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ABSTRACT 
Latent semantic models, such as LSA, intend to map a query to its 
relevant documents at the semantic level where keyword-based 
matching often fails. In this study we strive to develop a series of 
new latent semantic models with a deep structure that project 
queries and documents into a common low-dimensional space 
where the relevance of a document given a query is readily 
computed as the distance between them. The proposed deep 
structured semantic models are discriminatively trained by 
maximizing the conditional likelihood of the clicked documents 
given a query using the clickthrough data. To make our models 
applicable to large-scale Web search applications, we also use a 
technique called word hashing, which is shown to effectively 
scale up our semantic models to handle large vocabularies which 
are common in such tasks. The new models are evaluated on a 
Web document ranking task using a real-world data set. Results 
show that our best model significantly outperforms other latent 
semantic models, which were considered state-of-the-art in the 
performance prior to the work presented in this paper. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval; I.2.6 [Artificial Intelligence]: Learning 

General Terms 
Algorithms, Experimentation 

Keywords 
Deep Learning, Semantic Model, Clickthrough Data, Web Search 

1. INTRODUCTION 
Modern search engines retrieve Web documents mainly by 
matching keywords in documents with those in search queries. 
However, lexical matching can be inaccurate due to the fact that a 
concept is often expressed using different vocabularies and 
language styles in documents and queries. 

Latent semantic models such as latent semantic analysis 

(LSA) are able to map a query to its relevant documents at the 
semantic level where lexical matching often fails (e.g., 
[6][15][2][8][21]). These latent semantic models address the 
language discrepancy between Web documents and search queries 
by grouping different terms that occur in a similar context into the 
same semantic cluster. Thus, a query and a document, represented 
as two vectors in the lower-dimensional semantic space, can still 
have a high similarity score even if they do not share any term. 
Extending from LSA, probabilistic topic models such as 
probabilistic LSA (PLSA) and Latent Dirichlet Allocation (LDA) 
have also been proposed for semantic matching [15][2]. However, 
these models are often trained in an unsupervised manner using an 
objective function that is only loosely coupled with the evaluation 
metric for the retrieval task. Thus the performance of these 
models on Web search tasks is not as good as originally expected.  

Recently, two lines of research have been conducted to extend 
the aforementioned latent semantic models, which will be briefly 
reviewed below. 

First, clickthrough data, which consists of a list of queries and 
their clicked documents, is exploited for semantic modeling so as 
to bridge the language discrepancy between search queries and 
Web documents [9][10]. For example, Gao et al. [10] propose the 
use of Bi-Lingual Topic Models (BLTMs) and linear 
Discriminative Projection Models (DPMs) for query-document 
matching at the semantic level. These models are trained on 
clickthrough data using objectives that tailor to the document 
ranking task. More specifically, BLTM is a generative model 
which requires that a query and its clicked documents not only 
share the same distribution over topics, but also contain similar 
factions of words assigned to each topic. In contrast, the DPM is 
learned using the S2Net algorithm [26] that follows the pairwise 
learning-to-rank paradigm outlined in [3]. After projecting term 
vectors of queries and documents into concept vectors in a low-
dimensional semantic space, the concept vectors of the query and 
its clicked documents have a smaller distance than that of the 
query and its unclicked documents. Gao et al. [10] report that both 
BLTM and DPM outperform significantly the unsupervised latent 
semantic models, including LSA and PLSA, in the document 
ranking task. However, the training of BLTM, though using 
clickthrough data, is to maximize a log-likelihood criterion which 
is sub-optimal for the evaluation metric for document ranking. On 
the other hand, the training of DPM involves large-scale matrix 
multiplications. The sizes of these matrices often grow quickly 
with the vocabulary size, which could be of an order of millions in 
Web search tasks. In order to make the training time tolerable, the 
vocabulary was pruned aggressively. Although a small vocabulary 
makes the models trainable, it leads to suboptimal performance.  

In the second line of research, Salakhutdinov and Hinton 
extended the semantic modeling using deep auto-encoders [22]. 
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They demonstrated that hierarchical semantic structure embedded 
in the query and the document can be extracted via deep learning. 
Superior performance to the conventional LSA is reported [22]. 
However, the deep learning approach they used still adopts an 
unsupervised learning method where the model parameters are 
optimized for the reconstruction of the documents rather than for 
differentiating the relevant documents from the irrelevant ones for 
a given query. As a result, the deep learning models do not 
significantly outperform the baseline retrieval models based on 
keyword matching. Moreover, the semantic hashing model also 
faces the scalability challenge regarding large-scale matrix 
multiplication. We will show in this paper that the capability of 
learning semantic models with large vocabularies is crucial to 
obtain good results in real-world Web search tasks. 

