
Learning Deep Structured Semantic Models
 for Web Search using Clickthrough Data

Po-Sen Huang

University of Illinois at Urbana-Champaign
405 N Mathews Ave. Urbana, IL 61801 USA

huang146@illinois.edu

Xiaodong He, Jianfeng Gao, Li Deng,

Alex Acero, Larry Heck
Microsoft Research, Redmond, WA 98052 USA
{xiaohe, jfgao, deng, alexac, lheck}@microsoft.com

ABSTRACT
Latent semantic models, such as LSA, intend to map a query to its
relevant documents at the semantic level where keyword-based
matching often fails. In this study we strive to develop a series of
new latent semantic models with a deep structure that project
queries and documents into a common low-dimensional space
where the relevance of a document given a query is readily
computed as the distance between them. The proposed deep
structured semantic models are discriminatively trained by
maximizing the conditional likelihood of the clicked documents
given a query using the clickthrough data. To make our models
applicable to large-scale Web search applications, we also use a
technique called word hashing, which is shown to effectively
scale up our semantic models to handle large vocabularies which
are common in such tasks. The new models are evaluated on a
Web document ranking task using a real-world data set. Results
show that our best model significantly outperforms other latent
semantic models, which were considered state-of-the-art in the
performance prior to the work presented in this paper.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval; I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Experimentation

Keywords
Deep Learning, Semantic Model, Clickthrough Data, Web Search

1. INTRODUCTION
Modern search engines retrieve Web documents mainly by
matching keywords in documents with those in search queries.
However, lexical matching can be inaccurate due to the fact that a
concept is often expressed using different vocabularies and
language styles in documents and queries.

Latent semantic models such as latent semantic analysis

(LSA) are able to map a query to its relevant documents at the
semantic level where lexical matching often fails (e.g.,
[6][15][2][8][21]). These latent semantic models address the
language discrepancy between Web documents and search queries
by grouping different terms that occur in a similar context into the
same semantic cluster. Thus, a query and a document, represented
as two vectors in the lower-dimensional semantic space, can still
have a high similarity score even if they do not share any term.
Extending from LSA, probabilistic topic models such as
probabilistic LSA (PLSA) and Latent Dirichlet Allocation (LDA)
have also been proposed for semantic matching [15][2]. However,
these models are often trained in an unsupervised manner using an
objective function that is only loosely coupled with the evaluation
metric for the retrieval task. Thus the performance of these
models on Web search tasks is not as good as originally expected.

Recently, two lines of research have been conducted to extend
the aforementioned latent semantic models, which will be briefly
reviewed below.

First, clickthrough data, which consists of a list of queries and
their clicked documents, is exploited for semantic modeling so as
to bridge the language discrepancy between search queries and
Web documents [9][10]. For example, Gao et al. [10] propose the
use of Bi-Lingual Topic Models (BLTMs) and linear
Discriminative Projection Models (DPMs) for query-document
matching at the semantic level. These models are trained on
clickthrough data using objectives that tailor to the document
ranking task. More specifically, BLTM is a generative model
which requires that a query and its clicked documents not only
share the same distribution over topics, but also contain similar
factions of words assigned to each topic. In contrast, the DPM is
learned using the S2Net algorithm [26] that follows the pairwise
learning-to-rank paradigm outlined in [3]. After projecting term
vectors of queries and documents into concept vectors in a low-
dimensional semantic space, the concept vectors of the query and
its clicked documents have a smaller distance than that of the
query and its unclicked documents. Gao et al. [10] report that both
BLTM and DPM outperform significantly the unsupervised latent
semantic models, including LSA and PLSA, in the document
ranking task. However, the training of BLTM, though using
clickthrough data, is to maximize a log-likelihood criterion which
is sub-optimal for the evaluation metric for document ranking. On
the other hand, the training of DPM involves large-scale matrix
multiplications. The sizes of these matrices often grow quickly
with the vocabulary size, which could be of an order of millions in
Web search tasks. In order to make the training time tolerable, the
vocabulary was pruned aggressively. Although a small vocabulary
makes the models trainable, it leads to suboptimal performance.

In the second line of research, Salakhutdinov and Hinton
extended the semantic modeling using deep auto-encoders [22].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with credit is permitted.
To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
CIKM’13, Oct. 27–Nov. 1, 2013, San Francisco, CA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2263-8/13/10…$15.00.

fox
高亮

fox
高亮

fox
高亮

fox
高亮

They demonstrated that hierarchical semantic structure embedded
in the query and the document can be extracted via deep learning.
Superior performance to the conventional LSA is reported [22].
However, the deep learning approach they used still adopts an
unsupervised learning method where the model parameters are
optimized for the reconstruction of the documents rather than for
differentiating the relevant documents from the irrelevant ones for
a given query. As a result, the deep learning models do not
significantly outperform the baseline retrieval models based on
keyword matching. Moreover, the semantic hashing model also
faces the scalability challenge regarding large-scale matrix
multiplication. We will show in this paper that the capability of
learning semantic models with large vocabularies is crucial to
obtain good results in real-world Web search tasks.

