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Abstract

This paper describes the spoken language identification systems

developed in Tallinn University of Technology for the Orien-

tal Language Recognition 2021 Challenge. We participated in

two tracks: constrained and unconstrained language recogni-

tion. For the constrained track, we initialized the model by

training a Conformer-based encoder-decoder model for multi-

lingual speech recognition, using the provided training data that

had transcripts available. The encoder part of the model was

then finetuned for the language identification task. For the un-

constrained task, we relied on pretrained models and external

data: the pretrained XLSR-53 wav2vec2.0 model was finetuned

on the VoxLingua107 corpus for the language recognition task,

and finally finetuned on the provided training target language

data, augmented with CommonVoice data. Our primary metric

Cavg values on the Progess set are 0.0074 for the constrained

task and 0.0119 for the unconstrained task.

Index Terms: spoken language recognition, OLR 2021 Chal-

lenge, VoxLingua107, transfer learning

1. Introduction

Spoken language identification (LID) is the task of automati-

cally identifying the language of an utterance. Speech-based

LID is used as a pre-processing step in several applications,

such as automatic call routing, multilingual spoken transla-

tion and human-machine communication systems, multilingual

speech transcription systems and spoken document retrieval.

SLR is also often used in the area of intelligence and security.

In order to encourage the the research on multilingual phe-

nomena and advance the development of language and di-

alect recognition technologies, the Oriental Language Recogni-

tion (OLR) Challenge has been organized annually since 2016

[1, 2, 3, 4, 5]. The sixth OLR challenge, denoted by OLR 2021

Challenge [6], included two language recognition tasks: con-

strained and unconstrained. The constrained task is a cross-

domain closed-set identification task with 13 target languages.

Only the data provided by the organizers can be used to build

the system. The unconstrained task is a closed-set identification

task with 17 languages. Here, utterances obtained from real-

life environments. Any publicly available or proprietary data is

allowed for system training and development.

The Tallinn University of Technology (TalTech) team par-

ticiapted in both language identification tasks. We relied on

transfer learning: in the constrained task, we first trained a mul-

tilingual automatic speech recognition (ASR) model and fine-

tuned it for language recognition, similarly as proposed in [7].

In the unconstrained task, we finetuned the multilingual XLSR-

53 wav2vec2.0 model first on the VoxLingua107 dataset and

then on the target language/dialect data.

2. Task 1: Constrained Language
Identification

For the first task, our system was a combination of four models.

One of the models was a Resnet-style model, trained on the

provided training from scratch. The other three were finetuned

from Conformer-based multilingual ASR models.

2.1. Resnet-style model

The Resnet-style mode is derived from the x-vector paradigm

[8, 9], with several enhancements. During training, we ap-

ply on-the fly data augmentation using AugMix [10], by ran-

domly distorting the training data using a mix of reverbera-

tion and noise augmentation. For frame-level feature extrac-

tion, we use the Resnet34 [11, 12] architecture where the ba-

sic convolutional blocks with residual connections are replaced

with squeeze-and-excitation modules [13, 14]. The statistics

pooling layer that maps frame-level features to segment level

features is replaced in our model with a multi-head attention

layer [15] that has been shown to provide superior performance

[16, 17, 18, 19]. From among many variants of multi-head at-

tention used in previous studies, we employ the one described

in [16]: frame level representations are first mapped to Natt

outputs (Natt = 128 in our model), using a 1 × 1 convolu-

tion and a ReLU nonlinearity; from this representation, each

attention head (we used Nheads = 5 heads) computes it’s

own softmax-based weight distribution over the input utter-

ance; finally, weighted mean and standard deviation are com-

puted over the frame level features for each head, resulting in

Nheads × 512× 2 segment-level representations.

The structure of the embedding model is summarized in Ta-

ble 1. The variables F and T refer to the number of filterbanks

and the number of time frames in the utterance. In all experi-

ments, we used F = 30.

The models are implemented in PyTorch [20] using a

framework developed in our lab.

2.2. Conformer ASR model

The Conformer-based ASR model was trained on pooled pro-

vided training data that came with transcripts: we used the OLR

2016-2017 transcribed training data for the task 1 languages

and OLR 2020 training data for the three Mandarin dialects.

As a development set, we used the OLR 2020 test data. We

applied a number of text normalization steps to the transcripts

before training: for Cantonese, Mandarin, Mandarin dialects

and Japanese, all whitespace symbols were deleted. For all lan-

guages, all punctuation symbols were deleted. For Kazakh, the

Arabic script was transliterated into Cyrillic.

The ASR model uses a byte-pair encoding (BPE) vocabu-

lary of 20000 units, shared over all languages. The ASR model

is an encode-decoder based model that uses Conformer as an

encoder and Transformer as a decoder. Some important hyper-

parameters of the model are listen in Table 2. The model was



Table 1: The neural network architecture of the Resnet model.