In this study, extending from both research lines discussed 
above, we propose a series of Deep Structured Semantic Models 
(DSSM) for Web search. More specifically, our best model uses a 
deep neural network (DNN) to rank a set of documents for a given 
query as follows. First, a non-linear projection is performed to 
map the query and the documents to a common semantic space. 
Then, the relevance of each document given the query is 
calculated as the cosine similarity between their vectors in that 
semantic space. The neural network models are discriminatively 
trained using the clickthrough data such that the conditional 
likelihood of the clicked document given the query is maximized. 
Different from the previous latent semantic models that are 
learned in an unsupervised fashion, our models are optimized 
directly for Web document ranking, and thus give superior 
performance, as we will show shortly. Furthermore, to deal with 
large vocabularies, we propose the so-called word hashing 
method, through which the high-dimensional term vectors of 
queries or documents are projected to low-dimensional letter 
based n-gram vectors with little information loss. In our 
experiments, we show that, by adding this extra layer of 
representation in semantic models, word hashing enables us to 
learn discriminatively the semantic models with large 
vocabularies, which are essential for Web search. We evaluated 
the proposed DSSMs on a Web document ranking task using a 
real-world data set. The results show that our best model 
outperforms all the competing methods with a significant margin 
of 2.5-4.3% in NDCG@1. 

In the rest of the paper, Section 2 reviews related work. 
Section 3 describes our DSSM for Web search. Section 4 presents 
the experiments, and Section 5 concludes the paper. 

2. RELATED WORK 
Our work is based on two recent extensions to the latent semantic 
models for IR. The first is the exploration of the clickthrough data 
for learning latent semantic models in a supervised fashion [10]. 
The second is the introduction of deep learning methods for 
semantic modeling [22]. 

2.1 Latent Semantic Models and the Use of 
Clickthrough Data 

The use of latent semantic models for query-document matching 
is a long-standing research topic in the IR community. Popular 
models can be grouped into two categories, linear projection 
models and generative topic models, which we will review in turn. 

The most well-known linear projection model for IR is LSA 
[6]. By using the singular value decomposition (SVD) of a 
document-term matrix, a document (or a query) can be mapped to 

a low-dimensional concept vector �� = ���, where the � is the 
projection matrix. In document search, the relevance score 
between a query and a document, represented respectively by term 
vectors � and �, is assumed to be proportional to their cosine 
similarity score of the corresponding concept vectors ��  and �� , 
according to the projection matrix � 

sim�(�,�) = �����
‖��‖‖��‖ (1) 

In addition to latent semantic models, the translation models 
trained on clicked query-document pairs provide an alternative 
approach to semantic matching [9]. Unlike latent semantic models, 
the translation-based approach learns translation relationships 
directly between a term in a document and a term in a query. 
Recent studies show that given large amounts of clickthrough data 
for training, this approach can be very effective [9][10]. We will 
also compare our approach with translation models 
experimentally as reported in Section 4. 

2.2 Deep Learning 
Recently, deep learning methods have been successfully applied 
to a variety of language and information retrieval applications 
[1][4][7][13][18][19][22][23][25]. By exploiting deep 
architectures, deep learning techniques are able to discover from 
training data the hidden structures and features at different levels 
of abstractions useful for the tasks. In [22] Salakhutdinov and 
Hinton extended the LSA model by using a deep network (auto-
encoder) to discover the hierarchical semantic structure embedded 
in the query and the document. They proposed a semantic hashing 
(SH) method which uses bottleneck features learned from the 
deep auto-encoder for information retrieval. These deep models 
are learned in two stages. First, a stack of generative models (i.e., 
the restricted Boltzmann machine) are learned to map a term 
vector representation of a document layer-by-layer to a low-
dimensional semantic concept vector. Second, the model 
parameters are fine-tuned so as to minimize the cross entropy 
error between the original term vector of the document and the 
reconstructed term vector. The intermediate layer activations are 
used as features (i.e., bottleneck) for document ranking. Their 
evaluation shows that the SH approach achieves a superior 
document retrieval performance to the LSA. However, SH suffers 
from two problems, and cannot outperform the standard lexical 
matching based retrieval model (e.g., cosine similarity using TF-
IDF term weighting). The first problem is that the model 
parameters are optimized for the reconstruction of the document 
term vectors rather than for differentiating the relevant documents 
from the irrelevant ones for a given query. Second, in order to 
make the computational cost manageable, the term vectors of 
documents consist of only the most-frequent 2000 words. In the 
next section, we will show our solutions to these two problems. 