In this study, extending from both research lines discussed
above, we propose a series of Deep Structured Semantic Models
(DSSM) for Web search. More specifically, our best model uses a
deep neural network (DNN) to rank a set of documents for a given
query as follows. First, a non-linear projection is performed to
map the query and the documents to a common semantic space.
Then, the relevance of each document given the query is
calculated as the cosine similarity between their vectors in that
semantic space. The neural network models are discriminatively
trained using the clickthrough data such that the conditional
likelihood of the clicked document given the query is maximized.
Different from the previous latent semantic models that are
learned in an unsupervised fashion, our models are optimized
directly for Web document ranking, and thus give superior
performance, as we will show shortly. Furthermore, to deal with
large vocabularies, we propose the so-called word hashing
method, through which the high-dimensional term vectors of
queries or documents are projected to low-dimensional letter
based n-gram vectors with little information loss. In our
experiments, we show that, by adding this extra layer of
representation in semantic models, word hashing enables us to
learn discriminatively the semantic models with large
vocabularies, which are essential for Web search. We evaluated
the proposed DSSMs on a Web document ranking task using a
real-world data set. The results show that our best model
outperforms all the competing methods with a significant margin
of 2.5-4.3% in NDCG@1.

In the rest of the paper, Section 2 reviews related work.
Section 3 describes our DSSM for Web search. Section 4 presents
the experiments, and Section 5 concludes the paper.

2. RELATED WORK
Our work is based on two recent extensions to the latent semantic
models for IR. The first is the exploration of the clickthrough data
for learning latent semantic models in a supervised fashion [10].
The second is the introduction of deep learning methods for
semantic modeling [22].

2.1 Latent Semantic Models and the Use of
Clickthrough Data

The use of latent semantic models for query-document matching
is a long-standing research topic in the IR community. Popular
models can be grouped into two categories, linear projection
models and generative topic models, which we will review in turn.

The most well-known linear projection model for IR is LSA
[6]. By using the singular value decomposition (SVD) of a
document-term matrix, a document (or a query) can be mapped to

a low-dimensional concept vector �� = ���, where the � is the
projection matrix. In document search, the relevance score
between a query and a document, represented respectively by term
vectors � and �, is assumed to be proportional to their cosine
similarity score of the corresponding concept vectors �� and �� ,
according to the projection matrix �

sim�(�,�) = �����
‖��‖‖��‖ (1)

In addition to latent semantic models, the translation models
trained on clicked query-document pairs provide an alternative
approach to semantic matching [9]. Unlike latent semantic models,
the translation-based approach learns translation relationships
directly between a term in a document and a term in a query.
Recent studies show that given large amounts of clickthrough data
for training, this approach can be very effective [9][10]. We will
also compare our approach with translation models
experimentally as reported in Section 4.

2.2 Deep Learning
Recently, deep learning methods have been successfully applied
to a variety of language and information retrieval applications
[1][4][7][13][18][19][22][23][25]. By exploiting deep
architectures, deep learning techniques are able to discover from
training data the hidden structures and features at different levels
of abstractions useful for the tasks. In [22] Salakhutdinov and
Hinton extended the LSA model by using a deep network (auto-
encoder) to discover the hierarchical semantic structure embedded
in the query and the document. They proposed a semantic hashing
(SH) method which uses bottleneck features learned from the
deep auto-encoder for information retrieval. These deep models
are learned in two stages. First, a stack of generative models (i.e.,
the restricted Boltzmann machine) are learned to map a term
vector representation of a document layer-by-layer to a low-
dimensional semantic concept vector. Second, the model
parameters are fine-tuned so as to minimize the cross entropy
error between the original term vector of the document and the
reconstructed term vector. The intermediate layer activations are
used as features (i.e., bottleneck) for document ranking. Their
evaluation shows that the SH approach achieves a superior
document retrieval performance to the LSA. However, SH suffers
from two problems, and cannot outperform the standard lexical
matching based retrieval model (e.g., cosine similarity using TF-
IDF term weighting). The first problem is that the model
parameters are optimized for the reconstruction of the document
term vectors rather than for differentiating the relevant documents
from the irrelevant ones for a given query. Second, in order to
make the computational cost manageable, the term vectors of
documents consist of only the most-frequent 2000 words. In the
next section, we will show our solutions to these two problems.

