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ABSTRACT

A significant barrier to progress in automatic speech recognition
(ASR) capability is the empirical reality that techniques rarely
”scale”—the yield of many apparently fruitful techniques rapidly di-
minishes to zero as the training criterion or decoder is strengthened,
or the size of the training set is increased. Recently we showed that
annealed dropout—a regularization procedure which gradually re-
duces the percentage of neurons that are randomly zeroed out during
DNN training—leads to substantial word error rate reductions in the
case of small to moderate training data amounts, and acoustic models
trained based on the cross-entropy (CE) criterion [1]. In this paper
we show that deep Maxout networks trained using annealed dropout
can substantially improve the quality of commercial-grade LVCSR
systems even when the acoustic model is trained with sequence-level
training criterion, and on large amounts of data.

Index Terms— Maxout Networks, Deep Neural Networks, Deter-
ministic Annealing, Dropout Training, Model aggregation.

1. INTRODUCTION

Recently it has been shown that when training neural networks on a
limited amount of data, randomly zeroing, or ”dropping out” a fixed
percentage of the outputs of a given layer for each training case can
improve test set performance significantly [2] . Dropout training pre-
vents the detectors in the network from co-adapting, and so encour-
ages the discovery of approximately independent detectors, which
in turn limits the capacity of the network and prevents overfitting.
The technique, moreover, represents an extreme form of model ag-
gregation. For log linear models, the geometric average over all 2N

possible models (dropout masks) that can be formed from N fea-
ture inputs can be computed by simply re-scaling the outputs. This
aggregate model is used during testing, and is guaranteed to have
lower cross-entropy than the average cross-entropy of the compos-
ite models [3]. More generally for deep networks, no such results
have been proven, but the technique works well in practice, particu-
larly for deep neural networks that are conditionally linear, such as
rectified-linear (ReLU) [4] and Maxout networks [5] .
Conventional dropout improves test-time performance when there is
limited data relative to the size of the model being trained. Dropout
training allows one to gain performance by avoiding overfitting, so
that a larger model than would otherwise maximize test performance
can be utilized. But what about the more usual scenario where the
size of the model and training time, rather than the amount of train-
ing data, are the dominant constraints? This question has not been
previously studied.
Recently in [1] we showed that annealing the dropout rate over the
course of training can substantially improve the quality of the re-
sulting acoustic model in the case of low to moderate amounts of

training data (10-100 hrs). Specifically, we showed that our best
Maxout and Sortout [6] networks, which are trained using annealed
dropout, outperform the best published WER results on the Aurora
4 task that we are aware of [7] by 7% and 10% relative, respectively.
We also showed promising WER gains for a large (open) vocabulary
voice search task where we restricted the amount of training data
to 100 hours. In this paper, we investigate annealed dropout (AD)
within the context of our best ASR training criterion, sequence-level
training criterion, and large amounts of training data (>600 hrs).
We show that AD-trained Maxout network acoustic models can sig-
nificantly improve the ST performance of our best ASR systems in
both the limited data scenario (Babel limited language pack, LLP,
tasks), and the scenario of large amounts of available training data
on a voice search task.

2. DROPOUT

The basic dropout training procedure involves, for each new train-
ing case, randomly zeroing each dimension of the input to the model
(or network layer) with probability pd, where pd is the dropout rate.
This is equivalent to introducing iid Bernoulli-distributed multiplica-
tive noise into the model, which masks each input with probability
pd. This procedure can be viewed as a method of training an ensem-
ble of models that share a common set of parameters—each model in
the ensemble has a unique input mask associated with it, and as such,
utilizes a unique subset of the parameters of the model [2]. Jointly
training the parameters of such an ensemble of models implements
a powerful form of regularization—each weight is optimized to per-
form well in the context of the exponential set of models that utilize
it. For a log-linear model with inputs x ∈ Rn aggregated over a col-
lection of models sharing weights {wij}, and each model utilizing a
unique mask in the set of all |M| = 2n possible binary masks over
these shared weights, m:|M ∈ Rn : mj|M ∈ {0, 1}, the geometric
average of such a set of exponential models reduces to:

EM[log p(y|x)] ∝
∑
M

p(M) log p(y|x,M)

∝
∑
M

p(M)
∑
j

mj|Mwijxj

=
∑
j

EM[mj ]wijxj (1)

where EM[mj ] = 1 − pd, and pd is the dropout rate. Therefore
at test time the expected output over the geometric mean of the 2N

models being aggregated can be computed by simply turning dropout
off, and scaling by the dropout rate utilized during training—a re-
markable result. More generally for deep neural networks, no such
results hold. However, dropout is effective in practice, particularly
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for conditionally linear models such as rectified linear (ReLU), Max-
out, and Sortout [6] networks.

