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Abstract

Deep learning has gained much success in sentence-level relation classification.
For example, convolutional neural networks (CNN) have delivered state-of-the-art
performance without much effort on feature engineering as the conventional
pattern-based methods. A key issue that has not been well addressed by the
existing research is the lack of capability to learn temporal features, especially
long-distance dependency between nominal pairs. In this paper, we propose a
novel framework based on recurrent neural networks (RNN) to tackle the
problem, and present several modifications to enhance the model, including a
max-pooling approach and a bi-directional architecture. Our experiment on the
SemEval-2010 Task-8 dataset shows that the RNN model can deliver
state-of-the-art performance on relation classification, and it is particularly
capable of learning long-distance relation patterns. This makes it suitable for
real-world applications where complicated expressions are often involved.
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1 Introduction
This paper focuses on the task of sentence-level relation classification. Given a

sentence X which contains a pair of nominals 〈x, y〉, the goal of the task is to

predict relation r ∈ R between the two nominals x and y, where R is a set of

pre-defined relations [1].

Conventional relation classification methods are mostly based on pattern match-

ing, and an obvious disadvantage is that high-level features such as tags of part of

speech (POS) and name entities are often involved. These high-level features re-

quire extra NLP modules that not only increase computational cost, but introduce

additional errors. Also, manually designing patterns is always time-consuming with

low coverage.

Recently, deep learning has made significant progress in natural language pro-

cessing. [2] proposed a general framework which derives task-oriented features by

learning from raw text data using convolutional neural networks (CNN). The idea

of ‘learning from scratch’ is fundamentally different from the conventional methods

which require careful and tedious feature engineering. [2] evaluated the learning-

based approach on several NLP tasks including POS tagging, NER and semantic

role labelling. Without any human-designed features, they obtained close to or even

better performance than the state-of-the-art systems that involve complicated fea-

ture engineering.

A multitude of researches have been proposed to apply the deep learning methods

and neural models to relation classification. Most representative progress was made
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by [3], who proposed a CNN-based approach that can deliver quite competitive

results without any extra knowledge resource and NLP modules. And there are

other valuable models such as MV-RNN[4], CNN[5], FCM[6].

Despite the success obtained so far, most of the current deep learning approaches

to relation learning and classification are weak in modeling temporal patterns. Note

that the semantic meaning of a relation is formed in the context of the two target

nominals, including the word sequence between them and a window of preceding and

following words. Additionally, the relation is in fact ‘directional’, which means the

order of the context words does matter. Therefore, relation learning is essentially a

task of temporal sequence learning, and so should be modelled by a temporal model.

Most of the current deep learning models mentioned above are static models, and

are potentially weak especially when learning long-distance relation patterns. For

example, the CNN model can learn only local patterns, and so is hard to deal with

patterns that is outside of the window of the convolutional filter.
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Embedding
Layer

Pooling
Layer

Figure 1 The framework of the proposed model.

In this paper, we propose a novel framework based on recurrent neural networks

(RNN) to tackle the problem of long-distance pattern learning. Compared to other

models such as CNN, RRN is a temporal model and is particularly good at mod-

eling sequential data [7]. The main framework is shown in Figure 1, which will be

described in details in Section 3.

The main contributions of this paper are as follows:

• Proposed an RNN-based framework to model long-distance relation patterns.

• Verified the proposed approach on the SemEval-2010 task-8 dataset and ob-

tained state-of-the-art performance.

• Analyzed empirically the capability of the RNN-based approach in modeling

long-distance patterns.
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2 Related Work
As mentioned, the conventional approaches to relation classification are based on

pattern matching, and can be categorized into feature-based methods [8, 9] and

kernel-based methods [10, 11]. The former category relies on human-designed pat-

terns and so require expert experience and time consuming, and the latter category

suffers from data sparsity. Additionally, these methods rely on extra NLP tools to

derive linguistic features.