3. DEEP STRUCTURED SEMANTIC 
MODELS FOR WEB SEARCH 

3.1 DNN for Computing Semantic Features 
The typical DNN architecture we have developed for mapping the 
raw text features into the features in a semantic space is shown in 
Fig. 1. The input (raw text features) to the DNN is a high-
dimensional term vector, e.g., raw counts of terms in a query or a 
document without normalization, and the output of the DNN is a 
concept vector in a low-dimensional semantic feature space. This 



DNN model is used for Web document ranking as follows: 1) to 
map term vectors to their corresponding semantic concept vectors; 
2) to compute the relevance score between a document and a 
query as cosine similarity of their corresponding semantic concept 
vectors; rf. Eq. (3) to (5).  

More formally, if we denote � as the input term vector, � as 
the output vector, �� , � � 1,… , 	 
 1, as the intermediate hidden 
layers, �� as the i-th weight matrix, and �� as the �-th bias term, 
we have 

�� � ��� 

�� � ������� � ���, � � 2, … ,	 
 1 

� � ������� � ��� 

(3) 

where we use the ���� as the activation function at the output 
layer and the hidden layers �� , � � 2, … , 	 
 1:  

	��� �
1 
 ����

1 � ����
			 (4) 

The semantic relevance score between a query � and a document 
� is then measured as: 

���, �� � cosine!��, ��" �
��	��

‖��‖‖��‖
 (5) 

where ��  and ��  are the concept vectors of the query and the 
document, respectively. In Web search, given the query, the 
documents are sorted by their semantic relevance scores.  

Conventionally, the size of the term vector, which can be 
viewed as the raw bag-of-words features in IR, is identical to that 
of the vocabulary that is used for indexing the Web document 
collection. The vocabulary size is usually very large in real-world 
Web search tasks. Therefore, when using term vector as the input, 
the size of the input layer of the neural network would be 
unmanageable for inference and model training. To address this 
problem, we have developed a method called “word hashing” for 
the first layer of the DNN, as indicated in the lower portion of 
Figure 1. This layer consists of only linear hidden units in which 
the weight matrix of a very large size is not learned. In the 
following section, we describe the word hashing method in detail. 

3.2 Word Hashing  
The word hashing method described here aims to reduce the 
dimensionality of the bag-of-words term vectors. It is based on 
letter n-gram, and is a new method developed especially for our 
task. Given a word (e.g. good), we first add word starting and 
ending marks to the word (e.g. #good#). Then, we break the word 
into letter n-grams (e.g. letter trigrams: #go, goo, ood, od#). 
Finally, the word is represented using a vector of letter n-grams.  

One problem of this method is collision, i.e., two different 
words could have the same letter n-gram vector representation. 
Table 1 shows some statistics of word hashing on two 
vocabularies. Compared with the original size of the one-hot 
vector, word hashing allows us to represent a query or a document 
using a vector with much lower dimensionality. Take the 40K-
word vocabulary as an example. Each word can be represented by 
a 10,306-dimentional vector using letter trigrams, giving a four-
fold dimensionality reduction with few collisions. The reduction 
of dimensionality is even more significant when the technique is 
applied to a larger vocabulary. As shown in Table 1, each word in 
the 500K-word vocabulary can be represented by a 30,621 
dimensional vector using letter trigrams, a reduction of 16-fold in 
dimensionality with a negligible collision rate of 0.0044% 
(22/500,000).  

While the number of English words can be unlimited, the 
number of letter n-grams in English (or other similar languages) is 
often limited. Moreover, word hashing is able to map the 
morphological variations of the same word to the points that are 
close to each other in the letter n-gram space. More importantly, 
while a word unseen in the training set always causes difficulties 
in word-based representations, it is not the case where the letter n-
gram based representation is used. The only risk is the minor 
representation collision as quantified in Table 1. Thus, letter n-
gram based word hashing is robust to the out-of-vocabulary 
problem, allowing us to scale up the DNN solution to the Web 
search tasks where extremely large vocabularies are desirable. We 
will demonstrate the benefit of the technique in Section 4. 

