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Abstract
Deep neural networks (DNNs) are widely utilized for acous-
tic modeling in speech recognition systems. Through train-
ing, DNNs used for phoneme recognition nonlinearly trans-
form the time-frequency representation of a speech signal into
a sequence of invariant phonemic categories. However, little is
known about how this nonlinear mapping is performed and what
its implications are for the classification of individual phones
and phonemic categories. In this paper, we analyze a sigmoid
DNN trained for a phoneme recognition task and characterized
several aspects of the nonlinear transformations that occur in
hidden layers. We show that the function learned by deeper
hidden layers becomes increasingly nonlinear, and that network
selectively warps the feature space so as to increase the discrim-
inability of acoustically similar phones, aiding in their classifi-
cation. We also demonstrate that the nonlinear transformation
of the feature space in deeper layers is more dedicated to the
phone instances that are more difficult to discriminate, while the
more separable phones are dealt with in the superficial layers
of the network. This study describes how successive nonlinear
transformations are applied to the feature space non-uniformly
when a deep neural network model learns categorical bound-
aries, which may partly explain their superior performance in
pattern classification applications.

Index Terms: Deep neural networks, deep learning, automatic
speech recognition

1. Introduction
In recent years, deep neural networks (DNNs) have come to
dominate both research and industry in the field of automatic
speech recognition [1, 2, 3]. This is due to their significant
performance advantage over previous models such as GMMs
[4], made possible by advances in training algorithms and GPU
computing [5]. Despite these advances, state-of-the-art ASR
systems cannot match human-level performance in a variety
of speech recognition tasks [6], motivating a number of re-
cent studies aimed at better understanding deep learning in the
hope of gaining intuitions that may lead to improved models
[6, 7, 8, 9, 11, 12].

One aspect of deep learning that has not been extensively
studied is how the multiple layers of nonlinearity used in a DNN
aid in the formation of invariant phonemic categories. It is a
well-known fact that networks with at least one hidden layer
are universal approximators [13, 14], but this does not provide
specific insight regarding the advantage of using multiple non-
linear transformations of features in ASR tasks. In our previous
work, [11], we characterized the representational properties of
nodes in the hidden layers of a DNN acoustic model. In this

study, we focus on the question of what nonlinear transforma-
tions are applied to the features as they are mapped from one
layer to another, and how do these transformations create the
complex categorical boundaries needed to separate them apart?
Answering these questions is crucial in explaining the computa-
tional principles of deep neural network models, revealing their
limitations, and providing a link between the complexity of a
given task and the required network architecture.

2. DNN Architecture
The DNN analyzed in this study was trained for phoneme recog-
nition on the clean training set of the WSJ Aurora 4 corpus. The
network had an input layer with 792 dimensions corresponding
to 11 frames of 24-dimensional log Mel filter bank coefficients,
deltas, and double deltas. There were five hidden sigmoid layers
with 256 nodes each and an output layer with 41 nodes corre-
sponding to the HMM emission probability of one of 40 English
phonemes and silence. The model parameters were initialized
using unsupervised restricted Boltzmann machine (RBM) layer-
wise pretraining and then fine-tuned using 25 epochs of back-
propagation with a cross-entropy objective function. While we
chose to use a small, context-independent network to limit the
number of parameters in the analyses, the questions raised in
this study are general and likely to generalize to larger, more
complex models.

3. Results
We begin by quantifying the degree of nonlinearity in each hid-
den layer of the network. Next, we characterize the properties
of the nonlinear transformations in hidden layers of the DNN
and describe how the complex phonemic boundaries are cre-
ated. Finally, we study the successive transformations applied
to the instances of phones that are responsible for the successful
discrimination of confusable phones.