To alleviate the difficulties in pattern design and also the lack of annotated data,

distant supervision has drawn a lot of attention since 2009 [12, 13, 14, 15]. This

technique combines resources of text data and knowledge graph, and uses the re-

lations in the knowledge graph to discover patterns automatically from text data.

However they still depend on NLP tools.

Our work follows the line of automatic feature learning by neural models, which is

largely fostered by [2]. A closely related work was proposed by [3], which employed

CNN to learn patterns of realtions from raw text data and so is a pure feature learn-

ing approach. A potential problem of CNN is that this model can learn only local

patterns, and so is not suitable for learning long-distance patterns in relation learn-

ing. Particularly, simply increasing the window size of the convolutional filters does

not work: that will lose the strength of CNNs in modeling local or short-distance

patterns. To tackle this problem, [5] proposed a CNN model with multiple window

sizes for filters, which allows learning patterns of different lengths. Although this

method is promising, it involves much more computation, and tuning the window

sizes is not trivial. The RNN-based approach solves the difficulty of CNN models

in learning long-distance and variable-distance patterns in an elegant way.

Another related work is MV-RNN model proposed by [4]. The difference is that

we based on different RNNs: the MV-RNN model is based on recursive NN while

our work is based on recurrent NN, a temporal model. Additionally, MV-RNN relies

on syntactic parsing, and our model uses only word vectors and so is more efficient

especially in predicting process.

Finally, our work related to the FCM framework proposed recently [6]. In princi-

ple, FCM decomposes sentences into substructures and factorizes semantic meaning

into contributions from multiple annotations (e.g., POS, NER, dependency parse).

It can be regarded as a general form of the MV-RNN and CNN models where the

recursive hierarchy or max-pooling are replaced by a general composition function.

Nevertheless, FCM is still a static model and shares the same disadvantage of CNN

in modeling temporal data.

The advantage of the RNN model in learning sequential data is well-known and

has been utilized in language modeling [16] and sequential labeling [17]. Compared

to these studies, a significant difference of our model is that there are no predicting

targets at each time step, and the supervision (relation label) is only available at

the end of a sequence. This is similar to the semantic embedding model proposed

by [18], though we have made several important modifications, as will be presented

in the next section.

3 Model
As has been shown in Figure 1, the model proposed in this paper contains three

components: (1) a word embedding layer that maps each word in a sentence into a
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low dimension word vector; (2) a bidirectional recurrent layer that models the word

sequence and produces word-level features (representations); (3) a max pooling layer

that merges word-level features from each time step (each word) into a sentence-level

feature vector, by selecting the maximum value among all the word-level features

for each dimension. The sentence-level feature vector is finally used for relation

classification. These components will be presented in detail in this section.

3.1 Word embedding

The word embedding layer is the first component of the proposed model, which

projects discrete word symbols to low-dimensional dense word vectors, so that the

words can be modeled and processed by the following layers. Let xt ∈ {0, 1}|V |

denote the one-hot representation of the t-th word vt, where |V | denotes the size

of the vocabulary V . The embedding layer transfers xt to word vectors et ∈ RD as

follows:

et = Wemxt (1)

where Wem ∈ R|D|×|V | is the projection matrix. Since xt is one-hot, Wem in fact

stores representations of all the words in V . Word embedding has been widely

studied in the context of semantic learning. In this work, we first train word vectors

using the word2vec tool[1] with a large amount of data that are in general domains,

and then use these vectors to initialize (pre-train) the word embedding layer of our

model. By this way, knowledge of general domains can be used. It has been shown

that this pre-training improves model training, e.g., [3, 6].