In our implementation, the letter n-gram based word hashing 
can be viewed as a fixed (i.e., non-adaptive) linear transformation, 

Figure 1: Illustration of the DSSM. It uses a DNN to map high-dimensional sparse text features into low-dimensional dense features in a semantic space. The 
first hidden layer, with 30k units, accomplishes word hashing. The word-hashed features are then projected through multiple layers of non-linear projections. 
The final layer’s neural activities in this DNN form the feature in the semantic space. 
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through which an term vector in the input layer is projected to a 
letter n-gram vector in the next layer higher up, as shown in 
Figure 1. Since the letter n-gram vector is of a much lower 
dimensionality, DNN learning can be carried out effectively.  

 Letter-Bigram Letter-Trigram 
Word 
Size  

Token 
Size 

Collision Token 
Size 

Collision 

40k  1107 18 10306 2 
500k 1607 1192 30621 22 
Table 1: Word hashing token size and collision numbers as a 
function of the vocabulary size and the type of letter ngrams.     

3.3 Learning the DSSM 
The clickthrough logs consist of a list of queries and their clicked 
documents. We assume that a query is relevant, at least partially, 
to the documents that are clicked on for that query. Inspired by the 
discriminative training approaches in speech and language 
processing, we thus propose a supervised training method to learn 

our model parameters, i.e., the weight matrices ��  and bias 
vectors ��  in our neural network as the essential part of the 
DSSM, so as to maximize the conditional likelihood of the clicked 
documents given the queries.   

First, we compute the posterior probability of a document 
given a query from the semantic relevance score between them 
through a softmax function 

��	|�� = exp����,	��
∑ exp����,	′����∈�

 (6) 

where � is a smoothing factor in the softmax function, which is 
set empirically on a held-out data set in our experiment. � denotes 
the set of candidate documents to be ranked. Ideally, � should 
contain all possible documents. In practice, for each (query, 
clicked-document) pair, denoted by (�,	�) where � is a query 
and 	� is the clicked document, we approximate D by including 	� and four randomly selected unclicked documents, denote by 
{		
; � = 1,… ,4} . In our pilot study, we do not observe any 
significant difference when different sampling strategies were 
used to select the unclicked documents.  

In training, the model parameters are estimated to maximize 
the likelihood of the clicked documents given the queries across 
the training set. Equivalently, we need to minimize the following 
loss function  

��Λ� = −log � ��	�|��
(�,��)

 
(7) 

where Λ denotes the parameter set of the neural networks {�� , ��}.  
Since �(Λ) is differentiable w.r.t. to Λ, the model is trained readily 
using gradient-based numerical optimization algorithms. The 
detailed derivation is omitted due to the space limitation. 

3.4 Implementation Details  
To determine the training parameters and to avoid over-fitting, we 
divided the clickthrough data into two sets that do not overlap, 
called training and validation datasets, respectively. In our 
experiments, the models are trained on the training set and the 
training parameters are optimized on the validation dataset. For 
the DNN experiments, we used the architecture with three hidden 
layers as shown in Figure 1. The first hidden layer is the word 

hashing layer containing about 30k nodes (e.g., the size of the 
letter-trigrams as shown in Table 1). The next two hidden layers 
have 300 hidden nodes each, and the output layer has 128 nodes. 
Word hashing is based on a fixed projection matrix. The similarity 
measure is based on the output layer with the dimensionality of 
128. Following [20], we initialize the network weights with 
uniform distribution in the range 
between	−�6/(����� + ������)  and  �6/(����� + ������) 
where �����  and ������  are the number of input and output 
units, respectively. Empirically, we have not observed better 
performance by doing layer-wise pre-training. In the training 
stage, we optimize the model using mini-batch based stochastic 
gradient descent (SGD). Each mini-batch consists of 1024 training 
samples. We observed that the DNN training usually converges 
within 20 epochs (passes) over the entire training data. 

4. EXPERIMENTS 
We evaluated the DSSM, proposed in Section 3, on the Web 
document ranking task using a real-world data set. In this section, 
we first describe the data set on which the models are evaluated. 
Then, we compare the performances of our best model against 
other state of the art ranking models. We also investigate the 
break-down impact of the techniques proposed in Section 3.  

