
The xmuspeech System for AP19-OLR Challenge 1

Abstract—This paper describes our xmuspeech system
for AP19-OLR challenge. The challenge this year contains
three tasks, (1) short-utterance LID, (2) cross-channel LID
and (3) zero-resource LID. We leverage the system pipeline
from three aspects, including the data preparation,
language modeling method, and fusion strategy. First, we
perform the data augmentation strategy by applying the
speed and volume perturbation on the training set. Then,
the proposed length expanding method is used in the test set
for task 1. As for model building, we develop LID systems
on Kaldi and Pytorch, in which different optimization
methods are available, for task 1 and task 3, respectively.
The well-known x-vector extended architecture, the
multi-task learning model with phonetic information and
our previously proposed multi-feature integration
structure are implemented for task 1 and task 3. The
i-vector systems are built for the cross-channel task. For all
of three tasks, the pipeline of embedding extraction with a
backend classifier is used. Finally, the greedy fusion
strategy helps us to choose the subsystems to the final
fusion system (submitted system). The Cavg of 0.0263,
0.2813 and 0.1697 on the development set for task 1, 2, 3 are
obtained for our submitted systems.

Index Terms—AP19-OLR, language identification, x-vector,
multi-task learning, multi-feature integration

I. INTRODUCTION
he language identification (LID) refers to identify the
language categories from utterances. Considering the
challenge existing in LID tasks, the oriental language

recognition challenge is organized annually since 2016 [1,2].
The xmuspeech team has attended the OLR challenge since the
AP17-OLR and achieved the third and the first rank in
AP17-OLR and AP18-OLR respectively.

The AP19-OLR challenge [3] includes three tasks:
short-utterance (1 second) LID (task 1), the same as past two
challenges; cross-channel LID (task 2), which reveals the
real-life demand of speech technology; and zero-resource LID
(task 3) ,in which no resources are provided for training before
inference, but only several utterance of each language are
provided for language reference. All tasks will be evaluated
and ranked separately. We submitted the results of three tasks
with required test condition in this challenge.

In this paper, we introduce the details of the xmuspeech
system for AP19-OLR and the remainder of this paper is
organized as follows. Section 2 describes the data preparation,

Section 3 introduces the methods used to build the systems. The
experimental settings and results of subsystems on
development set are shown in Section 4. Finally, the conclusion
is given in Section 5.

II. DATA PREPARATION

In this AP19-OLR challenge, additional training materials
are forbidden to participants and the permitted resources are
several specified data sets, including AP16-OL7, AP17-OL3,
AP17-OLR-test, AP18-OLR-test and THCHS 30. The detailed
description of data sets used is listed in the Table 1.

A. Training Set
Before training, we adopt the data augmentation,

including speed and volume perturbation, to increase the
amount and diversity of the training data. For speed
perturbation, we apply a speed factor of 0.9 or 1.1 to slow down
or speed up the original recording, and for volume perturbation,
random volume factor is applied. Finally, two augmented
copies of the original recording are added to the original data
set to obtain a 3-fold training set.

For task 1, the AP16-OL7, AP17-OL3, AP17-OLR-test
and THCHS 30 constitute the training set for all Kaldi [4] based
systems, namely ap19_task_1_train_with_thchs30_aug. As for
training set in Pytorch platform [5], the THCHS 30 data set is
not used for the limit of time, therefore the training set in
Pytorch based systems for task 1 is named
ap19_task_1_train_aug.

As for task 2, we used all data set allowed to use in this
challenge to train the i-vector system with data augmentation
mentioned above, including AP16-OL7, AP17-OL3,
AP17-OLR-test, AP18-OLR-test and THCHS 30. The training
set used in task 2 is named ap19_task_2_train_aug. The models
for task 3 share the exactly same training set as task 1.

B. Phonetic Training Set
The AP16-OL7 and AP17-OL3 databases contain lexicons

of all the 10 languages, as well as the transcriptions of all the
training utterances. These resources are chosen to train an ASR
model firstly and attain phonetic alignment labels for the
multi-task learning with phonetic information. We name this
set as phonetic_training_set.