3.2 Bi-directional network

The second component of our model is the recurrent layer, the key part for modeling

sequential data and long-distance patterns. We start from a simple one-directional

forward RNN. Given a sentence X = (x1, x2, ..., xT ), the words are projected into

a sequence of word vectors, denoted by (e1, e2, ..., eT ) where T is the number of

words. These word vectors are put to the recurrent layer step by step. For each step

t, the network accepts the word vector et and the output at the previous step hfwt−1
as the input, and produces the current output hfwt by a linear transform followed

by a non-linear activation function, given by:

hfwt = tanh(Wfwet + Ufwh
fw
t−1 + bfw) (2)

where hfwt ∈ RM is the output of the RNN at the t-th step, which can be regarded

as local segment-level features produced by the word segment (x1, ..., xt). Note that

M is the dimension of the feature vector, and Wfw ∈ RM×D, Ufw ∈ RM×M ,

bfw ∈ RM×1 are the model parameters. We have used the hyperbolic function

tanh(·) as the non-linear transform, which can help back propagate the error more

easily due to its symmetry [19].

[1]http://code.google.com/p/word2vec/
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A potential problem of the one-directional forward RNN is that the information

of future words are not fully utilized when predicting the semantic meaning in

the middle of a sentence. A possible solution is to use a bi-directional architecture

that makes predictions based on both the past and future words, as has been seen

in Figure. 1. This architecture has been demonstrated to work well in sequential

labeling, e.g., [17]. With the bi-directional RNN architecture, the prediction at step

t is obtained by simply adding the output of the forward RNN and the backward

RNN, formulated as follows:

ht = hfwt + hbwt (3)

where hbwt ∈ RM is the output of the backward RNN, which possesses the same

dimension as hfwt defined by:

hbwt = tanh(Wbwet + Ubwh
bw
t+1 + bbw) (4)

where Wbw ∈ RM×D, Ubw ∈ RM×M , bbw ∈ RM×1 are the parameters of the back-

ward RNN. Note that the forward and backward RNNs are trained simultaneously,

and so the addition is possible even without any parameter sharing between the

two RNN structures.

3.3 Max-pooling

Sentence-level relation classification requires a single sentence-level feature vector

to represent the entire sentence. In the CNN-based models, a pooling approach is

often used [3]. With the RNN structure, since the semantic meaning of a sentence

is learned word by word, the segment-level feature vector produced at the end of

the sentence actually represents the entire sentence. This accumulation approach

has been used in [18] for sentence-level semantic embedding.

In practice, we found that the accumulation approach is not very suitable for

relation learning because there are many long-distance patterns in the training

data. Accumulation by recurrent connections tends to forget long-term information

quickly, and the supervision at the end of the sentence is hard to be propagated to

early steps in model training, due to the annoying problem of gradient vanishing [20].

We therefore resort to the max-pooling approach as in CNN models. The argument

is that the segment-level features, although not very strong in representing the entire

sentence, can represent local patterns well. The semantic meaning of a sentence can

be achieved by merging representations of the local patterns. The max-pooling is

formulated as follows:

hi = max
t
{(ht)i}, ∀i = 1, ...,M (5)

where h is the sentence feature vector and i indexes feature dimensions.

Note that we have chosen max-pooling rather than mean-pooling. The hypothesis

is that only several key words (trigger) and the associated patterns are important
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for relation classification, and so max-pooling is more appropriate to promote the

most informative patterns.

3.4 Model training

Training the model in Figure 1 involves optimizing the parameters θ = {Win,Wfw, Ufw, bfw,Wbw,

Ubw, bbw}. The training objective is that, for a given sentence, the output feature

vector h achieves the best performance on the task of relation classification. Here

we use a simple logistic regression model as the classfier. Formally, this model pre-

dicts the posterior probability that an input sentence X involves a relationship r

as follows:

P (r|X, θ,Wo, bo) = σ(Woh(X) + bo) (6)

where σ(x) = exi∑
j exj is the softmax function, and θ encodes the parameters of the

RNN model.

Based on the logistic regression classifier, a natural objective function is the cross

entropy between the predictions and the labels, given by:

L(θ,Wo, bo) =
∑
n∈N
− log p(r(n)|X(n), θ,Wo, bo) (7)

where n is the index of sentences in the training data, and X(n) and r(n) denote

the n-th sentence and its relation label, respectively.