3. DEEP STRUCTURED SEMANTIC
MODELS FOR WEB SEARCH

3.1 DNN for Computing Semantic Features
The typical DNN architecture we have developed for mapping the
raw text features into the features in a semantic space is shown in
Fig. 1. The input (raw text features) to the DNN is a high-
dimensional term vector, e.g., raw counts of terms in a query or a
document without normalization, and the output of the DNN is a
concept vector in a low-dimensional semantic feature space. This

DNN model is used for Web document ranking as follows: 1) to
map term vectors to their corresponding semantic concept vectors;
2) to compute the relevance score between a document and a
query as cosine similarity of their corresponding semantic concept
vectors; rf. Eq. (3) to (5).

More formally, if we denote � as the input term vector, � as
the output vector, �� , � � 1,… , 	
 1, as the intermediate hidden
layers, �� as the i-th weight matrix, and �� as the �-th bias term,
we have

�� � ���

�� � ������� � ���, � � 2, … ,	
 1

� � ������� � ���

(3)

where we use the ���� as the activation function at the output
layer and the hidden layers �� , � � 2, … , 	
 1:

	��� �
1
 ����

1 � ����
			 (4)

The semantic relevance score between a query � and a document
� is then measured as:

���, �� � cosine!��, ��" �
��	��

‖��‖‖��‖
 (5)

where �� and �� are the concept vectors of the query and the
document, respectively. In Web search, given the query, the
documents are sorted by their semantic relevance scores.

Conventionally, the size of the term vector, which can be
viewed as the raw bag-of-words features in IR, is identical to that
of the vocabulary that is used for indexing the Web document
collection. The vocabulary size is usually very large in real-world
Web search tasks. Therefore, when using term vector as the input,
the size of the input layer of the neural network would be
unmanageable for inference and model training. To address this
problem, we have developed a method called “word hashing” for
the first layer of the DNN, as indicated in the lower portion of
Figure 1. This layer consists of only linear hidden units in which
the weight matrix of a very large size is not learned. In the
following section, we describe the word hashing method in detail.

3.2 Word Hashing
The word hashing method described here aims to reduce the
dimensionality of the bag-of-words term vectors. It is based on
letter n-gram, and is a new method developed especially for our
task. Given a word (e.g. good), we first add word starting and
ending marks to the word (e.g. #good#). Then, we break the word
into letter n-grams (e.g. letter trigrams: #go, goo, ood, od#).
Finally, the word is represented using a vector of letter n-grams.

One problem of this method is collision, i.e., two different
words could have the same letter n-gram vector representation.
Table 1 shows some statistics of word hashing on two
vocabularies. Compared with the original size of the one-hot
vector, word hashing allows us to represent a query or a document
using a vector with much lower dimensionality. Take the 40K-
word vocabulary as an example. Each word can be represented by
a 10,306-dimentional vector using letter trigrams, giving a four-
fold dimensionality reduction with few collisions. The reduction
of dimensionality is even more significant when the technique is
applied to a larger vocabulary. As shown in Table 1, each word in
the 500K-word vocabulary can be represented by a 30,621
dimensional vector using letter trigrams, a reduction of 16-fold in
dimensionality with a negligible collision rate of 0.0044%
(22/500,000).

While the number of English words can be unlimited, the
number of letter n-grams in English (or other similar languages) is
often limited. Moreover, word hashing is able to map the
morphological variations of the same word to the points that are
close to each other in the letter n-gram space. More importantly,
while a word unseen in the training set always causes difficulties
in word-based representations, it is not the case where the letter n-
gram based representation is used. The only risk is the minor
representation collision as quantified in Table 1. Thus, letter n-
gram based word hashing is robust to the out-of-vocabulary
problem, allowing us to scale up the DNN solution to the Web
search tasks where extremely large vocabularies are desirable. We
will demonstrate the benefit of the technique in Section 4.

In our implementation, the letter n-gram based word hashing
can be viewed as a fixed (i.e., non-adaptive) linear transformation,

Figure 1: Illustration of the DSSM. It uses a DNN to map high-dimensional sparse text features into low-dimensional dense features in a semantic space. The
first hidden layer, with 30k units, accomplishes word hashing. The word-hashed features are then projected through multiple layers of non-linear projections.
The final layer’s neural activities in this DNN form the feature in the semantic space.

fox
高亮

fox
高亮

fox
高亮

through which an term vector in the input layer is projected to a
letter n-gram vector in the next layer higher up, as shown in
Figure 1. Since the letter n-gram vector is of a much lower
dimensionality, DNN learning can be carried out effectively.

 Letter-Bigram Letter-Trigram
Word
Size

Token
Size

Collision Token
Size

Collision

40k 1107 18 10306 2
500k 1607 1192 30621 22
Table 1: Word hashing token size and collision numbers as a
function of the vocabulary size and the type of letter ngrams.