3. MAXOUT NETWORKS

Maxout networks [5] generalize rectified linear (max[0, a]) units,
utilizing non-linearities of the form:

sj = max
i∈C(j)

ai (2)

where the activations ai are based on inner products with the out-
puts of the layer below: ai =

∑
k wikxk + bi. In the case of ac-

tivations with unconstrained weights, the sets C(j)∀j are generally
disjoint [5] . Such ”pooling” can of course also be overlapping, as
is the case for Maxout CNNs [5] and networks layers constrained to
have local receptive fields (LRFs) [8], where pooling is done over
spatially ”local” activations. The units in Order Statistic or Sortout
Networks [6] generalize Maxout networks by outputing more gen-
eral order statistics over such sets of inputs. In this paper we will
investigate annealed dropout training predominantly for Maxout net-
works.

4. ANNEALED DROPOUT

Deterministic annealing is a technique with roots in statistical
physics and the maximum entropy principle, and has been applied
in machine learning in the context of several non-convex problems,
such as expectation-maximization (EM) based learning, and point
matching problems, to mitigate against convergence to poor local
minima [9–11]. Essentially any regularization parameter can be
viewed as a “temperature” parameter, and annealing its value over
the course of training will gradually allow for more complex expla-
nations of the data to evolve. Dropout is a powerful regularizer of
model complexity, as every weight is constrained to improve the per-
formance of the exponential number of models that share the same
parameter, and annealing the dropout rate as a temperature param-
eter is an effective way to mitigate against the poor solutions. As
pointed out in [12], dropout training can be viewed as a Monte Carlo
approach that optimizes the expected loss over the ensemble of mod-
els formed by all possible masks over node outputs—a Bayesian ob-
jective. As a stochastic algorithm annealed dropout does more than
gradually increase the theoretical capacity of the network; it also
mitigates against the convergence to poor local minima, by ensuring
that gradient information is flowing through all parts of the network
during training, which can lead to increases in the realized capacity
of the learned network.
An annealed dropout algorithm has two main components: 1) an an-
nealing schedule that determines the dropout probability for a given
epoch, mini-batch, or training case, and 2) the usual dropout proce-
dure, which was already described. In this paper as in [1] we use the
following simple annealing schedule:

pd[t] = max(0, 1− t

N
)pd[0] (3)

to anneal the dropout rate by a constant amount over N steps, unless
otherwise specified. More generally variable-rate schedules take the
form pd[t] = pd[t − 1] + αt(θ) where αt(θ) is an annealing rate
parameter that can optionally depend on the current state (or esti-
mate of the state) of the current/auxiliary inputs/parameters θ. Note
that the term “annealing” implies that the dropout probability is non-

increasing but variable rate schedules (e.g. sample the dropout rate
from a current distribution estimate) could also be utilized.

4.1. Interpretation

As discussed previously the dropout procedure implements an ag-
gregation over an exponential number of models, each with a unique
mask over the set of weights for a given layer of the network. An-
nealed dropout realizes a training procedure where the ensemble of
models being learned during iteration i is initialized by an ensemble
of models with a lower average number of non-zero weights, and
higher variance in the number of active weights. This is easily seen
given that the probability distribution over n the number of active
(not dropped out) units in a layer of units with the same dropout
probability is binomial-distributed, and therefore:

E[n] = N(1− pd) (4)

V ar[n] = N(1− pd)pd (5)

Where N is the number of outputs of the layer, and n is the number
of “surviving”, non-zero outputs.
Note that annealing the dropout rate during stochastic training is re-
lated to but different than doing cross-validation to determine the
dropout rate. For a log-linear model, which is convex, training to
convergence each time the dropout rate is reduced implements a val-
idation search procedure for the dropout rate as a regularization pa-
rameter, on the heldout set. For non-convex optimization problems
such as neural network training, annealing the dropout rate is more
than an (approximate) validation procedure. Annealed dropout bi-
ases the learned model toward simple explanations of the data during
early training iterations, and gradually increases the capacity of the
model to allow more complex explanations to evolve for phenomena
that cannot easily be explained. Furthermore, annealed dropout like
dropout is a noisy training procedure, which can greatly increase the
realized capacity of the learned model, again by mitigating against
the convergence to pool local optima.