4.1 Data Sets and Evaluation Methodology 
We have evaluated the retrieval models on a large-scale real world 
data set, called the evaluation data set henceforth. The evaluation 
data set contains 16,510 English queries sampled from one-year 
query log files of a commercial search engine. On average, each 
query is associated with 15 Web documents (URLs). Each query-
title pair has a relevance label. The label is human generated and 
is on a 5-level relevance scale, 0 to 4, where level 4 means that the 
document is the most relevant to query � and 0 means 	 is not 
relevant to � . All the queries and documents are preprocessed 
such that the text is white-space tokenized and lowercased, 
numbers are retained, and no stemming/inflection is performed. 

All ranking models used in this study (i.e., DSSM, topic 
models, and linear projection models) contain many free hyper-
parameters that must be estimated empirically. In all experiments, 
we have used a 2-fold cross validation: A set of results on one half 
of the data is obtained using the parameter settings optimized on 
the other half, and the global retrieval results are combined from 
the two sets. 

The performance of all ranking models we have evaluated has 
been measured by mean Normalized Discounted Cumulative Gain 
(NDCG) [17], and we will report NDCG scores at truncation 
levels 1, 3, and 10 in this section. We have also performed a 
significance test using the paired t-test. Differences are considered 
statistically significant when the p-value is less than 0.05. 

In our experiments, we assume that a query is parallel to the 
titles of the documents clicked on for that query. We extracted 
large amounts of the query-title pairs for model training from one 
year query log files using a procedure similar to [11]. Some 
previous studies, e.g., [24][11], showed that the query click field, 
when it is valid, is the most effective piece of information for 
Web search, seconded by the title field. However, click 
information is unavailable for many URLs, especially new URLs 
and tail URLs, leaving their click fields invalid (i.e., the field is 
either empty or unreliable because of sparseness). In this study, 
we assume that each document contained in the evaluation data 
set is either a new URL or a tail URL, thus has no click 



information (i.e., its click field is invalid). Our research goal is to 
investigate how to learn the latent semantic models from the 
popular URLs that have rich click information, and apply the 
models to improve the retrieval of those tail or new URLs. To this 
end, in our experiments only the title fields of the Web documents 
are used for ranking. For training latent semantic models, we use a 
randomly sampled subset of approximately 100 million pairs 
whose documents are popular and have rich click information. We 
then test trained models in ranking the documents in the 
evaluation data set containing no click information. The query-
title pairs are pre-processed in the same way as the evaluation data 
to ensure uniformity. 

4.2 Results 
The main results of our experiments are summarized in Table 2, 
where we compared our best version of the DSSM (Row 12) with 
three sets of baseline models. The first set of baselines includes a 
couple of widely used lexical matching methods such as TF-IDF 
(Row 1) and BM25 (Row 2). The second is a word translation 
model (WTM in Row 3) which is intended to directly address the 
query-document language discrepancy problem by learning a 
lexical mapping between query words and document words 
[9][10]. The third includes a set of state-of-the-art latent semantic 
models which are learned either on documents only in an 
unsupervised manner (LSA, PLSA, DAE as in Rows 4 to 6) or on 
clickthrough data in a supervised way (BLTM-PR, DPM, as in 
Rows 7 and 8). In order to make the results comparable, we re-
implement these models following the descriptions in [10], e.g., 
models of LSA and DPM are trained using a 40k-word vocabulary 
due to the model complexity constraint, and the other models are 
trained using a 500K-word vocabulary. Details are elaborated in 
the following paragraphs. 

TF-IDF (Row 1) is the baseline model, where both documents 
and queries are represented as term vectors with TF-IDF term 
weighting. The documents are ranked by the cosine similarity 
between the query and document vectors. We also use BM25 
(Row 2) ranking model as one of our baselines. Both TF-IDF and 
BM25 are state-of-the-art document ranking models based on 
term matching. They have been widely used as baselines in 
related studies. 