3.3 Learning the DSSM
The clickthrough logs consist of a list of queries and their clicked
documents. We assume that a query is relevant, at least partially,
to the documents that are clicked on for that query. Inspired by the
discriminative training approaches in speech and language
processing, we thus propose a supervised training method to learn

our model parameters, i.e., the weight matrices �� and bias
vectors �� in our neural network as the essential part of the
DSSM, so as to maximize the conditional likelihood of the clicked
documents given the queries.

First, we compute the posterior probability of a document
given a query from the semantic relevance score between them
through a softmax function

��	|�� = exp����,	��
∑ exp����,	′����∈�

 (6)

where � is a smoothing factor in the softmax function, which is
set empirically on a held-out data set in our experiment. � denotes
the set of candidate documents to be ranked. Ideally, � should
contain all possible documents. In practice, for each (query,
clicked-document) pair, denoted by (�,	�) where � is a query
and 	� is the clicked document, we approximate D by including 	� and four randomly selected unclicked documents, denote by
{		
; � = 1,… ,4} . In our pilot study, we do not observe any
significant difference when different sampling strategies were
used to select the unclicked documents.

In training, the model parameters are estimated to maximize
the likelihood of the clicked documents given the queries across
the training set. Equivalently, we need to minimize the following
loss function

��Λ� = −log � ��	�|��
(�,��)

(7)

where Λ denotes the parameter set of the neural networks {�� , ��}.
Since �(Λ) is differentiable w.r.t. to Λ, the model is trained readily
using gradient-based numerical optimization algorithms. The
detailed derivation is omitted due to the space limitation.

3.4 Implementation Details
To determine the training parameters and to avoid over-fitting, we
divided the clickthrough data into two sets that do not overlap,
called training and validation datasets, respectively. In our
experiments, the models are trained on the training set and the
training parameters are optimized on the validation dataset. For
the DNN experiments, we used the architecture with three hidden
layers as shown in Figure 1. The first hidden layer is the word

hashing layer containing about 30k nodes (e.g., the size of the
letter-trigrams as shown in Table 1). The next two hidden layers
have 300 hidden nodes each, and the output layer has 128 nodes.
Word hashing is based on a fixed projection matrix. The similarity
measure is based on the output layer with the dimensionality of
128. Following [20], we initialize the network weights with
uniform distribution in the range
between	−�6/(����� + ������) and �6/(����� + ������)
where ����� and ������ are the number of input and output
units, respectively. Empirically, we have not observed better
performance by doing layer-wise pre-training. In the training
stage, we optimize the model using mini-batch based stochastic
gradient descent (SGD). Each mini-batch consists of 1024 training
samples. We observed that the DNN training usually converges
within 20 epochs (passes) over the entire training data.

4. EXPERIMENTS
We evaluated the DSSM, proposed in Section 3, on the Web
document ranking task using a real-world data set. In this section,
we first describe the data set on which the models are evaluated.
Then, we compare the performances of our best model against
other state of the art ranking models. We also investigate the
break-down impact of the techniques proposed in Section 3.

4.1 Data Sets and Evaluation Methodology
We have evaluated the retrieval models on a large-scale real world
data set, called the evaluation data set henceforth. The evaluation
data set contains 16,510 English queries sampled from one-year
query log files of a commercial search engine. On average, each
query is associated with 15 Web documents (URLs). Each query-
title pair has a relevance label. The label is human generated and
is on a 5-level relevance scale, 0 to 4, where level 4 means that the
document is the most relevant to query � and 0 means 	 is not
relevant to � . All the queries and documents are preprocessed
such that the text is white-space tokenized and lowercased,
numbers are retained, and no stemming/inflection is performed.

All ranking models used in this study (i.e., DSSM, topic
models, and linear projection models) contain many free hyper-
parameters that must be estimated empirically. In all experiments,
we have used a 2-fold cross validation: A set of results on one half
of the data is obtained using the parameter settings optimized on
the other half, and the global retrieval results are combined from
the two sets.

The performance of all ranking models we have evaluated has
been measured by mean Normalized Discounted Cumulative Gain
(NDCG) [17], and we will report NDCG scores at truncation
levels 1, 3, and 10 in this section. We have also performed a
significance test using the paired t-test. Differences are considered
statistically significant when the p-value is less than 0.05.

In our experiments, we assume that a query is parallel to the
titles of the documents clicked on for that query. We extracted
large amounts of the query-title pairs for model training from one
year query log files using a procedure similar to [11]. Some
previous studies, e.g., [24][11], showed that the query click field,
when it is valid, is the most effective piece of information for
Web search, seconded by the title field. However, click
information is unavailable for many URLs, especially new URLs
and tail URLs, leaving their click fields invalid (i.e., the field is
either empty or unreliable because of sparseness). In this study,
we assume that each document contained in the evaluation data
set is either a new URL or a tail URL, thus has no click

information (i.e., its click field is invalid). Our research goal is to
investigate how to learn the latent semantic models from the
popular URLs that have rich click information, and apply the
models to improve the retrieval of those tail or new URLs. To this
end, in our experiments only the title fields of the Web documents
are used for ranking. For training latent semantic models, we use a
randomly sampled subset of approximately 100 million pairs
whose documents are popular and have rich click information. We
then test trained models in ranking the documents in the
evaluation data set containing no click information. The query-
title pairs are pre-processed in the same way as the evaluation data
to ensure uniformity.