To train such a model, we follow the training method proposed by [2], and utilizes

the stochastic gradient descent (SGD) algorithm. Specifically, the back propagation

through time (BPTT) [21] is employed to compute the gradients layer by layer, and

the fan-in technique proposed by [22] is used to initialize the parameters. It was

found that this initialization can locate the model parameters around the linear

region of the activation function, which helps propagating the gradients back to

early steps easier. Moreover, it also balances the learning speed for parameters in

different layers [23].

As has been discussed, pre-training the word embedding layer with word vectors

trained from extra large amount corpus improves the performance. This approach

has been employed in our experiments.

3.5 Position indicators

In relation learning, it is essential to let the algorithm know the target nominals.

In the CNN-based approach, [3] appended a position feature vector to each word

vector, i.e., the distance from the word to the two nominals. This has been found

highly important to gain high classification accuracy. For RNN, since the model

learns the entire word sequence, the relative positional information for each word

can be obtained automatically in the forward or backward recursive propagation. It

is therefore sufficient to annotate the target nominals in the word sequence, without

necessity to change the input vectors.
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We choose a simple method that uses four position indicators to specify the start-

ing and ending of the nominals. The following is an example: “<e1> people </e1>

have been moving back into <e2> downtown </e2>”. Note that people and

downtown are the two nominals with the relation ‘Entity-Destination(e1,e2)’, and

<e1>, </e1>, <e2>, </e2> are the four position indicators which are regarded as

single words in the training and testing process. The position-embedded sentences

are then used as the input to train the RNN model. Compared to the position feature

approach in the CNN model, the position indictor method is more straightforward.

4 Experiments
4.1 Database and experimental setup

We use the dataset and evaluation framework provided by SemEval-2010 Task 8.

There are 9 directional relations and an additional ‘other’ relation, resulting in 19

relation classes in total. Given a sentence and two target nominals, a prediction is

counted as correct only when both the relation and its direction are correct. The

performance is evaluated in terms of the F1 score defined by SemEval-2010 Task

8 [1]. Both the data and the evaluation tool are publicly available.[2]

In order to compare with the work by [4] and [3], we use the same word vectors

proposed by [24] (50-dimensional) to initialize the embedding layer in the main ex-

periments. Additionally, to compare with the work by [5], additional experiments are

also conducted with the word vectors pre-trained by [25] which are 300-dimensional.

Because there is not an official development dataset, we tune the hyperparameters

by 8-fold cross validation. Once the hypeparameters are optimized, all the training

data are used to train the model with the best configuration. With Turian’s 50-

dimensional word vectors, the best dimension of the feature vector is M = 500, and

with Mkolov’s 300-dimensional word vectors, the best feature dimension isM = 700.

The best learning rate is 0.01 in both the two conditions.

4.2 Results

Model F1
RNN 31.9
+ max-pooling 67.5
+ position indicators 76.9
+ bidirection 80.0

Table 1 F1 results with the proposed RNN model, with contribution of each modification.

Model Features F1
MV-RNN syntactic parse 79.1
[4]
CNN PF 78.9
[3]
RNN (proposed) PI 80.0

Table 2 Comparison of F1 scores with different neural models. The 50-dimensional word vectors
provided by [24] are used for pre-training. PF stands for position features and PI stands for position
indicators.

Table 1 presents the F1 results of our RNN model, with the contribution offered

by each modification. It can be seen that the basic RNN, which is signal directional

[2]http://docs.google.com/View?docid=dfvxd49s_36c28v9pmw
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Model Features Added F1
SVM POS, prefixes, morphological, WordNet, dependency parse, 82.2
[1] Levin classed, ProBank, FrameNet, NomLex-Plus,

Google n-gram, paraphrases, TextRunner
MV-RNN WV [26](dim=50), syntactic parse 79.1
[4] +POS, NER, WordNet 82.4
CNN WV [24](dim=50) 69.7
[3] +PF 78.9

