
Spectraface

A Fast and Simple Thermal / Visual Face Recognition System

Ziyuan Zhu
 Computer Science Department

 Lehigh University

 zachzhu2016@gmail.com

1. Introduction

Visual face recognition methods utilize images captured in

human-visible spectrum to recognize individuals which in itself is

limited by external factors such as illumination variations,

occlusions, and blurred outlines. [1] [5] It can only achieve results

as good as a pair of human eyes do. Thermal face alleviates most

of the problems faced by visual faces by capturing radiation

information fall in a higher wavelength. Developing a solution

that recognizes thermal faces expands the spectrum of facial

imageries to be recognized. However, thermal face recognition

has its own challenges such as a lower resolution, sensitive to

varying skin temperatures, and inability to see through glasses.

2. Related work

One of the most common algorithms used for face recognition is

Eigenface, which achieves near-real-time face recognition by

using Principal Component Analysis (PCA) and maps high-

dimension face images to a lower-dimension "face space".

However, it has high-expected requirements for the face images

such that the seen image and probe image must reside in a similar

environment, otherwise it begins to fail considerably. This is due

to the nature of the algorithm that it encodes the most relevant

information in a face image. [3][4] Eigenface has inspired the

development of Spectraface by the nature that Eigenface

essentially captures and encodes the most variant features in an

image, it can be used for recognizing any objects as well as

thermal faces beyond the scope of faces. Another method widely

used to recognize thermal faces is using fused image, which

comprises of multiple images, but it is not adopted in Spectraface

[5] (it could be a nice extension given both visual and thermal

faces are provided in the IRIS dataset, however, it is not very

likely that a production system could provide both types of faces,

hence it is not the priority here). [5] There's also a solution based

on Generative Adversarial Network to generate visual faces from

thermal faces. However, this approach is complicated and

computationally expensive. [2] The method described in this

paper focuses on not only accuracy but also simplicity and speed,

thus the techniques used in TV-GAN are not considered but

compared against. [2]

(a) (b)

(c) (d)

Figure 1: (a) and (b) are thermal faces with different facial

expressions, (c) and (d) are visual faces with different

rotations.

3. Dataset

IRIS Thermal/Visual Database is used as the dateset to test

Spectraface. It consists of 30 subjects (28 men and 2 women of

fair diversity in race) and their faces in three facial expressions -

surprised, laughing, and anger - and five illumination conditions -

left light on, right light on, both lights on, dark room, and both

lights off. There are equal number of thermal and visual faces, all

with resolution 320x240 pixels. (embed the chair image and a few

sample images) This dataset requires Spectraface work on faces

across various spectrums, expressions, illuminations, rotations, as

well as faces with occlusions. The only minor limitation presented

by this dataset is low resolution associated with its images. It

would have been more ideal to include more women as the

subjects and some NIR faces. [5][9] Although IRIS does not

include specification in which spectrum these thermal images

belongs to, observations on the dataset tell that they are imaged in

between mid-wave and long-wave infrared. There are very few

thermal face image databases available in public (the other being

Terravic Facial Infrared Database). [5]

mailto:zachzhu2016@gmail.com

4. Spectraface Algorithm

Spectraface revolves around two phases, training and production.

The training phase involves creating a set of representative faces

used to compare against a new input face, while the production

phase is responsible for assigning an existing identity to a face or

creating a new identity to represent it.

4.1. Training phase

Figure 2: training phase pipeline figure.

The training phase starts with a set of pre-selected identities of

interest along with their thermal/visual face images (one identity

tends to have multiple face images taken in with different

conditions). The first step is to crop out the segment the face of

from the images with face detection. The face detection in

Spectraface is achieved by using a neural network pre-trained

with thermal face datasets in [8], achieving almost 100%

accuracy. This model had to be adopted due to the low accuracy

(about 30%) of thermal face detection resulted from using the

model [11], which was designed to detect visual faces. Note that

the detection step is spared in Figure 2 and 4. These cropped out

faces become the training face images. Each of these training face

images' latent features are encoded into a 512-dimension vector

by Inception Resnet (V1) models in PyTorch, pretrained on

VGGFace2. [10] This step serves two purposes: noisy reduction

and dimension reduction, which allows these encodings to be

averaged later on. Next, each encoding representing each face

image are normalized by mean subtraction and given that each

identity owns a set of face images (feature vectors / encodings),

they are averaged and reduced down to a single feature vector /

encoding. Now, there is only one encoding for each identity

(counterpart of a frontal face in classic Eigenface algorithm) and a

covariance matrix is created from those. The eigenvectors, also

called eigenfaces, and eigenvalues are extracted from this

covariance matrix, sorted in descending order by eigenvalues, and

the top eigenvectors that cover 95% (95% is the threshold value

used in Spectraface) of the eigenvalues are selected to be used to

represent the variance in the training set. [3][4] Each eigenface

can now be used to represent both existing and new faces. The

eigenvalues associated with each eigenface represent how much

the images in the training set vary from the mean image in that

direction. [3][4] To establish a set of "faces", namely encodings,

to represent each identity in the training set, each identity's

encoding is projected onto the set of eigenfaces to create so-called

"representative faces" in the context of this paper.