4.2 Results
The main results of our experiments are summarized in Table 2,
where we compared our best version of the DSSM (Row 12) with
three sets of baseline models. The first set of baselines includes a
couple of widely used lexical matching methods such as TF-IDF
(Row 1) and BM25 (Row 2). The second is a word translation
model (WTM in Row 3) which is intended to directly address the
query-document language discrepancy problem by learning a
lexical mapping between query words and document words
[9][10]. The third includes a set of state-of-the-art latent semantic
models which are learned either on documents only in an
unsupervised manner (LSA, PLSA, DAE as in Rows 4 to 6) or on
clickthrough data in a supervised way (BLTM-PR, DPM, as in
Rows 7 and 8). In order to make the results comparable, we re-
implement these models following the descriptions in [10], e.g.,
models of LSA and DPM are trained using a 40k-word vocabulary
due to the model complexity constraint, and the other models are
trained using a 500K-word vocabulary. Details are elaborated in
the following paragraphs.

TF-IDF (Row 1) is the baseline model, where both documents
and queries are represented as term vectors with TF-IDF term
weighting. The documents are ranked by the cosine similarity
between the query and document vectors. We also use BM25
(Row 2) ranking model as one of our baselines. Both TF-IDF and
BM25 are state-of-the-art document ranking models based on
term matching. They have been widely used as baselines in
related studies.

WTM (Rows 3) is our implementation of the word translation
model described in [9], listed here for comparison. We see that
WTM outperforms both baselines (TF-IDF and BM25)
significantly, confirming the conclusion reached in [9]. LSA
(Row 4) is our implementation of latent semantic analysis model.
We used PCA instead of SVD to compute the linear projection
matrix. Queries and titles are treated as separate documents, the
pair information from the clickthrough data was not used in this
model. PLSA (Rows 5) is our implementation of the model
proposed in [15], and was trained on documents only (i.e., the title
side of the query-title pairs). Different from [15], our version of
PLSA was learned using MAP estimation as in [10]. DAE (Row
6) is our implementation of the deep auto-encoder based semantic
hashing model proposed by Salakhutdinov and Hinton in [22].
Due to the model training complexity, the input term vector is
based on a 40k-word vocabulary. The DAE architecture contains
four hidden layers, each of which has 300 nodes, and a bottleneck
layer in the middle which has 128 nodes. The model is trained on
documents only in an unsupervised manner. In the fine-tuning
stage, we used cross-entropy error as training criteria. The central
layer activations are used as features for the computation of cosine
similarity between query and document. Our results are consistent

with previous results reported in [22]. The DNN based latent
semantic model outperforms the linear projection model (e.g.,
LSA). However, both LSA and DAE are trained in an
unsupervised fashion on document collection only, thus cannot
outperform the state-of-the-art lexical matching ranking models.

BLTM-PR (Rows 7) is the best performer among different
versions of the bilingual topic models described in [10]. BLTM
with posterior regularization (BLTM-PR) is trained on query-title
pairs using the EM algorithm with a constraint enforcing the
paired query and title to have same fractions of terms assigned to
each hidden topic. DPM (Row 8) is the linear discriminative
projection model proposed in [10], where the projection matrix is
discriminatively learned using the S2Net algorithm [26] on
relevant and irrelevant pairs of queries and titles. Similar to that
BLTM is an extension to PLSA, DPM can also be viewed as an
extension of LSA, where the linear projection matrix is learned in
a supervised manner using clickthrough data, optimized for
document ranking. We see that using clickthrough data for model
training leads to some significant improvement. Both BLTM-PR
and DPM outperform the baseline models (TF-IDF and BM25).

Rows 9 to 12 present results of different settings of the
DSSM. DNN (Row 9) is a DSSM without using word hashing. It
uses the same structure as DAE (Row 6), but is trained in a
supervised fashion on the clickthrough data. The input term vector
is based on a 40k-word vocabulary, as used by DAE. L-WH
linear (Row 10) is the model built using letter trigram based word
hashing and supervised training. It differs from the L-WH non-
linear model (Row 11) in that we do not apply any nonlinear
activation function, such as tanh, to its output layer. L-WH DNN
(Row 12) is our best DNN-based semantic model, which uses
three hidden layers, including the layer with the Letter-trigram-
based Word Hashing (L-WH), and an output layer, and is
discriminatively trained on query-title pairs, as described in
Section 3. Although the letter n-gram based word hashing method
can be applied to arbitrarily large vocabularies, in order to
perform a fair comparison with other competing methods, the
model uses a 500K-word vocabulary.