SE/res stands for squeeze-and-attention block and residual con-

nections.

Layer Spatial Size #Channels Kernel

Input F × T 1 -
Frame level representations

Pre-resnet F × T 64 7 × 7

Res-block 1 F/2× T/2 64 3 ×





3× 3

3× 3

SE/res





Res-block 2 F/4× T/4 128 4 ×





3× 3

3× 3

SE/res





Res-block 3 F/8× T/8 256 6 ×





3× 3

3× 3

SE/res





Res-block 4 F/16× T/16 512 3 ×





3× 3

3× 3

SE/res





Post-resnet 1× T/16 512 F/16× 1

Segment-level representations

Pooling 1 5× 512× 2 Attent. stats
Embedding 1 512 Dense
FC 1 512 Dense
Output 1 #Languages Softmax

trained on speed-perturbed data and SpecAugment [?] was ap-

plied during training. The number of training epochs was 40.

After every epoch, the model’s performance on development

data was measured, and the final model was averaged over 10

best-performing models.

After training, the encoder part of the model was taken as

the backbone of the language recognition model. The encoder’s

outputs were fed through a pooling layer. We experimented

with different pooling methods: attentive statistics pooling [18],

multi-head attention pooling [21], global multi-head attention

pooling [22]. Two fully connected layers with the ReLu non-

linearity and BatchNorm were appended to the pooling layer.

As a training criterion, we experimented with cross-entropy loss

and additive angular margin loss [23]. The ASR encoder part

of the model was trained together with the rest of the model,

without any learning rate scaling. For some models, stochastic

weight averaging (SWA) [24] was applied during the last 30%

of training.

The language recognition model was trained on all avail-

able provided training data for the 13 target languages. Lan-

guage embeddings were extracted from the first fully-connected

layer after the pooling layer. The dimensionality of the embed-

dings was 512.

The Conformer-based model for ASR was trained using

ESPnet [25]. For pooling operations and backend scoring (see

below), ASV Subtools [26] was used.

2.3. Back-end modeling

For backend scoring, we used a multinomial regression model.

Language embeddings were normalized and mean-centered

based on the training data. Not LDA was used in this task. The

logistic regression model was rebalanced in order to remove any

bias due to the different amounts of training data per language.

We combine the scores of various systems using cali-

brated combination weights. For finding the model combination

weights, we optimize the parameters of a linear model based on

Table 2: Hyperparameters of the Conformer ASR model

Conformer encoder

Number of blocks 12

Linear dimensionality 2048

Dropout rate 0.1

Output size 256

Num. attention heads 8

Transformer decoder

Linear dimensionality 2048

Number of blocks 6

Num. attention heads 4

Training

CTC weight 0.3

Label smoothing 0.1

the log-likelihood cost metric (CLLR) on the development data,

using L-BFGS as the optimizer. Our own Pytorch-based cali-

bration implementation was used which is freely available1.

2.4. Results

Our results for Task 1 are listed in Table 3. It can be seen that

transfer learning from an ASR model gives a massive boost to

the system performance. Our best single model is based on the

trained ASR Conformer encoder, used global multihead atten-

tion pooling, cross-entropy loss ans stochastic weight averag-

ing. Fusion of four models gives only a slight improvement both

on development and progress set. The fusion was also used in

our official test set submission.

3. Task 2: Unconstrained Language
Identification

3.1. Data

Task 2 allows the use of any publicly available or proprietary

data for building the system. We relied a lot on the recently re-

leased VoxLingua107 dataset. The VoxLingua107 dataset [27]2

is a large-scale dataset for training spoken language identifica-

tion models that work well on diverse real-life data.

VoxLingua107 was compiled from automatically scraped

YouTube data. The data collection process is outlined on Fig-

ure 1. First, semi-random trigram search phrases were gener-

ated from the Wikipedia text corpus of the particular language.

The search phrases were used to retrieve YouTube videos whose

title or description matched the search phrase. Text-based lan-

guage identification was used for filtering out the videos with

the title and description likely not in the given language. Au-

dio tracks of the videos were downsampled to 16 kHz. Speech

activity detection and speaker diarization were applied for ex-

tracting segments from the videos that contain speech. Long

speech segments were split into utterance-like subsegments of

up to 20 seconds in length. Data-driven post-filtering was used

to remove segments from the database that were likely not in the

given language, increasing the proportion of correctly labeled

1https://github.com/alumae/sv_score_

calibration
2Available at http://bark.phon.ioc.ee/

voxlingua107/



Table 3: Results on Task 1 with various systems and their combination.