5. EXPERIMENTS ON AURORA 4

The performance of AD was tested extensively on the Aurora 4 ro-
bust ASR task in [1], which is a small scale (10 hour), medium vo-
cabulary noise and channel ASR robustness task based on the Wall
Street Journal corpus [13]. The most important results from that pa-
per are shown in table 1. These results show that Maxout networks
trained using AD consistently outperform those trained using an op-
timized, fixed dropout rate. Moreover, the best results on the task
obtained using AD-trained Maxout and Sortout LRF networks out-
perform the best published previous result on the task [7] by 10%
and 7% relative, respectively, despite the lack of use of any features
for robustness.

6. BABEL EXPERIMENTS

To further investigate the performance of AD-trained Maxout net-
works in the context of limited data and the use of sequence-training
criterion we have begun performing experiments on Babel limited
language pack (LLP) tasks (see [15] for details). As sequence train-
ing can be considered a ”fine-tuning” phase of model training, two
immediate questions are: 1) How to best utilize an AD-trained CE
models during ST?, and, 2) Do the CE gains obtained using AD sur-
vive ST?
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WER (%)
Network A B C D AVG
NAT [14] 5.4 8.3 7.6 18.5 12.4
JNAT [7] 4.5 7.4 8.1 16.5 11.1
ReLU, #H=1414 4.9 8.7 8.2 16.9 11.9
Maxout,#H=1024 4.4 8.7 7.8 16.9 11.8
AD Maxout , #H=1024 4.3 7.7 7.0 15.6 10.8
ReLU CNN #H=1414 4.9 8.1 7.3 15.5 11.0
Maxout CNN, #H=1024 4.6 8.2 7.2 15.2 10.9
AD Maxout CNN, #H=1024 4.0 7.8 6.7 14.9 10.5
ReLU LRF, #H=1414 4.7 8.3 7.5 16.1 11.3
Maxout LRF #H=1024 4.2 7.8 7.0 15.6 10.8
AD Maxout LRF, #H=1024 4.2 7.4 6.5 14.8 10.3

Table 1. Word error rate (WER) as a function of network type on the
Aurora 4 task. All networks utilize 7 hidden layers, and have roughly
the same number of parameters. All Maxout networks utilize 2 linear
filters per hidden unit. The number of hidden units per layer for each
network is indicated. The best published results on Aurora 4 that
we are aware of have also been included. Networks trained using
annealed dropout (AD) are noted–all others results use their optimal
fixed dropout rate. Please consult [1] for further details.

WER (%)
Network AD scheme CE ST

Sigmoid DNN D=0 80.2 77.4
Maxout DNN CE: AD, ST: D=0 79.3 75.9
Maxout DNN CE: AD ST: D=fixed 79.3 75.7
Maxout DNN CE:AD, ST:AD 79.3 77.0

Table 2. Word error rate (WER) as a function of model and training
method for various the DNNs trained on the Babel’s Tamil LLP. The
WERs for both cross-entropy (CE) and the subsequently sequence-
trained (ST) models are given. Several strategies for utilizing an AD-
trained CE model during ST are considered. AD methods reduce the
dropout rate by 0.02 per epoch.

W.r.t. the first question, there are, roughly speaking, 3 options: 1)
re-normalize the model based on the final CE dropout rate and turn
dropout off, 2) leave the dropout rate fixed at the value inferred dur-
ing CE training, and 3) continue to anneal the dropout rate as ST
proceeds. Table 2 compares the performance of several AD-trained
maxout networks on the Tamil LLP task to a highly tuned baseline
system based on the sigmoid non-linearity. All DNN acoustic mod-
els have 5 hidden layers of 1024 hidden units and a softmax output
layer. The input features to all networks were computed based on
9 adjacent frames of 40 dimensional features, which were speaker-
adapted using FMLLR. All networks are initialized with layer-wise
discriminative pre-training. After the pre-training, the models were
subjected to up to 30 iterations of cross-entropy (CE) training fol-
lowed by up to 30 iterations of Hessian-free (HF) sequence train-
ing based on the state-level minimum Bayesian error (sMBR). It is
worthy of note that other researchers at IBM have trained ReLU net-
works on these features and have failed to produce WER gains over
this baseline at the ST level. Table 2 summarizes the results we ob-
tained. These results suggest that it may be better to keep the final
dropout rate identified during CE training fixed during ST, at least in

the case of severely limited data and less researched ASR languages
like Tamil. Note that for the ST:AD scheme, the best model is found
at iteration 10, whereas the other models improve until iteration 30.
Further iterations with a fixed dropout rate would further improve
this result, however the ST:D=0 model is already at 76.4% WER at
iteration 10.

