
Understanding Deep Learning Requires Rethinking
Generalization
Contribution
Traditional view of generalization is incapable of distinguishing between different neural networks that have radically different
generalization performance.

Randomization tests
Deep neural networks easily fit random labels.

The role of explicit regularization
Explicit regularization may improve generalization performance, but is neither necessary nor by itself sufficient for
controlling generalization error.

Finite sample expressivity
Two-layer ReLU network with p=2n+d parameters that can express any labeling of any sample of size n in d
dimensions.

The role of implicit regularization
For linear models, SGD always converges to a solution on small norm. Hence, the algorithm itself is implicitly
regularizing the solution

EFFECTIVE CAPACITY OF NEURAL NETWORKS

Interesting Observations:

1. The effective capacity of neural networks is large enough for a brute-force memorization of the entire data set.
2. Even optimization on random labels remains easy. In fact, training time increases only by a small constant factor compared with

training on the true labels.
3. Randomizing labels is solely a data transformation, leaving all other properties of the learning problem unchanged.
4. A steady deterioration of the generalization error as we increase the noise level. This shows that neural networks are able to

capture the remaining signal in the data, while at the same time fit the noisy part using brute-force.

Implication

Preliminary

PAC learning framework

 : input space, the set of all possible example or instances.

 : output space, the set of all possible labels or target values.





 →  



Concept c : , a mapping from  to .

Concept Class C : a set of cencept

Hypothesis set H : a set of h.

Learning process : Received a sample  drawn i.i.d according to D as well as the labels  which are
based on specific target concept , the learner aims to select a  that has a small generalization error with respect to the
concept c.

Generalization error : ,

where  is the indicator function of the event .

Empirical error : 

function g : maps  to 

G : family of loss functions associated to H

Rademacher complexity

where  are i.i.d uniform random variables.

its idea : measures on average ’s capability of fitting uniform noise to evaluate the complexity of .

The experiment results above suggests the neural networks fit the training set with random labels perfectly, we get .

Uniform stability
Uniform stability of an algorithm A measures how sensitive the algorithm is to the replacement of a single example. However, it is solely
a property of the algorithm, which does not take into account specifics of the data or the distribution of the labels.

THE ROLE OF REGULARIZATION

Observation : Both regularization techniques help to improve the generalization performance, but even with all of the regularizers
turned off, all of the models still generalize very well.
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Observation : So while regularization is important, bigger gains can be achieved by simply changing the model architecture. It is
difficult to say that the regularizers count as a fundamental phase change in the generalization capability of deep nets.

Observation : The shaded area indicate the accumulative best test accuracy, as a reference of potential performance gain for early
stopping. However, on the CIFAR10 dataset, we do not observe any potential benefit of early stopping.

Summary : Our observations on both explicit and implicit regularizers are consistently suggesting that regularizers, when properly
tuned, could help to improve the generalization performance. However, it is unlikely that the regularizers are the fundamental reason for
generalization, as the networks continue to perform well after all the regularizers removed.

FINITE-SAMPLE EXPRESSIVITY

Theorem 1. There exists a two-layer neural network with ReLU activations and 2n+d weights that can represent any function on a
sample of size n in d dimensions.

IMPLICIT REGULARIZATION: AN APPEAL TO LINEAR MODELS
n distinct data points { } where  are d-dimensional feature vectors and  are labels. Letting loss denote a nonnegative loss( , )xi yi xi yi



function with loss(y, y) = 0, consider the empirical risk minimization (ERM) problem

if , Xw = y has an infinite number of solutions. One popular way to understand quality of minima is the curvature of the loss
function at the solution.

For linear model, the Hessian is degenerate at all global optimal solutions.

A promising direct is to consider the workhorse algorithm SGD.

 : step size

 : prediction error loss

kernel solution is equivalent to the minimum l2-norm solution of Xw = y

problems : this notion of minimum norm is not predictive of generalization performance. Preprocessing can obtain better performance
but may get larger norm.

CONCLUSION
The classical view of machine learning rests on the idea of parsimony. In fact, sheer memorization is possible to be effective for natural
tasks.

Understanding neural networks requires rethinking generalization.
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