Keyword Spotting with Few-shot examples

Yuan Junming 2023/12/04

Outline

- Why choose Few-Shot Keyword Spotting?
- Some Few-Shot Keyword Spotting Methods Review some papers
- Experimental Progress

Model Pretraining based Mix training

Extend Temporal feature to reduce the FAR

• Future work

Why choose Few-Shot Keyword Spotting?

- Modern KWS models are typically trained on large datasets and restricted to a small vocabulary of keywords, limiting their transferability to a broad range of unseen keywords.
- Learning to recognize new keywords with just a few-shot examples is essential for personalizing keyword spotting (KWS) models to a user's choice of keywords.

Some Few-Shot Keyword Spotting Methods

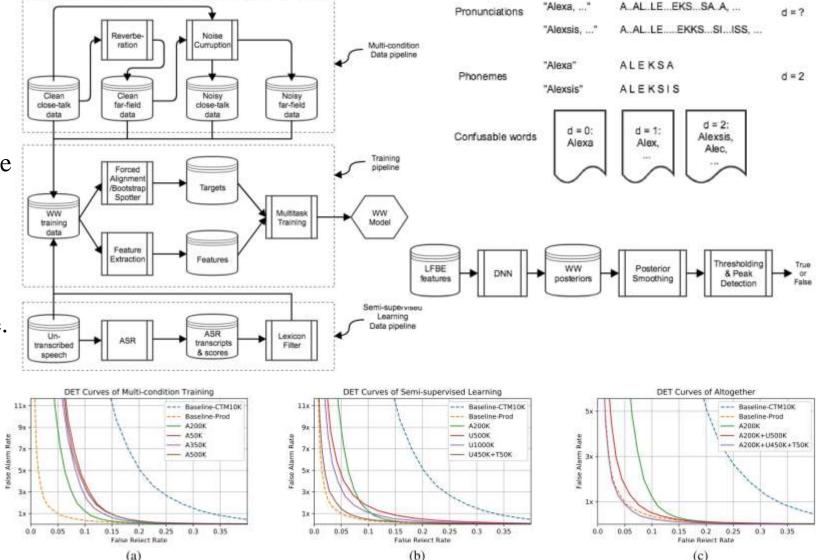
- Data augmentation based.
- Meta-learning & Few-shot learning based.
- Transfer from labeled data of other keywords (model pre-training)
 Preparing large-scale KWS datasets using audios, transcription, and a forced aligner.
 Finetuning on the few keyword examples.
- Utilize unlabeled data.

Using self-supervised learning (SSL) method to learn feature extractors from unlabeled data.

TOWARDS DATA-EFFICIENT MODELING FOR WAKE WORD SPOTTING

*Alexa, Amazon.com Services LLC.

• Motivation


• Propose data augmentation techniques such as the addition of reverberation and noise to simulate far-field speech.

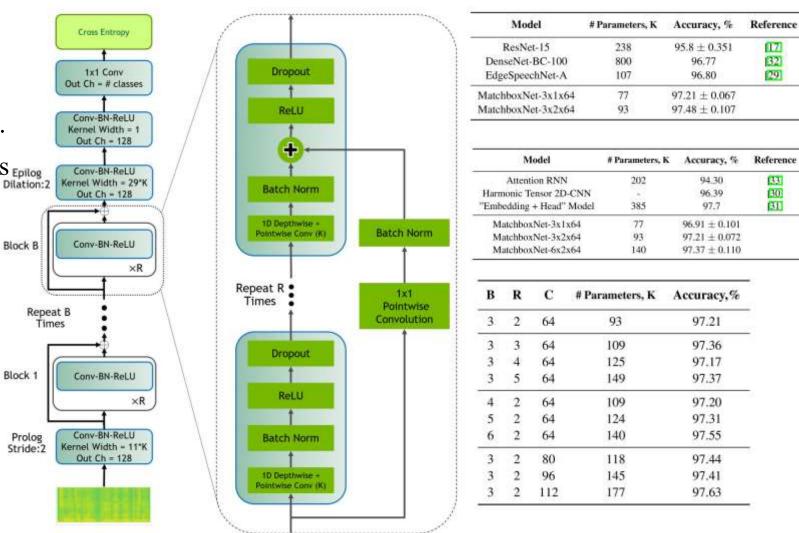
• Training architecture

- Multi-condition pipeline.
- Semi-supervised learning pipeline.
- Multi-task training pipeline.