WER (%)
Network CE ST

Sigmoid CNN 64.6 62.6
AD Maxout CNN 63.2 59.7

D=0.375 Maxout CNN (Best D) 63.2 60.8

Table 3. Word error rate (WER) as a function of model and training
method for Babel’s Hatian-Creole limited language pack (LLP). The
WERs for both cross-entropy (CE) and the subsequently sequence-
trained (ST) models are given. During AD the dropout rate was re-
duced from 0.5 to 0.24 over the first 13 CE epochs.

To begin to investigate the general importance of AD during ST in
limited data scenarios, we next compared AD-trained Maxout CNNs
to Maxout CNNs trained with a fixed dropout rate and a highly-
tuned baseline CNN system for Hatian-Creole. The baseline CNN
model has two convolutional layers followed by four fully connected
feedforward layers. All hidden layers utilize the sigmoid activation
function. The input features to the first conv. layer are 40-dim. log-
Mel features with VTLN and their deltas and double deltas. Eleven
frames of temporal context are then spiced. There are 128 feature
maps in the first conv. layer. each with 9x9 local receptive fields
(LRFs), which results in 32x3-dim feature maps. These are max-
pooled by a 3x1 non-overlapping windows to produce 11x3-dim.
outputs. There are 256 feature maps in the second conv. layer each
with 4x3 LRFs, which results in 8x1-dim feature maps. Following
the second convolutional layer are four fully connected feedforward
layers, each containing 1024 units. The training of the CNN is com-
posed of up to 30 iterations of CE training followed by 20 iterations
of HF sMBR sequence training. The Maxout networks tested utilize
2 filters per Maxout unit and the same topology in terms of number
of feature maps and hidden units. Table 3 depicts the results. In
contrast with our results on Aurora 4, the AD-trained system is only
on-par with best fixed-dropout system at the CE level. This presum-
ably because the annealing schedule was not tuned for the task. In
any case, we have avoided a grid-search over dropout rate by using
a pre-defined AD schedule tuned on Aurora 4. Both systems signifi-
cantly outperform the highly tuned baseline, and the AD-trained ST
system outperforms the best fixed-dropout ST Maxout system, per-
haps because better lattices result. Significant WER gains over the
baseline system have recently been obtained by re-aligning with the
output ST model and re-training, and by ASR-specific data augmen-
tation [16]. These techniques could further improve the results.

7. EXPERIMENTS: VOICE SEARCH

The presented results on the Aurora 4 and Babel limited language
pack (LLP) tasks show that even in data-limited situations, annealed
dropout can deliver further gains over a fixed dropout training strat-
egy. We now investigate the use of Maxout networks trained with
annealed dropout for commerical open voice search (OVS) in the
data-plenty scenario.
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7.1. Experimental Setup

Experiments were conducted using an IBM internal open voice
search (OVS) US English task for ASR. The data consists of mo-
bile search queries and messaging tasks consisting of 633.8 hours of
manually transcribed data. for a total of 711K utterances. This data
set was split in two subsets: a training set is made of 622.3 hours
of data (698K utterances) randomly chosen from the full OVS set,
and a heldout set is composed of the remaining 11.5 hours (13K ut-
terances). Our decoding set Test-15K is made solely of 19.2 hours
of mobile search queries from 14.9K unique speakers (for 17.8K ut-
terances). A random subset of 5K speakers called Test-5K is about
6.6 hour long (6071 utterances), and used moslty for acoustic weight
tuning. We report WERs on both sets.
All DNN models were first trained based on a cross-entropy (CE)
objective using SGD for up to 30 epochs, and additionally discrim-
inatively pre-trained for one epoch as each hidden layer was added.
Sequence training was done using an evolved version of the training
system described in [15], which utilizes a Hessian-free (HF) training
procedure similar to that described in [16]. We utilized a modified
procedure called Dynamic Stochastic Average Gradient with HF op-
timization (DSAG-HF) as introduced in [17] that displays faster con-
vergence than regular HF-ST. All models operate on 31-dim log Mel
filterbanks, which are stacked with their 1st, and 2nd time deriva-
tives, and spliced over +-5 frames to yield 1023- dim input features.
All DNNs are trained to predict 9000 context dep. acoustic states
derived from a context dependency tree that was learned from our
training data.