+wordnet 82.7
CNN WV [25](dim=300)
[5] multiple window size, optimized PF 82.8
FCM WV (dim=200) 80.6
[6] + dependency parse, NER 83.0
RNN WV [24](dim=50), PI 80.0
(proposed) WV [25](dim=300), PI 82.5

Table 3 Comparison of F1 results with different models. WV stands for word vectors. PF stands for
position features, and PI stands for position indicators.

and with the output of the last step as the sentence-level features, performs very

poor. This can be attributed to the lack of the position information of target nomi-

nals and the difficulty in RNN training. The max-pooling offers the most significant

performance improvement, indicating that local patterns learned from neighbouring

words are highly important for relation classification. The position indicators also

produce highly significant improvement, which is not surprising as the model would

be puzzled which pattern to learn without the positional information. The contri-

bution of positional information has been demonstrated by [3], where the positional

features lead to nearly 10 percentiles of F1 improvement, which is similar as the

gain obtained in our model.

The second experiment compares various neural models by using the 50-

dimensional word vectors. The results are presented in Table 2. It can be seen

that the RNN model outperforms both the MV-RNN model proposed by [4] and

the CNN model proposed by [3]. The most interesting observation is that the RNN

model performs better than the MV-RNN model which uses syntactic parse as extra

resources. This indicates that relation patterns can be effectively learned by RNNs

from raw text, without any explicit linguistic knowledge.

Finally, we compare the RNN model with several representative models that

achieve state-of-the-art results in relation classification (see Table 3). The first model

is based on SVMs and was proposed by [1]. This model can represent the state-of-

the-art pattern-based system. All the other models are based on neural networks,

which are MV-RNN [4], CNN [3], CNN with multiple window sizes [5], and FCM [6].

Note that different authors use different features and extra knowledge, which makes

it difficult to compare the results directly. Nevertheless, some interesting observa-

tions can be obtained. Firstly, the best performance obtained so far is 83.0, which

was achieved by the FCM model using 300-dimensional word vectors plus depen-

dency parse and name tags as extra knowledge. Among the learning-from-scratch

models, i.e., no extra knowledge and NLP processing involved, the best performance

(82.8) is achieved by the CNN model with multiple window sizes. Our RNN model

with the same word vectors achieves a very similar result (82.5), and the network

structure is simpler. In the next section, we will show that the RNN model possesses

more potential in real application with complex long-distance relations.
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5 Discussion
5.1 Impact of long context

We have argued that a particular advantage of the RNN model compared to the

CNN model is that it can deal with long-distance patterns more effectively. To

verify this argument, we split the test dataset of SemEval-2010 task-8 into 7 subsets

according to length of the context. Here the context is defined as words between

the two nominals plus 3 words prior to the first nominal and 3 words after the

second nominal, if they exist. To make the analysis more accurate, short clauses

between two commas have removed from the context. Clearly, long contexts lead to

long-distance patterns.

In order to compare performance of the RNN and CNN models, we tried to re-

produce the CNN-based method proposed by [3]. A little difference is that position

indicators are used to specify the target nominals in the reproduction. This modi-

fication ensures that the two models learn the same input sequence with the same

representation. The F1 results on the 7 subsets are reported in Figure 2. It can

be seen that if the context length is small, the CNN and RNN models perform

similar, whereas if the context length is large, the RNN model is clearly superior.

This confirms that RNN is more suitable to learn long-distance patterns. Note that

with both the two models, the best F1 results are obtained with a moderate length

of contexts. This is understandable as too small context involves limited semantic

information, while too large context leads to difficulties in pattern learning.
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Figure 2 F1 scores with different length of contexts.

5.2 Proportion of long context

Figure 2 shows that the RNN model significantly outperforms the CNN model,

which is a little different from the results presented in Table 2, where the discrepancy

between the two models is not so remarkable (78.9 vs. 80.0). This can be attributed

to the small proportion of long contexts in test data.