WTM (Rows 3) is our implementation of the word translation 
model described in [9], listed here for comparison. We see that 
WTM outperforms both baselines (TF-IDF and BM25) 
significantly, confirming the conclusion reached in [9]. LSA 
(Row 4) is our implementation of latent semantic analysis model. 
We used PCA instead of SVD to compute the linear projection 
matrix. Queries and titles are treated as separate documents, the 
pair information from the clickthrough data was not used in this 
model. PLSA (Rows 5) is our implementation of the model 
proposed in [15], and was trained on documents only (i.e., the title 
side of the query-title pairs). Different from [15], our version of 
PLSA was learned using MAP estimation as in [10]. DAE (Row 
6) is our implementation of the deep auto-encoder based semantic 
hashing model proposed by Salakhutdinov and Hinton in [22]. 
Due to the model training complexity, the input term vector is 
based on a 40k-word vocabulary. The DAE architecture contains 
four hidden layers, each of which has 300 nodes, and a bottleneck 
layer in the middle which has 128 nodes. The model is trained on 
documents only in an unsupervised manner. In the fine-tuning 
stage, we used cross-entropy error as training criteria. The central 
layer activations are used as features for the computation of cosine 
similarity between query and document. Our results are consistent 

with previous results reported in [22]. The DNN based latent 
semantic model outperforms the linear projection model (e.g., 
LSA). However, both LSA and DAE are trained in an 
unsupervised fashion on document collection only, thus cannot 
outperform the state-of-the-art lexical matching ranking models.  

BLTM-PR (Rows 7) is the best performer among different 
versions of the bilingual topic models described in [10]. BLTM 
with posterior regularization (BLTM-PR) is trained on query-title 
pairs using the EM algorithm with a constraint enforcing the 
paired query and title to have same fractions of terms assigned to 
each hidden topic. DPM (Row 8) is the linear discriminative 
projection model proposed in [10], where the projection matrix is 
discriminatively learned using the S2Net algorithm [26] on 
relevant and irrelevant pairs of queries and titles. Similar to that 
BLTM is an extension to PLSA, DPM can also be viewed as an 
extension of LSA, where the linear projection matrix is learned in 
a supervised manner using clickthrough data, optimized for 
document ranking. We see that using clickthrough data for model 
training leads to some significant improvement. Both BLTM-PR 
and DPM outperform the baseline models (TF-IDF and BM25). 

Rows 9 to 12 present results of different settings of the 
DSSM. DNN (Row 9) is a DSSM without using word hashing. It 
uses the same structure as DAE (Row 6), but is trained in a 
supervised fashion on the clickthrough data. The input term vector 
is based on a 40k-word vocabulary, as used by DAE. L-WH 
linear (Row 10) is the model built using letter trigram based word 
hashing and supervised training. It differs from the L-WH non-
linear model (Row 11) in that we do not apply any nonlinear 
activation function, such as tanh, to its output layer.  L-WH DNN 
(Row 12) is our best DNN-based semantic model, which uses 
three hidden layers, including the layer with the Letter-trigram-
based Word Hashing (L-WH), and an output layer, and is 
discriminatively trained on query-title pairs, as described in 
Section 3. Although the letter n-gram based word hashing method 
can be applied to arbitrarily large vocabularies, in order to 
perform a fair comparison with other competing methods, the 
model uses a 500K-word vocabulary.  

The results in Table 2 show that the deep structured semantic 
model is the best performer, beating other methods by a 
statistically significant margin in NDCG and demonstrating the 
empirical effectiveness of using DNNs for semantic matching. 

From the results in Table 2, it is also clear that supervised 
learning on clickthrough data, coupled with an IR-centric 
optimization criterion tailoring to ranking, is essential for 
obtaining superior document ranking performance. For example, 
both DNN and DAE (Row 9 and 6) use the same 40k-word 
vocabulary and adopt the same deep architecture. The former 
outperforms the latter by 3.2 points in NDCG@1.  

Word hashing allows us to use very large vocabularies for 
modeling. For instance, the models in Rows 12, which use a 500k-
word vocabulary (with word hashing), significantly outperform 
the model in Row 9, which uses a 40k-word vocabulary, although 
the former has slightly fewer free parameters than the later since 
the word hashing layer containing about only 30k nodes.  

We also evaluated the impact of using a deep architecture 
versus a shallow one in modeling semantic information embedded 
in a query and a document. Results in Table 2 show that DAE 
(Row 3) is better than LSA (Row 2), while both LSA and DAE 
are unsupervised models. We also have observed similar results 
when comparing the shallow vs. deep architecture in the case of 
supervised models. Comparing models in Rows 11 and 12 
respectively, we observe that increasing the number of nonlinear 



layers from one to three raises the NDCG scores by 0.4-0.5 point 
which are statistically significant, while there is no significant 
difference between linear and non-linear models if both are one-
layer shallow models (Row 10 vs. Row 11). 