C. Task 1 Test Set
The proposed method [6] introducing length expanding

strategy to provide supplemental information of short-duration
utterances by dithering the short duration evaluation utterances

The xmuspeech System for AP19-OLR
Challenge

Zheng Li1, Miao Zhao2, Jing Li2, Yiming Zhi2 and Lin Li1
1School of Electronic Science and Engineering, Xiamen University, China

2School of Informatics, Xiamen University, China

T



The xmuspeech System for AP19-OLR Challenge 2

at different speeds is used for task 1 development set and
evaluation set.

D. Enroll Set
For better matching the test condition (short utterance), the

enroll set for task 1 contains the AP16-OL7, AP17-OL3 and
AP17-OLR-test-task1 without data augmentation, namely
ap19_task_1_back_end_train.

In order to be generalized to cross channel test condition,
we use as many data as possible to composes the enroll set for
task 2: the enroll set is a subset of training set for task 2,
including the target six languages, namely
ap19_task_2_enroll_aug.

E. Backend Training Set
As the embedding extraction and backend classifier method

is the strategy, the selection of backend training set is
influential. We use the same data set as task 1 enroll set to train
the backend for task 1 and task 3. And the enroll set for task 2 is
used to train to task 2 backend. We use the Logistic Regression
(LR) as the classifier for three tasks and the training set for LR
is the specific enroll set of each task.

III. METHODS

In this section, the methods used in our systems are
introduced briefly.

A. I-vector
The baseline i-vector is used in our systems [7], in which the

input features are acoustic features with first and second order
derivatives.

B. X-vector Extended
For the sake of the x-vector extended architecture

significantly outperforming the baseline x-vector in the Kaldi
recipes [8, 9], we choose x-vector extended to build the
x-vector system. Compared to the traditional x-vector, the
x-vector extended structure uses a slightly wider temporal
context in the TDNN layers and interleave dense layers
between the TDNN layers.

C. Multi-task Learning Model with Phonetic Information
Considering the relationship between the language and

phone classification tasks, we utilize the multi-task learning to
train the two tasks jointly [5]. The frame-level hidden layers are
the shared part that learns the phonetic compensation
information for the language task. From a view of feature space,
the phonetic representation is invariant information that is not
affected by differences in language and duration. The gradient

descent of each task will affect the frame-level shared layers in
training and the x-vector will be extracted from the penultimate
segment-level layer in the language task branch.

D. Multi-feature Integration
Due to the data distribution of different features is

comparatively dissimilar and the information between features
is complementary, the proposed multi-feature integration
structure is used to utilize complementary acoustic features into
x-vector system [10]. While each branch processed one type of
acoustic features on the frame level, and the outputs of the two
branches for each frame were spliced together as a super vector
before being input into the statistics pooling layer.

E. AM-Softmax
The AM-softmax is one of the most popular loss function in

classification tasks [11]. The core concept of AM-softmax is
the feature normalization and adding an additive margin into
the softmax loss function. Given that the AM-softmax is not
supported in the Kaldi, we use the Pytorch to complement the
AM-softmax and built all of the Pytorch subsystems with
AM-softmax as the loss function.

F. Logistic Regression
Logistic regression (LR) [12] is a kind of supervised

classification and discrimination algorithm. With the help of
Sigmoid function, the training samples are compressed
between [0,1], so that each pattern sample has probability
significance in the discrimination space. In our systems, all of
the backend classifiers in three tasks are the LR.

G. Greedy Fusion
The fusion strategy used is the greedy fusion [13] and for the

consideration of robustness, the final fusion weight is set as
equal to each subsystem.

IV. EXPERIMENTAL SETTINGS AND RESULTS

A. Experimental Settings
In this challenge, we built more than 20 subsystems for three

tasks. Although two platforms (Kaldi, Pytorch) were used to
build subsystems, the feature engineering and the backend
processing were all complemented on the Kaldi platform.
For feature engineering, three basic acoustic features:

20-dimensional MFCC, 40-dimensional FBank and
20-dimensional PLP were used with 3-dimensional pitch
feature respectively.