3.1. The representation of speech is characterized by in-
creasing nonlinearity in deeper layers

The representational power of a DNN comes from the succes-
sive nonlinear transformations of the input [14]. In order to con-
firm that the deeper layers of the network represent the speech
signal more nonlinearly, we compared the linear approxima-
tion of the activation of each node with the actual node acti-
vation. As such, we trained a linear model for each hidden
layer mapping one 792-dimensional input frame to one frame
of hidden layer activations (ridge regression, ridge parameter λ
determined by grid search with 10-fold cross-validation). These
linear activations serve as a basis of comparison to understand
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Figure 1: (A) Non-parametric distribution fitted to the histogram of correlation errors between the actual and linearly predicted DNN
activations for validation sentences in each hidden layer. Asterisks show median value of the distribution. (B) Softmax regression
classification accuracy over frames for sigmoid DNN and linear model. (C) Confusion matrices for plosives for classifiers trained on
hidden layer 5 of sigmoid network and linear model.

what parts of the node activations cannot be captured linearly
and thus what must be encoded by the nonlinear transforma-
tions in the network. Linear activations were obtained on 900
sentences from dialects 3 and 7 of the TIMIT speech corpus (51
male and 49 female speakers) [15]. After regression, linear ac-
tivations with values above and below 0 and 1 were set to 0 and
1, respectively.

To quantify and visualize the amount of nonlinearity
present in the hidden layers of the DNN, we calculated the
correlation coefficient ρ (Pearson’s r) between actual and lin-
early predicted DNN activations. For each hidden layer, a non-
parametric distribution was fitted to the histogram of estima-
tion errors (1 − ρ) between the actual and linearly estimated
activations of the 256 node to each sentence (Figure 1A). We
find that the transformed representation of the input becomes in-
creasingly nonlinear in deeper layers, evidenced by the greater
degree of error between nonlinear and linearly estimated activa-
tions.

To confirm an increased discriminability of phoneme
classes in deeper layers of the network, we measured the phone
classification accuracy in each hidden layer by training a soft-
max regression for frame-wise recognition using the activations
of the nodes in that layer. This was done without changing
the original weights of the network; as a result, the output of
these classifiers reflects the separability of phones in the cor-
responding hidden layer. The same was done with activations
from the linear approximations of the hidden layer activations.
Comparing the frame-wise classification results in subsequent
hidden layers reveals an increased classification accuracy for
the sigmoid network. This trend was not observed in the linear
model (Figure 1B), confirming that transformations that result
in increased separability of phones in deeper layers of the net-
work are increasingly nonlinear. These nonlinear transforma-
tions also decrease the overlap between more similar phonemes,
as can be seen in the confusion matrices of Figure 1C.

3.2. Nonlinearity expands the acoustic dimensions non-
uniformly

While the previous analysis confirmed a more nonlinear and
separable representation of phoneme classes in deeper layers of
the network, it does not provide an explanation for how the net-
work achieves this task. To explicitly characterize the nonlinear
transformations that are applied to the spectrotemporal features
in each layer, we trained softmax classifiers using the entire
TIMIT training set on each hidden layer of the network (HL1 to
HL5) using Theano [16]. Drawing on the intuition gained from

the confusion matrices in Figure 1, we also performed softmax
regression on a subset of selected consonants (Table 1) with tar-
get labels determined by either manner or place of articulation
[17]. As expected, classification accuracy was much greater for
manner. However, we can see that for place, which has weaker
acoustic correlates and should thus be more difficult to discrim-
inate, the relative improvement (bold percentages in Table 1)
compared to the accuracy in hidden layer 1 was much greater.
This suggest a hierarchical classification scheme in the network,
where the superficial layers transform the features into a space
where manners are easily separable, and the nonlinear transfor-
mations in the deeper layers of the network selectively warp the
acoustic features that aid in a successful discrimination of place
features.

To investigate and visualize the mechanisms by which the
nonlinearity facilitates improved recognition accuracy for easily
confused phonemes, we used multidimensional scaling (MDS)
[18] to visualize the relative location of different phones in each
hidden layer as reflected in the softmax output vectors. A two-
dimensional MDS analysis was performed on the pairwise Eu-
clidean distances between all phones, time-averaged over phone
duration. Figure 2A visualizes the average distance between
the centroids of all phonemes, which shows that the separation
between different manners of articulation emerges early in the
network. Place of articulation distinctions however are apparent
only in the deeper layers, as suggested by Table 1.