# Models NDCG@1 NDCG@3 NDCG@10 

1 TF-IDF 0.319 0.382 0.462 
2 BM25 0.308 0.373 0.455 
3 WTM 0.332 0.400 0.478 
4 LSA 0.298 0.372 0.455 
5 PLSA 0.295 0.371 0.456 
6 DAE 0.310 0.377 0.459 
7 BLTM-PR 0.337 0.403 0.480 
8 DPM 0.329 0.401 0.479 
9 DNN 0.342 0.410 0.486 

10 L-WH linear 0.357 0.422 0.495 
11 L-WH non-linear 0.357 0.421 0.494 
12 L-WH DNN 0.362 0.425 0.498 
Table 2: Comparative results with the previous state of the art 
approaches and various settings of DSSM.  

5. CONCLUSIONS 
We present and evaluate a series of new latent semantic models, 
notably those with deep architectures which we call the DSSM. 
The main contribution lies in our significant extension of the 
previous latent semantic models (e.g., LSA) in three key aspects. 
First, we make use of the clickthrough data to optimize the 
parameters of all versions of the models by directly targeting the 
goal of document ranking. Second, inspired by the deep learning 
framework recently shown to be highly successful in speech 
recognition [5][13][14][16][18], we extend the linear semantic 
models to their nonlinear counterparts using multiple hidden-
representation layers. The deep architectures adopted have further 
enhanced the modeling capacity so that more sophisticated 
semantic structures in queries and documents can be captured and 
represented. Third, we use a letter n-gram based word hashing 
technique that proves instrumental in scaling up the training of the 
deep models so that very large vocabularies can be used in 
realistic web search. In our experiments, we show that the new 
techniques pertaining to each of the above three aspects lead to 
significant performance improvement on the document ranking 
task. A combination of all three sets of new techniques has led to 
a new state-of-the-art semantic model that beats all the previously 
developed competing models with a significant margin. 
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APPENDIX 

I. Gradient Computation and Gradient Descent 

Since �(Λ) is differentiable w.r.t. to Λ, the model is trained readily 
using gradient-based numerical optimization algorithms. The 
update rule is 

Λ� = Λ�
 − ��  �(Λ) Λ |������
 (8) 

where �� is the learning rate at the ��� iteration, Λ�  and Λ�
 are 
the models at the ��� and the (� − 1)�� iteration, respectively.  

In what follows, we derive the gradient of the loss function 
w.r.t. the parameters of the neural networks. Assuming that there 
are in total R (query, clicked-document) pairs, we denote (��,	�

�) 
as the r-th (query, clicked-document) pair. Then, if we denote  

���Λ� = −log��	�
�|��� (9) 

we have  

 �(Λ)
 Λ = ! ��(Λ) Λ

�

��

 (10) 

In the following, we will show the derivation of 
���(�)

��
.  

For a query � and a document 	, we denote  "�,� and "�,� be 
the activation in the hidden layer �, and #� and #� be the output 
activation for �  and 	 , respectively. They are computed 
according to Eq. (3).  

We then derive 
���(�)

��
 as follows1 . For simplification, the 

subscript of r will be omitted hereafter.  
First, the loss function in Eq. (9) can be written as: 

��Λ� = log	$1 +! exp	−�	Δ	�
	

% (11) 

where Δ	 = ���,	��− �(�,		
) . The gradient of the loss 
function w.r.t. the N-th weight matrix �� is  

 ��Λ�
 ��

=!&	
	

 Δ	 ��

 (12) 

where  

 Δ	 ��

=
 �(�,	�)

 ��

−
 �(�,		
) ��

 (13) 

and 

&	 = −γ	exp	(−	�	Δ	)
1 + ∑ exp	(−	�	Δ	�)	�

 (14) 

To simplify the notation, let �, �, '  be #��#� , 1/(#�( , 
and	1/‖#�‖ , respectively. With ���ℎ as the activation function in 
our model, each term in the right-hand side of Eq. (13) can be 
calculated using the following formula: 

                                                                 
1 We present only the derivation for the weight matrices. The 

derivation for the bias vector is similar and is omitted. 

