

* How they can be combined?



They are historically combined
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A key idea for combination

Some attempts: tandem, stochastic neural net.

Modern: keep the Bayesian framework, but make the
conditional probability complex using neural nets.

Infer latent variables by neural nets.




Goodness

* Very complex distributions can be generated from a
simple distribution (Re-parameterization trick).

Gr,,(u) = min[max[u + yu(l — u) (u. - %) L0], 1]

0, ify ¢ f(R)
, ifye f(R)

William T. Shaw, lan Buckley,The alchemy of probability distributions:
beyond Gram-Charlier expansions, and a skew-kurtotic-normal distribution
from a rank transmutation map,2009.
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Goal and Difficulties

* Our goal:
— Training: Estimate parameter for pg(X)
— Inference: Estimate posterior Do~ (x\z)

— Difficulties
e Computing p(x) and p(z|x) is hard.



Let’s back to EM
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Infer p(z|x,0’)

 How if we cannot compute posterior?
 Sampling

— Very slow, as for each data point you need a
MCMC

 Mean-field Variational Bayesian
— P(x,z) difficult to marginalize 4(z) :ﬁqi(zi)

i=1

exp(Eizj[Inp(x,z)))

qj(zj) = Y. exp(Eizjllnp(x,z)])



A flexible parametric variational bound

* pelz]|X)=q4(z]x), a4(z[x)can be anything
* Seems neural net is a good selection




But how to determine ¢s(zx) ?

log pe(x") ={ Dk 1.(qe (2[x)||Ipe (z|x'?)) + L£(6, ¢p; xV)
KL(a] |p)

L£(0,p;xV) = Eq,(z1x) [~ log q¢ z|x) + logpg(&z)]

/ \ B
Internal Energy

Entropy

For a fixed 8, minimize q,(z) equals to maximizing bound L(6,®) w.r.t. ¢.

The bound is a combination of internal energy plus an energy (helmholtz).
Maximization of this function equal to minimize the internal energy with a
maximum entropy regularization.

In other words, we want z generated by g has the lowest energy, but we also hope
the probability of z has maximum entropy, which leads to a stable thermodynamic
system.

Note that the best g can be derived from p in the case of Boltzmann distribution.
However, since partial integration is intractable, this (as mean-field VB did) is not
possible.



But how to determine ¢s(zx) ?

log pe(x?) = Dicr.(q¢(2|x™)||pe(z|x)) + L(8, ¢; x?)

KL(a] |p)

L£(0,p;xV) = Eq,(z1x) [~ log q¢ z|x) + logpg(&z)]
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Entropy

 What we can do is simply a gradient approach.

* Fox afixed 8, compute gradient of L(0,®) w.r.t. .

* Note the gradient variable is on the distribution of expectation. A little
tricky but still possible.

* However, it requires samples from qg(z|x), which assumed to be hard.

* Re-parameterization: using a simple distribution p(g) to produce a
complex distribution q.(z|x).

zZ=¢gyp(€,x) with €~ p(e€)



L0, ¢;xV)) = Zlogpe D, 2"D) —log g¢ (2" [x")
1,_

where z'H!) = gqg,(e(i’”,x(i)) and €V ~ p(e)

* The gradient with respect to ® then can be computed.
 |f NN is used, BP is possible

Kingma et al., Auto-Encoding Variational Bayes



More inspiring formulation

log pe(x'Y) = Dk 1.(gp(2|x'")||pe(zx")) + L(8, ¢;x*)

E(ea ¢ X(i)) = ]Eq¢(z|x) [_ log q(p(Z‘X) i3 logpg (X, Z)]

E(O, ¢, x(z)) = —DKL(q(p(Z’X(z))HpB(Z)) -+ Eq¢(z|x(’i)) |:1ng9 (x(z) |Z):|

~ i i IS i), (i
L5(0,¢:x") = —Di1.(qp(z[x"")||po(z)) + 7 > (log pe(x[z1))
1=1

where z(") = g4(e™) x(V) and €V ~ p(e)

Reconstruction error constrained by a KL to the prior.
Will encourage a posterior approach to a wanted form, e.g., Gaussian
We will back to this point later.