To determine whether the network nonlinearity is applied
selectively to more confusable phones, we examined the rela-
tive location between three example phonemes when they were
chosen from either the same or different manners of articulation.
We used the MDS analysis (Figure 2B) to visualize the rela-
tive location of all individual phones of three phoneme classes
across different manners of articulation: /t/ (plosive), /s/ (frica-
tive), and /n/ (nasal), and three phonemes within the same man-
ner of articulation (Figure 2C) (/p,t,k/, plosive). These groups
represent varying degree of confusability. In Figure 2B-D, cor-
rectly classified phones are shown in colors corresponding to
each manner of articulation, phones confused between the three
classes are shown in red, and otherwise incorrectly classified
phones are shown in gray. The character displayed corresponds
to the centroid of the phones (average relative distance between
the three classes). Comparison of the relative distances between
the phonemes of the two groups shown in Figure 2B versus 2C
shows that the network nonlinearities expand the space between
the more confusable phonemes (/p,t,k/) more than for phonemes
that are more separated in the acoustics (/t,s,n/). This effect can
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Layer All phonemes Manner Place Manner Place
Features 50.97% – – fricative labial

HL 1 58.92% 90.55% 0.0% 77.69% 0.0% {/f/, /s/, /sh/, /v/, /z/, /zh/} {/b/, /f/, /m/, /p/, /v/}
HL 2 61.39% 90.99% 0.49% 79.87% 2.81% plosive coronal
HL 3 63.55% 91.92% 1.51% 82.56% 6.27% {/b/, /d/, /g/, /k/, /p/, /t/} {/d/, /t/, /n/, /s/, /sh/, /z/, /zh/}
HL 4 65.43% 92.05% 1.66% 83.24% 7.14% nasal velar
HL 5 66.90% 92.92% 2.62% 84.82% 9.18% {/m/, /n/, /ng/} {/g/, /k/, /ng/}

Table 1: Frame classification accuracy using softmax regression to decode phonemes and phonetic features (manner of articulation
and place of articulation for selected consonants, shown at right) from features and hidden layer activations for TIMIT core test set.
For manner and place, percentages in bold show relative classification improvement compared to hidden layer 1.

Figure 2: (A-D) First two MDS dimensions of softmax output for instances of selected phoneme subsets (rows). Columns show decoding
from features and all hidden layers of the network. Correctly classified phones are shown by colors corresponding to manner of
articulation (right), phones confused with one of the other two in the row heading are shown in red, and otherwise incorrectly classified
phones are shown in gray. Overall prediction accuracy for each phoneme subset in is shown in the upper right corner in black, and
percentage of phonemes that are confused within the subset are shown in red. Centroids for correctly classified phones are shown in
black text with the phoneme label. (A) All phonemes, with colored dots showing the centroid of correctly classified phones and red dots
showing centroids of incorrect phones. Area of circle is proportional to number of phones in the category. (B) Phonemes = /t,s,n/, same
place of articulation (alveolar). (C) Phonemes = /p,t,k/, same manner of articulation, voicing (unvoiced plosives). (D) Phonemes =
/p,t,k/, only inseparable phone instances misclassified (red) in (C), left panel.

be seen more explicitly in Fig. 3A-B, where the centroids of the
phonemes in consecutive layers of the network are overlaid in
one figure. This effect is also quantified in Fig. 3D, where the
relative expansion of the distance rises much faster in deeper
layers for the /p,t,k/ phonemes compare to /t,s,n/.

While this analysis shows that the feature space between
more overlapping categories is warped more nonlinearly, we
wanted to also investigate whether this non-uniform and se-
lective nonlinear transformation occurs within each phoneme
category as well. Toward this goal, we separated the phone

instances in the /p,t,k/ group by whether they were correctly
classified in the features space, or if they were confused with
another class in the subset (Fig. 2C, first column, red samples).
Figure 2D tracks the relative location and classification results
for these inseparable samples as they propagated through the
network. Figure 2D shows a rapid nonlinear increase in the
relative distance between these most difficult samples, which
occurs more strongly compared to the more separable samples
of the same classes (comparison of Fig. 3B to 3C, where the tri-
angles denote the centroid of the corresponding three classes in
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each subsequent layer). This observation is also quantitatively
confirmed in Fig. 3E, where the expansion of the feature space
grows more rapidly in the hidden layers for the samples that
were less separable. The observed non-uniform, nonlinear, and
focused stretching of the feature space illustrates the power of a
multilayer neural network to nonlinearly expand specific parts
of the feature space that are critical for discrimination of over-
lapping categories, while at the same time applying more linear
transformations to the parts of the feature space which are less
overlapping.
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Figure 3: (A-C) Comparison of centroids of classes (MDS pro-
jection) in each hidden layer for subsets: correctly classified
/t,n,s/, correct /p,t,k/, and inseparable /p,t,k/ (incorrect in fea-
tures). (D-F) Relative increase in mean distance between group
centroids compared to the feature space for (D) separable /t,n,s/
vs. separable /p,t,k/, (E) separable vs. inseparable /p,t,k/, and
(F) separable vs. inseparable phones (all classes).

