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1.  Introduction 

Visual face recognition methods utilize images captured in 

human-visible spectrum to recognize individuals which in itself is 

limited by external factors such as illumination variations, 

occlusions, and blurred outlines. [1] [5] It can only achieve results 

as good as a pair of human eyes do. Thermal face alleviates most 

of the problems faced by visual faces by capturing radiation 

information fall in a higher wavelength. Developing a solution 

that recognizes thermal faces expands the spectrum of facial 

imageries to be recognized. However, thermal face recognition 

has its own challenges such as a lower resolution, sensitive to 

varying skin temperatures, and inability to see through glasses. 

2.  Related work  

One of the most common algorithms used for face recognition is 

Eigenface, which achieves near-real-time face recognition by 

using Principal Component Analysis (PCA) and maps high-

dimension face images to a lower-dimension "face space". 

However, it has high-expected requirements for the face images 

such that the seen image and probe image must reside in a similar 

environment, otherwise it begins to fail considerably. This is due 

to the nature of the algorithm that it encodes the most relevant 

information in a face image. [3][4] Eigenface has inspired the 

development of Spectraface by the nature that Eigenface 

essentially captures and encodes the most variant features in an 

image, it can be used for recognizing any objects as well as 

thermal faces beyond the scope of faces. Another method widely 

used to recognize thermal faces is using fused image, which 

comprises of multiple images, but it is not adopted in Spectraface 

[5] (it could be a nice extension given both visual and thermal 

faces are provided in the IRIS dataset, however, it is not very 

likely that a production system could provide both types of faces, 

hence it is not the priority here). [5] There's also a solution based 

on Generative Adversarial Network to generate visual faces from 

thermal faces. However, this approach is complicated and 

computationally expensive. [2] The method described in this 

paper focuses on not only accuracy but also simplicity and speed, 

thus the techniques used in TV-GAN are not considered but 

compared against. [2]  
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Figure 1: (a) and (b) are thermal faces with different facial 

expressions, (c) and (d) are visual faces with different 

rotations. 

3.  Dataset 

IRIS Thermal/Visual Database is used as the dateset to test 

Spectraface. It consists of 30 subjects (28 men and 2 women of 

fair diversity in race) and their faces in three facial expressions - 

surprised, laughing, and anger - and five illumination conditions - 

left light on, right light on, both lights on, dark room, and both 

lights off. There are equal number of thermal and visual faces, all 

with resolution 320x240 pixels. (embed the chair image and a few 

sample images) This dataset requires Spectraface work on faces 

across various spectrums, expressions, illuminations, rotations, as 

well as faces with occlusions. The only minor limitation presented 

by this dataset is low resolution associated with its images. It 

would have been more ideal to include more women as the 

subjects and some NIR faces. [5][9] Although IRIS does not 

include specification in which spectrum these thermal images 

belongs to, observations on the dataset tell that they are imaged in 

between mid-wave and long-wave infrared. There are very few 

thermal face image databases available in public (the other being 

Terravic Facial Infrared Database). [5] 
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4.  Spectraface Algorithm  

Spectraface revolves around two phases, training and production. 

The training phase involves creating a set of representative faces 

used to compare against a new input face, while the production 

phase is responsible for assigning an existing identity to a face or 

creating a new identity to represent it.  

4.1. Training phase 

 

Figure 2: training phase pipeline figure. 

