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ABSTRACT

In this paper we address the following problem in web document and information
retrieval (IR): How can we use long-term context information to gain better IR
performance? Unlike common IR methods that use bag of words representation
for queries and documents, we treat them as a sequence of words and use long
short term memory (LSTM) to capture contextual dependencies. To the best of
our knowledge, this is the first time that LSTM is applied to information retrieval
tasks. Unlike training traditional LSTMs, the training strategy is different due to
the special nature of information retrieval problem. Experimental evaluation on an
IR task derived from the Bing web search demonstrates the ability of the proposed
method in addressing both lexical mismatch and long-term context modelling is-
sues, thereby, significantly outperforming existing state of the art methods for web
document retrieval task.

1 INTRODUCTION

Two important issues to measure semantic similarities among different text strings include lexical
mismatch and the difficulty of incorporating context information. Lexical mismatch means that one
can use different vocabulary items and language styles to express the same concept. This problem is
addressed using the translation models (Gao et al., 2010), the topic models (Deerwester et al., 1990;
Gao et al., 2014), and the Deep Structured Semantic Model (DSSM) which makes use of the bag-
of-words representation (Huang et al., 2013). Incorporation of context information for modelling
semantic similarity, on the other hand, can be accomplished by language modelling (Platt et al.,
2010; Gao et al., 2004; Metzler & Croft, 2005; 2007). There are a few recent models which intend
to address both issues in a single framework, including the Convolutional DSSM (CLSM) proposed
in (Shen et al., 2014) and Recurrent DSSM (R-DSSM) proposed in (Palangi et al., 2015). The main
difference between the R-DSSM and CLSM is that while CLSM needs a fixed size sliding window
to capture local context information, and a maxpooling layer to capture global context information,
the R-DSSM captures both with a recurrent layer without the need for the maxpooling layer.

In this paper, we extend the R-DSSM to incorporate the structure called the Long Short Term Mem-
ory DSSM (LSTM-DSSM). The motivations of the extension are as follows. First, due to vanishing
and exploding gradient problems, it is difficult for an R-DSSM to capture long term context in-
formation effectively. Second, training an R-DSSM is significantly slower than training its DSSM
counterpart. Third, the LSTM-DSSM has the potential to significantly outperform the R-DSSM in
practical tasks as evidenced in recent successful applications of the LSTM in large-scale tasks of
speech recognition (Sak et al., 2014) and machine translation (Sutskever et al., 2014).

To the best of our knowledge, this is the first time that LSTM is applied to information retrieval
tasks. Unlike training traditional LSTMs, the training strategy is significantly different due to the
special nature of information retrieval problem. Specifically, the error signal is generated from the
cosine distance between the two semantic embedding vectors of the two text strings (i.e., query and
document title), and is then propagated towards the query-LSTM model and the document-LSTM
model separately — see Fig. 1. From the figure, we also note that, the error signal is only generated
from the end of the output sequence and is required to be back propagated to the beginning. This
is different from traditional LSTM models, e.g., in speech recognition, where the error signals are
generated at every output sample. For this reason, it is critical to use LSTM model in information
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Figure 1: Architecture of the proposed method. n is the number of negative samples (unclicked
documents)

retrieval problems in order to learn the long-term memory, which is known to be difficult in standard
RNN with sigmoid/tanh neurons.

In addition to faster convergence and practical better performance than the R-DSSM, we argue that
the LSTM-DSSM can potentially provide valuable information about correlations among different
topics and about transitions from one topic to another in a long document.

2 THE MODEL

The LSTM-DSSM model developed in this work is aimed to overcome the weakness of the R-
DSSM in capturing long-term contextual information effectively. The solution provided by the new
model is to incorporate LSTM memory cells, as proposed originally in Hochreiter & Schmidhuber
(1997) and further developed in Gers et al. (1999) and Gers et al. (2003) by adding forget gate and
peephole connections to the architecture. The architecture of the LSTM cell used in the LSTM-
DSSM is illustrated in Fig. 2, where i(t), f(t) ,o(t) are the input gate, forget gate and output gate,
respectively, c(t) is the cell state, Wp1, Wp2 and Wp3 are peephole connections, g(.) and h(.) are
tanh(.) functions and σ(.) is a sigmoid function.

We use this architecture to find y for each word and then use equation (7) to find the similarity
between query and documents. Subsequently, the LSTM-DSSM is trained using truncated back-
propagation-through-time.