Table 1: Data Sets Used in Systems

Task Model LDA Centering LR

task 1
ap19_task_1_train_with_thchs30_aug

ap19_task_1_train_aug
phonetic_training_set

ap19_task_1_back_end_train ap19_task_1_back_end_train ap19_task_1_back_end_train

task 2 ap19_task_2_train_aug ap19_task_2_train_aug ap19_task_2_train_aug ap19_task_2_enroll_aug

task 3
ap19_task_1_train_with_thchs30_aug

ap19_task_1_train_aug
phonetic_training_set

ap19_task_1_back_end_train ap19_task_1_back_end_train AP19-OLR-test-task3-enroll



The xmuspeech System for AP19-OLR Challenge 3

The training process in Kaldi platform was the same as
what’s in the recipes except our adjustment of
hyper-parameters.
In Pytorch training, we found that different settings of the

chunk size leaded to different and complementary results. Thus,
several Pytorch’s subsystems are just different in the setting of
chunk size. Further, for task 3, we assumed that less epoch may
be better for the improvement of model’s generalization, so we
used less epoch for task 3.
The backend processing was almost same in three tasks and

the main difference was the dimension of LDA which are
shown in the Table 1. First, the Backend Training Set was used
to train the LDA model. Then the centering matrix was
obtained from the LDA-processed Backend Training Set.
Thirdly, a normalization matrix was got from the
centered-LAD-processed Backend Training Set. Finally, the
enroll set was processed through LDA, centering and
normalization, then the LR model was trained by the
backend-processed enroll set.
Finally, from the score-level greedy fusion on the

development set, the final 7 subsystems were chosen for the
task 1 fusion, the final 2 subsystems for task 2 fusion and final 6
subsystems for task 3 fusion. The results and configurations of
subsystems for fusion and the results of final submitted systems
are in the Table 2.

B. Results and Analysis
For task 1 and task 3, the best single systems were both the

Pytorch based system. For task 2, the traditional i-vector
significantly outperformed other systems, causing the final
fusion only contained two i-vector subsystems.
For task 1, the performance of AM-softmax based systems

were much better than traditional softmax based systems. The
introducing of phonetic information was helpful to the LID

tasks, as the Kaldi’s subsystems without phonetic information
were not chosen into the final fusion list. For the sake of the
limit of time, the multi-task learning model with AM-softmax
was not complemented but we assume it should perform well.
For task 2, due to the lack of cross channel training data, it

was hard to build a more robust system than the i-vector
system.
For task 3, given the zero-resource testing condition, the

introducing of phonetic information into language modeling
network may be useful to improve the robustness. In this task,
subsystems using AM-softmax may be overfitting, even if we
reduced the number of epoch.
In this challenge, after the key was released, we found that it

is difficult to estimate our systems on the development set for
obtaining consistent results on the evaluation set. Especially in
task 1, given the official baseline obtained the almost the same
level of results on the development set and the evaluation set,
we can hardly speculate the reasons behind this. The fusion of
subsystems improved the performance of three tasks on the
development set but not in the evaluation set. The results of
subsystems on the evaluation set are also listed on the Table 2.

V. CONCLUSION

In this paper, we illustrate the xmuspeech system for
AP19-OLR challenge. For AP19-OLR challenge, a great deal
of methods, including our previously proposed methods, were
investigated in three tasks. The best single system obtained in
task 1 was the x-vector extended with AM-softmax, in task 2
was i-vector and in task 3 was the multi-task learning x-vector.
Further, the fusion of subsystems improved the performance
and improve the robustness of the submitted systems of three
tasks. Finally, the contribution rank of our submitted systems
will be: 1. appropriate and novel methods of modeling language
identification systems. 2. the optimization of subsystems.