To verify this conjecture, the distribution of the context lengths is calculated on

the test dataset (SemEval-2010 task8). For comparison, another two datasets are

also presented: the New York Time corpus with the entities and relations selected

from a subset of Freebased recommended by [27]; the KBP dataset with the modi-

fication proposed by [28].

The statistics are shown in Table 4. It can be observed that long contexts ex-

ist in all the three datasets. Particularly, the proportion of long contexts in the
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Dataset
Context Length Proportion of

≤10 11 - 15 ≥ 16 Long Context (≥ 11)
SemEval-2010 task-8 [1] 6658 3725 334 0.379
NYT+Freebase [27] 22057 19369 3889 0.513
KBP [28] 6618 11647 15546 0.804

Table 4 The distribution of context lengths with three datasets.

SemEval2010 dataset is rather small compared to the other two datasets. This sug-

gests that the strength of the RNN model was not fully demonstrated by our exper-

iments. With a more realistic dataset such as KBP, more advantages are expected

to obtain with the RNN model.

5.3 Semantic accumulation

Another interesting analysis is to show how the ‘semantic meaning’ of a sentence is

formed. First notice that with both the CNN and the RNN models, the sentence-

level features are produced from local features (word-level for CNN and segment-

level for RNN) by dimension-wise max-pooling.

0
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0.1

0.15

0.2

Answer=Instrument-Agency(e2,e1)

RNN CNN

Figure 3 Semantic distribution on words in the sentence “A <e1> witch </e1> is able to change
events by using <e2> magic </e2> .”
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0.15
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Answer=Member-Collection(e2,e1)

RNN CNN

Figure 4 Semantic distribution on words in the sentence “Skype, a free software, allows a <e1>
hookup </e1> of multiple computer <e2> users </e2> to join in an online conference call
without incurring any telephone costs.”

To measure the contribution of a particular word or segment to the sentence-level

semantic meaning, for each sentence, we count the number of dimensions that the

local feature at each word step contributes to the output of the max-pooling. This

number is divided by the number of total dimensions of the feature vector, resulting

in a ‘semantic contribution’ over the word sequence. Figure 3 and Figure 4 show
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two examples of semantic contributions. In each figure, the results with both the

CNN and RNN models are presented.

For the sentence in Figure 3, the correct relation is ‘Instrument-Agency’. But

CNN gives wrong answer ‘Other’. It can be seen that CNN matches two patterns

‘is able to’ and ‘magic’, while the RNN matches the entire sequence between the

two nominals witch and magic, with the peak at ‘by using’. Clearly, the pattern

that the RNN model matches is more reasonable than that matched by the CNN

model.

We highlight that RNN is a temporal model which accumulates the semantic

meanings word by word, so the peak at ‘by using’ is actually the contribution of all

the words after ‘witch’. In contrast, CNN model learns only local patterns, therefore

it splits the semantic meaning into two separate word segments.

Similar observation is obtained with second example shown in Figure 4. Again,

the RNN model accumulates the semantic meaning of the sentence word by word,

while the CNN model has to learn two local patterns and merge them together.

An interesting observation is that the RNN-based semantic distribution tends to

be smoother than the one produced by the CNN model. In fact, we calculated the

average variance on the semantic contribution of neighbouring words with all the

sentences in the SemEval-2010 task-8 dataset, and found that the variance with

the RNN model is 0.0017, while this number is 0.0025 with the CNN model. The

smoother semantic distribution is certainly due to the temporal nature of the RNN

model.

6 Conclusion
In this paper, we proposed a novel RNN-based approach for relation classification.

Compared to other deep learning models such as MV-RNN and CNN, the RNN

model can deal with long-distance patterns and so is particular suitable for learning

relations within a long context. Several important modifications were proposed to

improve the basic model, including a max-pooling feature aggregation, a position

indicator approach to specify target nominals, and a bi-directional architecture to

learn both the forward and backward contexts. Experimental results demonstrated

that the RNN-based approach can achieve very competitive results, and for sen-

tences with long-distance relations, the RNN model exhibits clear advantages.
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