Assuming that we have just one layer of the LSTM (for simplicity of presentation), the mathematical
formulation of the LSTM cell according to Fig. 2 is as follows:

yg(t) = g(W4l(t) + Wrec4y(t− 1) + b4) (1)

i(t) = σ(W3l(t) + Wrec3y(t− 1) + Wp3c(t− 1) + b3) (2)

f(t) = σ(W2l(t) + Wrec2y(t− 1) + Wp2c(t− 1) + b2) (3)

c(t) = f(t) ◦ c(t− 1) + i(t) ◦ yg(t) (4)
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Figure 2: The architecture of an LSTM cell used in the LSTM-DSSM

o(t) = σ(W1l(t) + Wrec1y(t− 1) + Wp1c(t) + b1) (5)

y(t) = o(t) ◦ h(c(t)) (6)
where b1,b2,b3,b4 are bias vectors (not shown in the figure) and l(t) is the t-th word representation
after hashing (Wh).

For training the full LSTM-DSSM, we adopt the cosine similarity measure:

R(Q,D) =
yQ(t = TQ)

TyD(t = TD)

‖yQ(t = TQ)‖‖yD(t = TD)‖
(7)

where TQ and TD are the indexes of the last word in query and document, respectively. The goal
is to maximize the likelihood of the clicked document given a query. Therefore, the following
optimization problem is to be solved:

L(Λ) = min
Λ
− log

R∏
r=1

P (D+
r |Qr) (8)

where Λ is the parameter to be learned and P (D+
r |Qr) is the probability of clicked document given

the r-th query as a function of cosine similarity measure according to

P (D+
r |Qr) =

eR(Qr,D
+
r )∑

Dr,j∈D eR(Qr,Dr,j)
(9)

In (8) and (9), Qr is the r-th query out of R queries, D+
r is the clicked document for r-th query and

Dr,j is the j-th unclicked document for r-th query. In the learning algorithm, error signals are back
propagated through time using following equations which we derived for the LSTM-DSSM:

δrec1Q (t− 1) = [oQ(t− 1) ◦ (1− oQ(t− 1)) ◦ h(cQ(t− 1))] ◦WT
rec1.δ

rec1
Q (t) (10)
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Table 1: Comparisons of NDCG performance measures (the higher the better) of proposed models
and a series of baseline models, where nhid refers to the number of hidden units, ncell refers to
number of cells. The RNN and LSTM-RNN models are chosen to have the same number model
parameters as the DSSM and CLSM models: 14.4M, where 1M = 106. The boldface numbers are
the best results.

Model NDCG@1 NDCG@3 NDCG@10
BM25 30.5% 32.8% 38.8%

PLSA (T=500) 30.8% 33.7% 40.2%
DSSM (nhid = 288/96), 2 Layers 31.0% 34.4% 41.7%
CLSM (nhid = 288/96), 2 Layers 31.8% 35.1% 42.6%

RNN (nhid = 288), 1 Layer 31.7% 35.0% 42.3%
LSTM-RNN (ncell = 96), 1 Layer 33.1% 36.5% 43.6%

δreciQ (t− 1) = [(1− h(cQ(t− 1))) ◦ (1 + h(cQ(t− 1))) ◦ oQ(t− 1)] ◦WT
reci .δ

reci
Q (t) (11)

where Q stands for query. And we have derived a similar set of equations for the “document” part
of the full LSTM-DSSM network. In the gradient-descent training, we have one large update after
folding back in time and adding gradients in each minibatch. We use Nesterov method to accelerate
learning convergence.

3 EVALUATION RESULTS

For training and evaluating the LSTM-DSSM and comparing it with the state of the art IR baselines,
we have used a real world dataset consisting of 200,000 click-through data collected from Bing
search to carry out evaluation experiments. Experimental results are presented in Table 1 using the
standard metric of mean Normalized Discounted Cumulative Gain (NDCG) (Järvelin & Kekäläinen,
2000) for evaluating ranking performance. For fair comparisons, we have designed the LSTM-
DSSM so that it uses the same number of model parameters as the baseline R-DSSM and other well
known baselines in IR. As is clear from these results, the LSTM-DSSM outperforms all existing
baselines significantly in terms of the NDCG metric. Analysis of the results demonstrates the effec-
tiveness of the LSTM cells in capturing long-term correlations in the input text strings, accounting
for the success in the information retrieval task designed from Bing search.
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