Figure 3: principal component and variance plot. The top

95% of variance is already captured by 14 out of 30 principal

components.

4.2 Production phase

Figure 4: production phase pipeline figure.

The second phase is production which accepts faces not only from

seen identities but also unseen ones, a new identity gets created

whenever the difference between the new encoded face and a

"representative face" exceeds certain threshold. The pipeline

works as follows: encode the new face image as before into a 512-

dimension vector and normalize it by mean subtraction. To find

out if this new face belongs to a seen identity, the Euclidean

distances between the new face encoding and all the

"representative faces" are calculated, from which the

"representative face" with the minimum distance is returned. If the

minimum Euclidean distance is below a pre-set threshold, the

identity corresponds to that "representative face" is returned.

However, if it is above that value, a new identity object is created

in the system. Spectraface uses 0.3 (30%) as its threshold value

for tolerating seen faces. This value is selected based on the

statistics of the minimum, average, and maximum Euclidean

distances between samples in the dataset. Once a new identity has

entered into the system, the training phase need to rerun to reflect

the new identity for future jobs.

5. Experimental results

Several experiments were conducted to measure the accuracy of

Spectraface. The faces of unseen identities (strangers) are

subtracted from the original dataset so that they can be used to test

accuracy for recognizing unseen identities later on, and the

remaining faces are randomized and split into 80% training and

20% testing.

The first experiment involves recognizing thermal faces using the

Inception Resnet (V1) pre-trained with VggFace2, the encoding

model, without fine-tuning. This setup was able to achieve 40 –

50% accuracy for recognizing seen identities across different ratio

of unseen identities. The accuracy for recognizing unseen faces

fluctuates between 30 – 60%. In another experiment with an

attempt to improve this set of accuracies, the encoding model was

further trained (fine-tuned) with IRIS dataset with 100 epochs.

However, results have shown that fine-tuning does not make a

difference in accuracy. This may be due to the small size of the

dataset, having only 30 subjects, and there may be a significant

domain gap between thermal and visual faces (VggFace2 contains

faces in visible spectrum only).

Given that IRIS dataset also contains visual faces in

correspondence with its thermal faces, Spectraface was tested

against those visual faces with the same encoding model without

fine-tuning. A set of much higher accuracies were achieved for

both seen (90%) and unseen (40 – 70%) identities’ faces. This

may be due to the fact that the encoding model had been pre-

trained with visual faces.

Figure 5: recorded accuracies. Unseen identity ratio (stranger

ratio) refers to the ratio of unseen identities in the test dataset.

6. Future work

There is a lot of room for improvements and further validations.

One possible extension could be replacing the encoding model

with another model trained from scratch using the IRIS dataset.

This may allow a set of more representative features to be

extracted from thermal faces. Given that IRIS dataset is not

significant big, more rigorous validation methods like ten-fold

cross-validation may be used.

7. References
[1] Daniel Sáez Trigueros, Li Meng, and Margaret Hartnett. 2018. Face

Recognition: From Traditional to Deep Learning Methods. (October 2018).

Retrieved December 4, 2020 from https://arxiv.org/abs/1811.00116

[2] Teng Zhang, Arnold Wiliem, Siqi Yang, and Brian C. Lovell. 2017. TV-GAN:

Generative Adversarial Network Based Thermal to Visible Face Recognition.

(December 2017). Retrieved December 4, 2020 from

https://arxiv.org/abs/1712.02514

[3] G.Md. Zafaruddin and H.S. Fadewar. 1970. Face Recognition Using

Eigenfaces. (January 1970). Retrieved December 4, 2020 from

https://link.springer.com/chapter/10.1007/978-981-13-1513-8_87

[4] Anon. Eigenfaces for Recognition - MIT Press Journals. Retrieved December 4,

2020 from https://www.mitpressjournals.org/doi/pdf/10.1162/jocn.1991.3.1.71

[5] Mrinal Kanti Bhowmik et al. 2011. Thermal Infrared Face Recognition – A

Biometric Identification Technique for Robust Security system. (July 2011).

Retrieved December 4, 2020 from https://www.intechopen.com/books/reviews-

refinements-and-new-ideas-in-face-recognition/thermal-infrared-face-recognition-a-

biometric-identification-technique-for-robust-security-system

[6] Anon. FaceNet: A Unified Embedding for Face Recognition and ... Retrieved

December 4, 2020 from https://arxiv.org/pdf/1503.03832.pdf

[7] Timesler. timesler/facenet-pytorch. Retrieved December 4, 2020 from

https://github.com/timesler/facenet-pytorch

[8] Maxbbraun. Maxbbraun / thermal face. Retrieved December 4, 2020 from

https://github.com/maxbbraun/thermal-face

[9] James W. Davis.Retrieved December 4, 2020 from http://vcipl-

okstate.org/pbvs/bench/Data/02/download.html

[10] Timesler. timesler/facenet-pytorch. Retrieved December 4, 2020 from

https://github.com/timesler/facenet-pytorch

[11] Ageitgey. ageitgey/face_recognition. Retrieved December 5, 2020 from

https://github.com/ageitgey/face_recognition

[12] Vutsalsinghal. vutsalsinghal/EigenFace. Retrieved December 5, 2020 from

https://github.com/vutsalsinghal/EigenFace