A quick summary

To have a good representation, we need a complex generation
model.

With the complex generation, both training and inference is
complex.

If posterior is computable, EM can be used to train the model.
If posterior is hard, we need an estimation.
VB does not work since the generation model cannot be integrated.

So we use a parametric model to approximate the posterior, and
optimize the parameter using gradient approach with a fixed 0.

A sampling approach based on re-parameterzation trick is used to
compute the gradient.

Now the posterior is updated with the fixed 0, and so the E step is
completed (fortunately).



Come back to EM...

* We come back to the M step of the EM, update 6, with ® fixed (essentially
the gradient is computed simultaneously).
* Animperfect posterior this time.

p(z]x)=de(z]x),




The full process is a loop

X X
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L(0, 9;xV) = Ey, (s1x) [~ 0g 4o (z]x) + log pe(x, z)]

1. Asingle objective function KL(q| | p), targeting for a

good py(x)
2. E and M are different part of the objective



Some questions

* Will the found pgan optimal generation model?

— NO. The bound is not tangent to the true objective.

* Will g,be optimal with the selected p 4?

— Yes. No way to improve the bound w.r.t q,
meaning that noway to reduce the KL to p,.



It is AE with randomness in code
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1. More complex distribution x’ | x=g(x)+€ v.s. X" | x=g(x,€)
2. Code constrained by prior, simple representation
3. Easytotrain



A deep thinking

Zz

Essentially, it generates samples from a reverse process (posterior)
to match the forward process.

The forward process is from latent to visible.

Essentially make the two process consistent, as they should.



Now look at GAN

L(B, P)=E, . g)log(a"(y |x; P))

A reverse KL: generation process as the reverse process.

No regularization term.

Objective does not match the generation process (so adversarial).

Produce sharp generation compared with VAE, due to the
asymmetry of KL.
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InfoGan: GAN with x-z pair

min max Vipfocan(D, G, Q) = V(D,G) — AL (G, Q)
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Chen et al. InfoGAN: Interpretable Representation Learning

by Information Maximizing Generative Adversarial Nets
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InfoGAN (Digit type) (b) Varying c¢; on regular GAN (No clear mean
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Chen et al. InfoGAN: Interpretable Representation Learning
by Information Maximizing Generative Adversarial Nets



Poem generation by InfoGan

RIB— AR BS AT,
After a cup of unstrained wine,
[ have been a little drunk
a =+ ZersE,
[ saw the cloud split the sky apart.
i) 3 3K g Ao $& s
On horseback. I pass through every road

across the mountain,

WA RE R 4,
but can only watch the red sun falling down
with sorrow.

iR B — A 8L AT,
After a cup of unstrained wine,
I have been a little drunk
Jiy FHAT &L 9] i A
With a narrow boat, where could I find
the hermits?
TAREIF I KE,
Friends. don't be surprised that [ come
back so late,
7 EARE EFEH.
[ have seen the great tide and the grand
spring breeze.

ik B — AP B AT
After a cup of unstrained wine,
[ have been a little drunk
L3S VS
I wonder on which cloud I can see the
presence of the gods.
BB +—kA,
The moon above the mount seems
farther and farther.
REFLBEEK
The mist among the hill becomes
thicker and thicker.