Dev Progress

Backbone Pooling Criterion Cavg EER Cavg EER

Resnet Attentive stats CE 0.0515 6.90 0.0601 5.72

ASR Conformer MHA CE 0.0110 1.68 0.0101 1.15

ASR Conformer GMHA CE + SWA 0.0081 1.27 0.0080 0.91

ASR Conformer MHA AAM 0.0129 2.19 0.0133 1.68

Fusion 0.0078 1.20 0.0074 0.86

Table 4: Results on Task 2 with various systems.

Dev Progress

Model Cavg EER Cavg EER

VoxLingua107 Resnet embeddings 0.053 5.15 0.078 7.98

VoxLingua107 Resnet embeddings, finetuned on training data 0.015 1.53 0.055 5.27

XLSR53, finetuned on VoxLingua107 0.017 1.76 0.016 1.69

XLSR53, finetuned on training data 0.003 0.29 0.044 3.78

XLSR53, finetuned on VoxLingua107, then on training data 0.006 0.78 0.012 0.93

  
Lang. 1 Lang. 2 Lang. n

 
Lang. 1 Lang. 2 Lang. n

Search phrases

search

Lang. 1 Lang. 2 Lang. n

Audio downloadsikipedia dumps

Figure 1: Data collection process of VoxLingua107.

Table 5: Statistics about the VoxLingua107 dataset.

Number of languages 107

Total number of videos 64110

Total number of hours 6682

Average number of hours per language 62

Average number of utterances per language 23709

Total amount of audio (uncompressed, in GB) 758

segments in the dataset to 98%, based on crowd-sourced verifi-

cation. Some numerical facts about the VoxLingua107 training

data are given in Table 5.

For final finetuning and training the backend logistic regres-

sion model, we used data audio in the provided OLR training

data, and Mozilla CommonVoice data for the languages which

were not present in the provided OLR training data: English,

Hindi, Malay, Telugu and Thai. For languages with a lot of

CommonVoice data, we limited the data to a random 15000

utterance subset. The development set was compiled from

OLR2020 test data and CommonVoice data for the languages

not covered by the OLR data.

3.2. Models

We experimented with using the XLSR-53 wav2vec2.0 model

[28] as the backbone of our language embedding model. XLSR-

53 is a large pretrained model trained on unlabeled multilin-

gual data. The model is trained by jointly solving a contrastive

task over masked latent speech representations and learning a

quantization of the latents shared across languages. The model

contains a convolutional feature encoder that maps raw audio

to latent speech representations which are fed to a Transformer

network that outputs context representations. XLSR-53 is pre-

trained on 56 000 hours of speech data from 53 languages.

We used XLSR-53 as follows: the outputs from the

wav2vec2 model were fed through an attentive pooling layer,

a fully connected layer with ReLU and BatchNorm, and the fi-

nal output layer, corresponding to the languages of the train-

ing set. During training, the learning rate corresponding to

the XLSR-53 model was set to 0.01 times lower than the base

learning rate. We experimented with three finetuning scenar-

ios: using VoxLingua107, using the training data of the 17 lan-

guages (OLR + CommonVoice), and using first VoxLingua107,

followed by the training data for the 17 languages.

We also experimented with a Resnet model, trained on

VoxLingua, and then finetuned on the OLR training data.

3.3. Back-end modeling

As in Task 1, we used a multinomial regression model for back-

end scoring. Language embeddings were normalized and mean-

centered based on the training data. The resulting embeddings

were reduced to 50-dimensional vectors using LDA. No rebal-

ancing of the model bias was used in this task, since it was found

to slightly hurt the system performance on the progress set.

3.4. Results

The results of various systems are listed in Table 4. It can be

seen that using XLSR-53 as the basis for finetuning models

gives a big boost to the system performance, particularly on the

progress set. Our internally compiled development set had quite



different performance trends, compared to the progress set. This

is probably due to the fact that the development set contained

clean dictated speech, whereas the progress set contained data

“from the wild”.

The best performing-model on the progress set was the

XLSR-53 model, finetuned first on VoxLingua107 and then on

the training data that covered all 17 target languages and di-

alects. This system was also used in our official test set submis-

sion.

4. Conclusion

This paper described the TalTech systems for the OLR 2021

Challenge. We focused on the spoken language identification

tasks. For the constrained task, our best-performing single sys-

tem was trained via transfer learning from the encoder part of a

Conformer-Transformer based multilingual model. For the un-

constrained task, we relied on two important external resources:

the XLSR-53 pretrained multilingual wav2vec2 model, and the

VoxLingua107 corpus. Our best performing model was trained

via transfer learning from XLSR-53 using two finetuning steps:

first using VoxLingua107, followed by target language training

data.
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