The results in Table 2 show that the deep structured semantic
model is the best performer, beating other methods by a
statistically significant margin in NDCG and demonstrating the
empirical effectiveness of using DNNs for semantic matching.

From the results in Table 2, it is also clear that supervised
learning on clickthrough data, coupled with an IR-centric
optimization criterion tailoring to ranking, is essential for
obtaining superior document ranking performance. For example,
both DNN and DAE (Row 9 and 6) use the same 40k-word
vocabulary and adopt the same deep architecture. The former
outperforms the latter by 3.2 points in NDCG@1.

Word hashing allows us to use very large vocabularies for
modeling. For instance, the models in Rows 12, which use a 500k-
word vocabulary (with word hashing), significantly outperform
the model in Row 9, which uses a 40k-word vocabulary, although
the former has slightly fewer free parameters than the later since
the word hashing layer containing about only 30k nodes.

We also evaluated the impact of using a deep architecture
versus a shallow one in modeling semantic information embedded
in a query and a document. Results in Table 2 show that DAE
(Row 3) is better than LSA (Row 2), while both LSA and DAE
are unsupervised models. We also have observed similar results
when comparing the shallow vs. deep architecture in the case of
supervised models. Comparing models in Rows 11 and 12
respectively, we observe that increasing the number of nonlinear

layers from one to three raises the NDCG scores by 0.4-0.5 point
which are statistically significant, while there is no significant
difference between linear and non-linear models if both are one-
layer shallow models (Row 10 vs. Row 11).

Models NDCG@1 NDCG@3 NDCG@10

1 TF-IDF 0.319 0.382 0.462
2 BM25 0.308 0.373 0.455
3 WTM 0.332 0.400 0.478
4 LSA 0.298 0.372 0.455
5 PLSA 0.295 0.371 0.456
6 DAE 0.310 0.377 0.459
7 BLTM-PR 0.337 0.403 0.480
8 DPM 0.329 0.401 0.479
9 DNN 0.342 0.410 0.486

10 L-WH linear 0.357 0.422 0.495
11 L-WH non-linear 0.357 0.421 0.494
12 L-WH DNN 0.362 0.425 0.498
Table 2: Comparative results with the previous state of the art
approaches and various settings of DSSM.

5. CONCLUSIONS
We present and evaluate a series of new latent semantic models,
notably those with deep architectures which we call the DSSM.
The main contribution lies in our significant extension of the
previous latent semantic models (e.g., LSA) in three key aspects.
First, we make use of the clickthrough data to optimize the
parameters of all versions of the models by directly targeting the
goal of document ranking. Second, inspired by the deep learning
framework recently shown to be highly successful in speech
recognition [5][13][14][16][18], we extend the linear semantic
models to their nonlinear counterparts using multiple hidden-
representation layers. The deep architectures adopted have further
enhanced the modeling capacity so that more sophisticated
semantic structures in queries and documents can be captured and
represented. Third, we use a letter n-gram based word hashing
technique that proves instrumental in scaling up the training of the
deep models so that very large vocabularies can be used in
realistic web search. In our experiments, we show that the new
techniques pertaining to each of the above three aspects lead to
significant performance improvement on the document ranking
task. A combination of all three sets of new techniques has led to
a new state-of-the-art semantic model that beats all the previously
developed competing models with a significant margin.

REFERENCES
[1] Bengio, Y., 2009. “Learning deep architectures for AI.”

Foundumental Trends Machine Learning, vol. 2.
[2] Blei, D. M., Ng, A. Y., and Jordan, M. J. 2003. “Latent

Dirichlet allocation.” In JMLR, vol. 3.
[3] Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M.,

Hamilton, and Hullender, G. 2005. “Learning to rank using
gradient descent.” In ICML.

[4] Collobert, R., Weston, J., Bottou, L., Karlen, M.,
Kavukcuoglu, K., and Kuksa, P., 2011. “Natural language
processing (almost) from scratch.” in JMLR, vol. 12.

[5] Dahl, G., Yu, D., Deng, L., and Acero, A., 2012. “Context-
dependent pre-trained deep neural networks for large
vocabulary speech recognition.” in IEEE Transactions on
Audio, Speech, and Language Processing.

[6] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T.,
and Harshman, R. 1990. “Indexing by latent semantic
analysis.” J. American Society for Information Science,
41(6): 391-407

[7] Deng, L., He, X., and Gao, J., 2013. "Deep stacking
networks for information retrieval." In ICASSP

[8] Dumais, S. T., Letsche, T. A., Littman, M. L., and Landauer,
T. K. 1997. “Automatic cross-linguistic information retrieval
using latent semantic indexing.” In AAAI-97 Spring Sympo-
sium Series: Cross-Language Text and Speech Retrieval.