 ���,	�
 ��

=
 

 ��

#��#�
‖#�‖‖#�‖ = *��(�,�)"�
,�

� + *��(�,�)"�
,�
�  (15) 

where *��(�,�) and *��(�,�) for a pair of (�,	) are computed as 

*��(�,�) = 1 − #�� ∘ 1 + #�� ∘ (�'#� − �'��#�) 
*��(�,�) = �1 − #�� ∘ �1 + #�� ∘ (�'#� − ��'�#�) (16) 

where the operator ∘  is the element-wise multiplication 
(Hadamard product). 

For hidden layers, we also need to calculate {*} for each Δ	. 
For example, each *  in the hidden layer �  can be calculated 
through back propagation as 

 

*�,�(�,�) = 1 + "�,�� ∘ 1 − "�,�� ∘��
�*��,�(�,�) 

*�,�(�,�) = 1 + "�,�� ∘ 1 − "�,�� ∘��
�*��,�(�,�) 

(17) 

 

and eventually we have *�,�

(�,�)
= *��(�,�) and *�,�

(�,�)
= *��(�,�). 

Correspondingly, the gradient of the loss function w.r.t. the 
intermediate weight matrix, �� , � = 2,… ,+ − 1, can be computed 
as2 

 ��Λ�
 ��

= !&	
	

 Δ	 ��

 (18) 

 
where  
  Δ	 ��

= ,*�,�(�,��)"�
,�� + *
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II. Analysis on Document Ranking Errors 

In the test data, among 16,412 unique queries, we compare each 
query’s NDCG@1 values using TF-IDF and our best model, letter 
trigram based word hashing with supervised DNN (L-WH DNN). 
There are in total 1,985 queries on which L-WH DNN performs 
better than TF-IDF (the sum of NDCG@1 differences is 1332.3). 
On the other hand, TF-IDF outperforms L-WH DNN on 1077 
queries (the sum of NDCG@1 differences is 630.61). For both 
cases, we sample several concrete examples. They are shown in 
Tables 5 and 6, respectively. We observe in Table 5 that the 
NDCG improvement is largely to the better match between 
queries and titles in the semantic level than in the lexical level. 

 

 

 

                                                                 
2 Note that � is the matrix of word hashing. It is fixed and need 

no training. 



L-WH DNN wins over TF-IDF 
 Query Title 
1 bfpo postcodes in the united 

kingdom wikipedia the 
free encyclopedia 

2 univ of penn university of 
pennsylvania wikipedia 
the free encyclopedia 

3 citibank citi com 
4 ccra canada revenue agency 

website  
5 search galleries photography community 

including forums reviews 
and galleries from photo 

net 
6 met art metropolitan museum of 

art wikipedia the free 
encyclopedia 

7 new york brides long island bride and 
groom wedding 

magazine website 
8 motocycle loans auto financing is easy 

with the capital one 
blank check 

9 boat new and used yarts for 
sale yachartworld com 

10 bbc games bbc sport 
Table 5: Examples that our deep semantic model performs 
better than TF-IDF. 

 

To make our method more intuitive, we have also visualized 
the learned hidden representations of the words in the queries and 
documents. We do so by treating each word as a unique document 
and passing it as an input to the trained DNN. At each output 
node, we group all the words with high activation levels and 
cluster them accordingly. Table 7 shows some example clusters, 
each corresponding to an output node of the DNN model. It is 

interesting to see that words with the same or related semantic 
meanings do stay in the same cluster. 

 

L-WH DNN loses to TF-IDF 
 Query Title 
1 hey arnold hey arnold the movie 
2 internet by dell dell hyperconnect mobile 

internet solutions dell 
3 www mcdonalds com mcdonald s’ 
4 m t  m t bank 
5 board of directors board of directors west s 

encyclopedia of american 
law full ariticle from 

answers com 
6 puppet skits skits 
7 montreal canada attractions go montreal tourist 

information 
8 how to address a cover letter how to write a cover 

letter 
9 bbc television  bbc academy 
10 rock com rock music information 

from answers com 
Table 6: Examples that our deep semantic model performs 
worse than TF-IDF. 

 

automotive chevrolet youtube bear systems 
wheels fuel videos hunting protect 
cars motorcycle dvd texas platform 
auto toyota downloads colorado efficiency 
car chevy  movie hunter oems 
vehicle motorcycles cd tucson systems32 

Table 7: Examples of the clustered words on five different output 
nodes of the trained DNN. The clustering criterion is high 
activation levels at the output nodes of the DNN.  
 

 