7.2. Results

Table 4 summarizes the DNN topologies that were investigated.
Note that all models have roughly the same number of parameters.
Table 5 summarizes the performance of several DNN models on a
100 hour subset of the OVS training data. All models were trained
for 30 CE and 10 ST iterations based on forced alignments derived
from the 622 hr baseline system. The AD-trained Maxout model
outperforms the baseline model, and slightly outperforms the opti-
mal fixed dropout rate Maxout model, while alleviating the need to
search for the best fixed dropout rate.
Table 6 depicts CE and ST results for several models trained on the
full 622 training set of this OVS task. Looking at the results, we can
see that the 0.5% absolute gain that AD Maxout LRFs had over the
baseline Sigmoid system is essentially maintained when we move
from from CE to an ST criterion, and from the test-5K (7hrs) dataset
to the larger test-15K (19 hrs) dataset. So far no other network
topologies have been able to improve this baseline system, despite
promising indications when working with smaller amounts of data.
In contrast, these results show that AD-trained maxout networks are
capable of improving on this highly tuned traditional DNN baseline
system by a significant margin.

8. DISCUSSION

In this paper we have shown empirical evidence that Maxout net-
works, when trained with annealed dropout, can improve ASR
systems trained using sequence-level discriminative criterion, and
LVCSR systems trained on large amounts of training data. While
these results are encouraging, several important research directions
remain. Currently we are conducting experiments to quantitatively
study the effects of the dropout annealing schedule on performance,
with a particular focus on big data regimes–so far results suggest

that WER performance is quite insensitive to the annealing schedule,
but that annealing the dropout rate to zero over the first 1000-5000
hours of data encountered by SGD produces good results. Another
important and directly related research question is how the “search”
for the annealing schedule (for both the dropout and learning rate)
should be carried out—methods that can dynamically decide or av-
erage over candidate models e.g. based on a dynamic tree of learn-
ing/dropout rates and their associated model parameters are of great
interest to us, but so far such approaches have not delivered speed or
performance gains. Such pursuits are particularly intriguing in the
scenario of asynchronous stochastic model updating algorithms.

Topology Non-linearity #H x #L + P
Baseline Sigmoid 2K x 5 + 100 (Linear)
Maxout Maxout, 2 filters/unit 1.4K x 4 + 512
Maxout LRF Maxout, 2 filters/unit LRF + 1.4K x 3 + 512
Maxout LRFP Maxout, 2 filters/unit LRF + 1.4K x 4 + 100

Table 4. Topology of models investigated for OVS task. The number
of hidden layers (#L), units per hidden layer (#H), size of the ’pinch’
layer (P) immediately before the output layer, and the network non-
linearity are as specified. All models predict 9000 context-dependent
acoustic states. The local receptive field (LRF) used in the first layer
of topology M2 utilizes 40 9x9 filters per time-frequency position.
All networks have roughly the same number of parameters.

WER (%)
Topology Dropout 5K CE 5K ST
Baseline No 13.0 11.7
Maxout D=0.2 (best D) 12.9 11.5
Maxout AD (0.5→ 0 over 20 epochs) 12.6 11.3

Table 5. Word error rate (WER) as a function of model topology and
training method. All models were trained on 100 hrs of voice search
data. Sequence-trained (ST) models we initialized with their corr.
(CE) models. Acoustic weights and log priors were tuned on the
Test 5K data ( 7 hrs). Models were trained using annealed dropout
(AD) where specified.

WER (%)
Topology Dropout 5K CE 5K ST 15K ST
Baseline No 11.5 10.1 10.7
Maxout AD 11.2 9.8 10.3

Maxout LRF AD 11.0 9.7 10.2
Maxout LRFP AD 11.1 9.7 10.1

Table 6. Word error rate (WER) as a function of model topology
and training method. All models were trained on 622 hrs of open
voice search (OVS) data. Sequence-trained (ST) models we ini-
tialized with the corr. (CE) models (see text for details). Acoustic
weights and log priors were tuned on the Test 5K data ( 7 hrs), which
is a subset of the Test 15K ( 20 hrs). AD-trained models had their
dropout rate annealed to zero over the first 3 epochs.
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