[9] Gao, J., He, X., and Nie, J-Y. 2010. “Clickthrough-based
translation models for web search: from word models to
phrase models.” In CIKM.

[10] Gao, J., Toutanova, K., Yih., W-T. 2011. “Clickthrough-
based latent semantic models for web search.” In SIGIR.

[11] Gao, J., Yuan, W., Li, X., Deng, K., and Nie, J-Y. 2009.
“Smoothing clickthrough data for web search ranking.” In
SIGIR.

[12] He, X., Deng, L., and Chou, W., 2008. “Discriminative
learning in sequential pattern recognition,” Sept. IEEE Sig.
Proc. Mag.

[13] Heck, L., Konig, Y., Sonmez, M. K., and Weintraub, M.
2000. “Robustness to telephone handset distortion in speaker
recognition by discriminative feature design.” In Speech
Communication.

[14] Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A., Jaitly,
N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T., and
Kingsbury, B., 2012. “Deep neural networks for acoustic
modeling in speech recognition,” IEEE Sig. Proc. Mag.

[15] Hofmann, T. 1999. “Probabilistic latent semantic indexing.”
In SIGIR.

[16] Hutchinson, B., Deng, L., and Yu, D., 2013. “Tensor deep
stacking networks.” In IEEE T-PAMI, vol. 35.

[17] Jarvelin, K. and Kekalainen, J. 2000. “IR evaluation methods
for retrieving highly relevant documents.” In SIGIR.

[18] Konig, Y., Heck, L., Weintraub, M., and Sonmez, M. K.
1998. “Nonlinear discriminant feature extraction for robust
text-independent speaker recognition.” in RLA2C.

[19] Mesnil, G., He, X., Deng, L., and Bengio, Y., 2013.
“Investigation of recurrent-neural-network architectures and
learning methods for spoken language understanding.” In
Interspeech.

[20] Montavon, G., Orr, G., Müller, K., 2012. Neural Networks:
Tricks of the Trade (Second edition). Springer.

[21] Platt, J., Toutanova, K., and Yih, W. 2010. “Translingual
doc-ument representations from discriminative projections.”
In EMNLP.

[22] Salakhutdinov R., and Hinton, G., 2007 “Semantic hashing.”
in Proc. SIGIR Workshop Information Retrieval and
Applications of Graphical Models.

[23] Socher, R., Huval, B., Manning, C., Ng, A., 2012. “Semantic
compositionality through recursive matrix-vector spaces.” In
EMNLP.

[24] Svore, K., and Burges, C. 2009. “A machine learning
approach for improved BM25 retrieval.” In CIKM.

[25] Tur, G., Deng, L., Hakkani-Tur, D., and He, X., 2012.
“Towards deeper understanding deep convex networks for
semantic utterance classification.” In ICASSP.

[26] Yih, W., Toutanova, K., Platt, J., and Meek, C. 2011.
“Learning discriminative projections for text similarity
measures.” In CoNLL.

APPENDIX

I. Gradient Computation and Gradient Descent

Since �(Λ) is differentiable w.r.t. to Λ, the model is trained readily
using gradient-based numerical optimization algorithms. The
update rule is

Λ� = Λ�
 − �� �(Λ) Λ |������
 (8)

where �� is the learning rate at the ��� iteration, Λ� and Λ�
 are
the models at the ��� and the (� − 1)�� iteration, respectively.

In what follows, we derive the gradient of the loss function
w.r.t. the parameters of the neural networks. Assuming that there
are in total R (query, clicked-document) pairs, we denote (��,	�

�)
as the r-th (query, clicked-document) pair. Then, if we denote

���Λ� = −log��	�
�|��� (9)

we have

 �(Λ)
 Λ = ! ��(Λ) Λ

�

��

 (10)

In the following, we will show the derivation of
���(�)

��
.

For a query � and a document 	, we denote "�,� and "�,� be
the activation in the hidden layer �, and #� and #� be the output
activation for � and 	 , respectively. They are computed
according to Eq. (3).

We then derive
���(�)

��
 as follows1 . For simplification, the

subscript of r will be omitted hereafter.
First, the loss function in Eq. (9) can be written as:

��Λ� = log	$1 +! exp	−�	Δ	�
	

% (11)

where Δ	 = ���,	��− �(�,		
) . The gradient of the loss
function w.r.t. the N-th weight matrix �� is

 ��Λ�
 ��

=!&	
	

 Δ	 ��

 (12)

where

 Δ	 ��

=
 �(�,	�)

 ��

−
 �(�,		
) ��

 (13)

and

&	 = −γ	exp	(−	�	Δ)
1 + ∑ exp	(−	�	Δ	�)	�

 (14)

To simplify the notation, let �, �, ' be #��#� , 1/(#�(,
and	1/‖#�‖ , respectively. With ���ℎ as the activation function in
our model, each term in the right-hand side of Eq. (13) can be
calculated using the following formula:

1 We present only the derivation for the weight matrices. The

derivation for the bias vector is similar and is omitted.