3.3. Evidence of hierarchical processing

Although we have demonstrated nonlinear warping of particu-
lar regions of the feature space as the signals are mapped from
one layer to the next, the exact function of each layer in the
formation of phonemic categories remains unanswered. In this
section, we tested the hypothesis that the complex boundaries
separating phonemic categories are created gradually and in a
piecewise manner, where each layer of the network focuses on
only a part of the complex boundary. To test this hypothesis, we
separated the phones into different subsets, defined by whether
they were correctly classified in a particular layer of the net-
work SFEAT,HL1,...,HL5 (Figure 4A). For each hidden layer L, SL

is defined as the subset of phones that were incorrectly classified
in all the previous layers, but were correctly classified in layer
L. This particular partitioning of the phones allows us to track
the separability of each subset from the first to the last hidden
layer of the network and thus study their processing in the space
created by different layers of the neural network model.

Figure 4B shows classification accuracy for all subsets S
in each layer. We observed a particular pattern in the classifi-
cation accuracies, where the subset that becomes separable in
a particular layer stays separable afterward. This result indi-
cates that the subsequent layers of the network focus on differ-
ent archetypes of problematic phones. Alternatively, one could
imagine a scenario where the whole space is transformed from
layer to layer, resulting in classification results for the phone
subsets that do not necessarily stay correct in subsequent lay-
ers. These suggest that each layer of a neural network trans-
forms a specific subset of phones, where the remaining prob-

lematic phones are simply passed on to the next layers, where
the network can now only focus on creating the required bound-
ary specific to those samples. As a result, the individual lay-
ers in a deep neural networks may be utilizing a piecewise ap-
proximation strategy to the creation of the nonlinear categorical
boundaries, where highly complex partitions can be made layer
by layer.
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Figure 4: (A) Schematic showing how phone subsets S are de-
fined. In each subsequent layer L, SL is the subset of phones
that are incorrect L− 1 and become correct in L. (B) Classifi-
cation accuracy for phones in subset SL for all layers L.

4. Discussion
The goal of this study was to examine the role that multiple
layers of nonlinearity play in the acoustic-to-phonetic transfor-
mation performed by a DNN trained for phone recognition. We
showed that the node activations in the DNN learn a more non-
linear function in deeper layers, and that this nonlinearity is es-
sential for robust phoneme classification. We further demon-
strate that these nonlinear transformations, learned through er-
ror backpropagation, expand the feature space non-uniformly
and selectively in places where the representation of different
classes is more similar. Moreover, we observed a piecewise
approximation of the categorical boundaries where each layers
function is to only correct a subset of phonemes, thereby allow-
ing the subsequent layers to focus only on transforming features
that allow discrimination between the remaining confusable in-
stances.

While there have been speculations on the advantages of
deep over shallow neural network models, here we provide di-
rect observations on the various types of nonlinear transforma-
tions that occur between the hidden layers of a network trained
to form invariant categories. Moreover, these findings may pro-
vide a more direct link between the complexity of the classifi-
cation task in hand and the network architecture that is required
to model it.

Because of the generality of the principles presented in this
paper, these observations are likely to be extended to networks
utilizing different types of architecture and nonlinearity, or to
categorization tasks other than speech. Moreover, our proposed
method allows a direct comparison between various types of
nonlinearities (e.g. ReLU networks [19, 20, 21]). We believe
that the methods put forth in this study provide valuable in-
sights for better understanding of the strengths and pitfalls of
current deep models, as well as motivating strategies for de-
signing models with better generalization power.
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