The training phase starts with a set of pre-selected identities of 

interest along with their thermal/visual face images (one identity 

tends to have multiple face images taken in with different 

conditions). The first step is to crop out the segment the face of 

from the images with face detection. The face detection in 

Spectraface is achieved by using a neural network pre-trained 

with thermal face datasets in [8], achieving almost 100% 

accuracy. This model had to be adopted due to the low accuracy 

(about 30%) of thermal face detection resulted from using the 

model [11], which was designed to detect visual faces. Note that 

the detection step is spared in Figure 2 and 4. These cropped out 

faces become the training face images. Each of these training face 

images' latent features are encoded into a 512-dimension vector 

by Inception Resnet (V1) models in PyTorch, pretrained on 

VGGFace2. [10] This step serves two purposes: noisy reduction 

and dimension reduction, which allows these encodings to be 

averaged later on. Next, each encoding representing each face 

image are normalized by mean subtraction and given that each 

identity owns a set of face images (feature vectors / encodings), 

they are averaged and reduced down to a single feature vector / 

encoding. Now, there is only one encoding for each identity 

(counterpart of a frontal face in classic Eigenface algorithm) and a 

covariance matrix is created from those. The eigenvectors, also 

called eigenfaces, and eigenvalues are extracted from this 

covariance matrix, sorted in descending order by eigenvalues, and 

the top eigenvectors that cover 95% (95% is the threshold value 

used in Spectraface) of the eigenvalues are selected to be used to 

represent the variance in the training set. [3][4] Each eigenface 

can now be used to represent both existing and new faces. The 

eigenvalues associated with each eigenface represent how much 

the images in the training set vary from the mean image in that 

direction. [3][4] To establish a set of "faces", namely encodings, 

to represent each identity in the training set, each identity's 

encoding is projected onto the set of eigenfaces to create so-called 

"representative faces" in the context of this paper. 

 

Figure 3: principal component and variance plot. The top 

95% of variance is already captured by 14 out of 30 principal 

components.  

4.2 Production phase 

 

Figure 4: production phase pipeline figure. 

The second phase is production which accepts faces not only from 

seen identities but also unseen ones, a new identity gets created 

whenever the difference between the new encoded face and a 

"representative face" exceeds certain threshold. The pipeline 

works as follows: encode the new face image as before into a 512-

dimension vector and normalize it by mean subtraction. To find 

out if this new face belongs to a seen identity, the Euclidean 

distances between the new face encoding and all the 

"representative faces" are calculated, from which the 

"representative face" with the minimum distance is returned. If the 

minimum Euclidean distance is below a pre-set threshold, the 

identity corresponds to that "representative face" is returned. 

However, if it is above that value, a new identity object is created 

in the system. Spectraface uses 0.3 (30%) as its threshold value 

for tolerating seen faces. This value is selected based on the 

statistics of the minimum, average, and maximum Euclidean 

distances between samples in the dataset. Once a new identity has 

entered into the system, the training phase need to rerun to reflect 

the new identity for future jobs. 

5.  Experimental results  

Several experiments were conducted to measure the accuracy of 

Spectraface. The faces of unseen identities (strangers) are 

subtracted from the original dataset so that they can be used to test 

accuracy for recognizing unseen identities later on, and the 



 

remaining faces are randomized and split into 80% training and 

20% testing.  

 

The first experiment involves recognizing thermal faces using the 

Inception Resnet (V1) pre-trained with VggFace2, the encoding 

model, without fine-tuning. This setup was able to achieve 40 – 

50% accuracy for recognizing seen identities across different ratio 

of unseen identities. The accuracy for recognizing unseen faces 

fluctuates between 30 – 60%. In another experiment with an 

attempt to improve this set of accuracies, the encoding model was 

further trained (fine-tuned) with IRIS dataset with 100 epochs. 

However, results have shown that fine-tuning does not make a 

difference in accuracy. This may be due to the small size of the 

dataset, having only 30 subjects, and there may be a significant 

domain gap between thermal and visual faces (VggFace2 contains 

faces in visible spectrum only).  

 

Given that IRIS dataset also contains visual faces in 

correspondence with its thermal faces, Spectraface was tested 

against those visual faces with the same encoding model without 

fine-tuning. A set of much higher accuracies were achieved for 

both seen (90%) and unseen (40 – 70%) identities’ faces. This 

may be due to the fact that the encoding model had been pre-

trained with visual faces.  

 

Figure 5: recorded accuracies. Unseen identity ratio (stranger 

ratio) refers to the ratio of unseen identities in the test dataset.  

6.  Future work  

There is a lot of room for improvements and further validations.  

One possible extension could be replacing the encoding model 

with another model trained from scratch using the IRIS dataset. 

This may allow a set of more representative features to be 

extracted from thermal faces.  Given that IRIS dataset is not 

significant big, more rigorous validation methods like ten-fold 

cross-validation may be used.  
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