 ���,	�
 ��

=

 ��

#��#�
‖#�‖‖#�‖ = *��(�,�)"�
,�

� + *��(�,�)"�
,�
� (15)

where *��(�,�) and *��(�,�) for a pair of (�,) are computed as

*��(�,�) = 1 − #�� ∘ 1 + #�� ∘ (�'#� − �'��#�)
*��(�,�) = �1 − #�� ∘ �1 + #�� ∘ (�'#� − ��'�#�) (16)

where the operator ∘ is the element-wise multiplication
(Hadamard product).

For hidden layers, we also need to calculate {*} for each Δ	.
For example, each * in the hidden layer � can be calculated
through back propagation as

*�,�(�,�) = 1 + "�,�� ∘ 1 − "�,�� ∘��
�*��,�(�,�)

*�,�(�,�) = 1 + "�,�� ∘ 1 − "�,�� ∘��
�*��,�(�,�)

(17)

and eventually we have *�,�

(�,�)
= *��(�,�) and *�,�

(�,�)
= *��(�,�).

Correspondingly, the gradient of the loss function w.r.t. the
intermediate weight matrix, �� , � = 2,… ,+ − 1, can be computed
as2

 ��Λ�
 ��

= !&	
	

 Δ	 ��

 (18)

where
 Δ	 ��

= ,*�,�(�,��)"�
,�� + *
�,��
(�,��)"�
,��

� - 	
− ,*

�,�

(�,��
�)"�
,�� + *

�,��
�

(�,��
�)"�
,��

�
� -

(19)

II. Analysis on Document Ranking Errors

In the test data, among 16,412 unique queries, we compare each
query’s NDCG@1 values using TF-IDF and our best model, letter
trigram based word hashing with supervised DNN (L-WH DNN).
There are in total 1,985 queries on which L-WH DNN performs
better than TF-IDF (the sum of NDCG@1 differences is 1332.3).
On the other hand, TF-IDF outperforms L-WH DNN on 1077
queries (the sum of NDCG@1 differences is 630.61). For both
cases, we sample several concrete examples. They are shown in
Tables 5 and 6, respectively. We observe in Table 5 that the
NDCG improvement is largely to the better match between
queries and titles in the semantic level than in the lexical level.

2 Note that � is the matrix of word hashing. It is fixed and need

no training.

L-WH DNN wins over TF-IDF
 Query Title
1 bfpo postcodes in the united

kingdom wikipedia the
free encyclopedia

2 univ of penn university of
pennsylvania wikipedia
the free encyclopedia

3 citibank citi com
4 ccra canada revenue agency

website
5 search galleries photography community

including forums reviews
and galleries from photo

net
6 met art metropolitan museum of

art wikipedia the free
encyclopedia

7 new york brides long island bride and
groom wedding

magazine website
8 motocycle loans auto financing is easy

with the capital one
blank check

9 boat new and used yarts for
sale yachartworld com

10 bbc games bbc sport
Table 5: Examples that our deep semantic model performs
better than TF-IDF.

To make our method more intuitive, we have also visualized
the learned hidden representations of the words in the queries and
documents. We do so by treating each word as a unique document
and passing it as an input to the trained DNN. At each output
node, we group all the words with high activation levels and
cluster them accordingly. Table 7 shows some example clusters,
each corresponding to an output node of the DNN model. It is

interesting to see that words with the same or related semantic
meanings do stay in the same cluster.

L-WH DNN loses to TF-IDF
 Query Title
1 hey arnold hey arnold the movie
2 internet by dell dell hyperconnect mobile

internet solutions dell
3 www mcdonalds com mcdonald s’
4 m t m t bank
5 board of directors board of directors west s

encyclopedia of american
law full ariticle from

answers com
6 puppet skits skits
7 montreal canada attractions go montreal tourist

information
8 how to address a cover letter how to write a cover

letter
9 bbc television bbc academy
10 rock com rock music information

from answers com
Table 6: Examples that our deep semantic model performs
worse than TF-IDF.

automotive chevrolet youtube bear systems
wheels fuel videos hunting protect
cars motorcycle dvd texas platform
auto toyota downloads colorado efficiency
car chevy movie hunter oems
vehicle motorcycles cd tucson systems32

Table 7: Examples of the clustered words on five different output
nodes of the trained DNN. The clustering criterion is high
activation levels at the output nodes of the DNN.