Table 2: the Results of Subsystems

Task Platform Model Feature Epoch LDA_dim Cavg on dev Cavg on eval

task1

kaldi Multi-task.xv plp 10 0.0475 0.1055

Multi-task.xv mfcc 10 0.0489 0.1076

pytorch

extended.xv.chunk100 plp 30 256 0.0347 0.0863

extended.xv.chunk100 mfcc 30 256 0.0358 0.0874

extended.xv.chunk50 plp 30 256 0.0363 0.0924

extended.xv.chunk50 mfcc 30 256 0.0345 0.0909

extended.xv.chunk50 fbank 30 256 0.0441 0.0952
final fusion (submitted system) 0.0263 0.0818

task2
kaldi i-vector plp 10 0.2815 0.2713

i-vector mfcc 10 0.2864 0.2848
final fusion (submitted system) 0.2813 0.2741

task3

kaldi
Multi-task.xv plp 512 0.2045 0.0228

Multi-task.xv mfcc 512 0.2067 0.0214

Multi-task.xv fbank 512 0.2220 0.0120

pytorch
extended.multi-feature.xv .chunk100 mfcc&plp 10 512 0.2438 0.0302

extended.xv.chunk100 plp 10 512 0.2530 0.0521

extended.xv.chunk100 mfcc 10 512 0.2682 0.0549

final fusion (submitted system) 0.1697 0.0113



The xmuspeech System for AP19-OLR Challenge 4

REFERENCES
[1]Tang, Zhiyuan, et al. "AP17-OLR challenge: Data, plan, and baseline." 2017
Asia-Pacific Signal and Information Processing Association Annual Summit
and Conference (APSIPA ASC). IEEE, 2017.

[2]Tang, Zhiyuan, Dong Wang, and Qing Chen. "AP18-OLR Challenge: Three
Tasks and Their Baselines." 2018 Asia-Pacific Signal and Information
Processing Association Annual Summit and Conference (APSIPA ASC). IEEE,
2018.

[3]Tang, Zhiyuan, Dong Wang, and Liming Song. "AP19-OLR Challenge:
Three Tasks and Their Baselines." arXiv:1907.07626 (2019).

[4]Povey, Daniel, et al. "The Kaldi speech recognition toolkit." IEEE 2011
workshop on automatic speech recognition and understanding. No. CONF.
IEEE Signal Processing Society, 2011.

[5]Paszke A, Gross S, Chintala S, et al. Automatic differentiation in pytorch[J].
2017.

[6]M. Zhao, R. Li, and S. Yan, Z. Li, H. Lu, S. Xia, Q. Hong and L. Li,
“Phone-aware multi-task learning and length expanding for short-duration
language recognition,” in 2019 APSIPA ASC. IEEE, 2019, p. (accepted).

[7]Garcia-Romero D, Espy-Wilson C Y. Analysis of i-vector length
normalization in speaker recognition systems[C]//Twelfth Annual Conference
of the International Speech Communication Association. 2011.

[8]Snyder, David, et al. "X-vectors: Robust DNN embeddings for speaker
recognition." 2018 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2018.

[9]Snyder, David, et al. "Speaker Recognition for Multi-speaker Conversations
Using X-vectors." ICASSP 2019-2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019.

[10]Z. Li, H. Lu, J. Zhou, L. Li, and Q. Hong, “Speaker embedding extraction
with multi-feature integration structure,” in 2019 APSIPA ASC. IEEE, 2019, p.
(accepted).

[11]Yu, Ya-Qi, Lei Fan, and Wu-Jun Li. "Ensemble Additive Margin Softmax
for Speaker Verification." ICASSP 2019-2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019.

[12]Kleinbaum D G, Dietz K, Gail M, et al. Logistic regression[M]. New York:
Springer-Verlag, 2002.

[13] Ken Kennedy. 2000. Fast greedy weighted fusion. In Proceedings of the
14th international conference on Supercomputing (ICS '00). ACM, New York,
NY, USA, 131-140. DOI=http://dx.doi.org/10.1145/335231.335244


	I.INTRODUCTION
	II.DATA PREPARATION
	In this AP19-OLR challenge, additional training ma
	A.Training Set
	B.Phonetic Training Set
	C.Task 1 Test Set
	D.Enroll Set 
	E.Backend Training Set 

	III.METHODS
	A.I-vector
	B.X-vector Extended
	C.Multi-task Learning Model with Phonetic Informatio
	D.Multi-feature Integration 
	E.AM-Softmax
	F.Logistic Regression
	G.Greedy Fusion

	IV.EXPERIMENTAL SETTINGS AND RESULTS 
	A.Experimental Settings
	B.Results and Analysis

	V.CONCLUSION
	REFERENCES