(a) Style 1: “loneliness, melancholy”

(b) Style 4: “hermit, rural scenes”

(c) Style 8: “the portrait of hazy scener-

1€8

Yang et al., Stylistic Chinese Poetry Generation via Unsupervised Style Disentanglement




Cycle GAN

X Y X ¥l : |X Y :
5 : X cycle-consistency
\_/ cycle-consistency j e .\S...--' loss
ks .& :

F loss
(a) | (b) 5 (©)

Figure 3: (a) Our model contains two mapping functions G : X — Y and F' : Y — X, and associated adversarial discriminators Dy and Dx. Dy
encourages G to translate X into outputs indistinguishable from domain Y, and vice versa for Dx, F', and X. To further regularize the mappings, we
introduce two *“cycle consistency losses” that capture the intuition that if we translate from one domain to the other and back again we should arrive where we
started: (b) forward cycle-consistency loss: z — G(z) — F(G(x)) = z, and (c) backward cycle-consistency loss: y — F(y) — G(F(y)) = y

Zhu et al., Unpaired Image-to-Image Translation using Cycle-Consistent
Adversarial Networks



Cycle GAN
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Zhu et al., Unpaired Image-to-Image Translation using Cycle-
Consistent Adversarial Networks



Wake-sleep: A generic framework

t 7~ My

Sleep -\.- f g"_‘ -; Wake
Po(x|z) de(z]X)
o 1

* Using a reverse process to generate samples that will match
the forward process

* Inference and generation are essentially paired and coupled

e But can be optimized in either side of KL, leading to different
properties.

GE Hinton, P Dayan, BJ Frey, RM Neal, The "wake-sleep" algorithm for unsupervised neural networks,
Science 1995.



We now understand...

 Complex inference is possible, with the help
of deep learning.

* The complex inference should be coupled
with generation, thanks to the Bayesian rule.

* Re-parameterization and KL regularization
help us infer simple representations.



Things that are under going

* Flexible optimization variable

— The generator can be either the probability or the
target of the expectation

— The optimization can be on either the probability or
the function of the target

— Formally can be in any part of the KL.
* Not coupled pair
— The p and g may be not so tightly coupled
— Mostly not KL
* Multiple couples
— Info GAN



Content

* Theory introduction
e Application to speaker recognition



Bayesian approach

Speaker

GMM

Basically generative and shallow model, but with mixture. It is
a cuo-giong-fat model.



Neural model

* Discriminative, deep feature learning.
e Gao-fu-Thin model
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Relative problems

* Bayesian model
— Description power limited by structure
— Fragile in domain change

* Neural model

— Unconstrained distribution (risky and limited)

— Long-term dependency (do we need?)
* A problem of text dependent



Possible solution

* Neural net + description
— Multitask training

e Neural net + constrained distribution
— Constrained training (LLT 18)

 We hope to put them in a single objective, as
infoGan.



V-feature Architecture

- -
\ /
1: Using VAE (I,G) objective to form deep descriptive representations
2. Using global discriminative target (D) to improve discriminative power

3. Using paired discriminative target (D’) to reduce within-speaker variation
4. Using phonetic information as auxiliary information (input? Randomness choice?)




Utterance/speaker level v vector
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1. Derive z from feature sequence {x;}; z then sample to produce {x}.
2. Similar to i-vector, however its never linear Gaussian, but complex
distribution; interestingly, z is inheriently Gaussian.



Compare to i-vector

/-\

Hm

_ Linear, shallow net
Deep, non-linear net

A way to transfer i-vector to deep i-vectors.



Something concerned

* Disentanglement of factors in z: shall they
independent? Shall they be grouped? How to

regularize?
* Discriminative power involved in z, by introducing

nair-wised regularization: How about a smooth
ninge loss with a pre-defined threshold?

* |s this a way for other speech-related tasks? Can
they be trained jointly? A better way for speech
factorization? Shall be multiple € in the
factorization?




Conclusions

* |t’s likely that we are approaching a

reasonable path towards using both
neural and Bayesian methods. That
helps us to infer simple code by
designing complex generation model.

Fortunately, a practical
training/inference approach is ready,
by something like wake-sleep. This is
analog to the fact that you need listen
before speaking.

We have a good reason to move
towards this direction, at least keep
this in mind when facing a new task.