• Result

size	CTM	CTM+R	CTM+N	CTM+RN
50K	10K	14K	14K	14K
200K	20K	60K	60K	60K
350K	35K	105K	105K	105K
500K	50K	150K	150K	150K

Gao Y, Mishchenko Y, Shah A, et al. Towards data-efficient modeling for wake word spotting[C]// (ICASSP 2020)

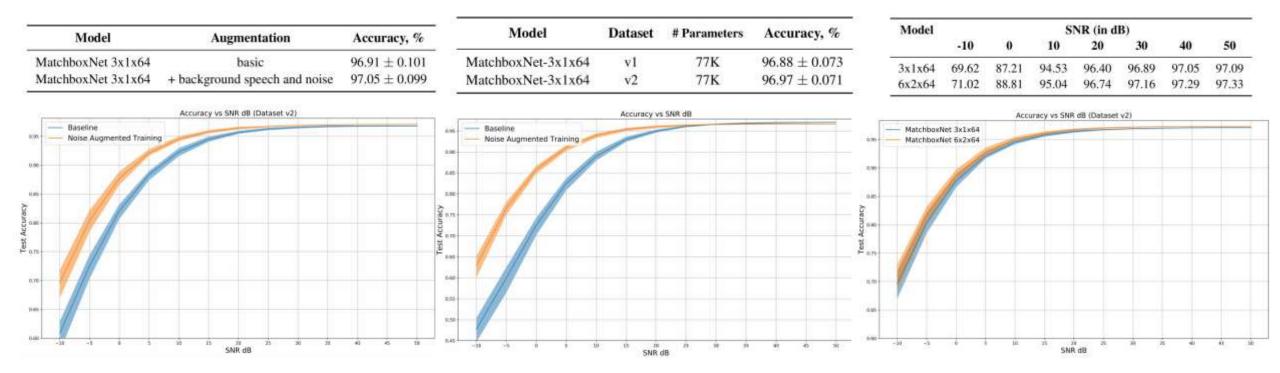

MatchboxNet: 1D Time-Channel Separable Convolutional Neural Network Architecture for Speech Commands Recognition

*NVIDIA, Santa Clara, USA.

Contribution

- Present a end-to-end neural network for KWS (MatchboxNet).
- To improve the model's robustness Epilog by intensive data augmentation using an auxiliary noise dataset.
- Model architecture
 - A deep residual network
- Training Methodology
 - Applied time shift perturbations and SpecAugment

• Result



Majumdar S, Ginsburg B. Matchboxnet: 1d time-channel separable convolutional neural network architecture for speech commands recognition[J]. arXiv preprint arXiv:2004.08531, 2020.

MatchboxNet: 1D Time-Channel Separable Convolutional Neural Network Architecture for Speech Commands Recognition

*NVIDIA, Santa Clara, USA.

• Result

Majumdar S, Ginsburg B. Matchboxnet: 1d time-channel separable convolutional neural network architecture for speech commands recognition[J]. arXiv preprint arXiv:2004.08531, 2020.

An Investigation of Few-Shot Learning in Spoken Term Classification

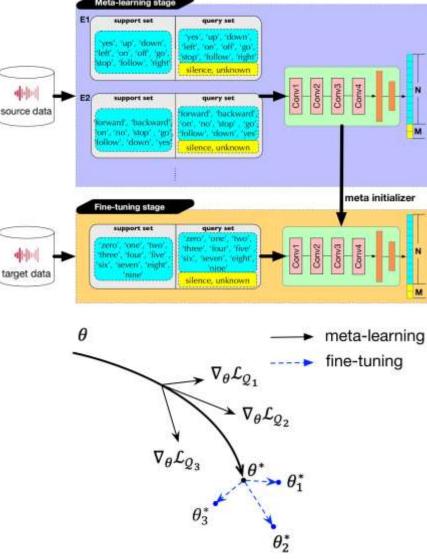
*City University of Hong Kong. *Southern University of Science and Technology, Shenzhen, China. *Huawei Noah's Ark Lab. *The Hong Kong Polytechnic University.

• Motivation

- Investigate the feasibility of applying few-shot learning algorithms to a speech task.
- Investigate the performance of Model-Agnostic Meta-Learning (MAML).

• Methods

- Define a N+M-way problem where N and M are the number of new classes and fixed classes respectively.
- Propose a modification to the MAML algorithm to solve the problem.


An Investigation of Few-Shot Learning in Spoken Term Classification

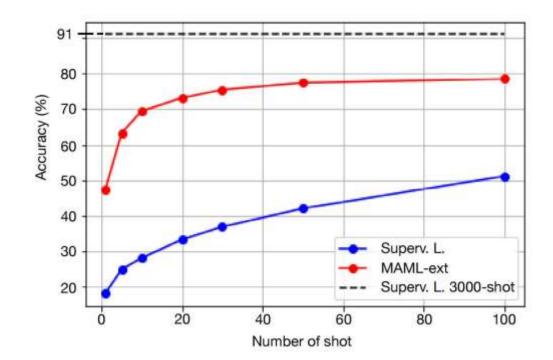
*City University of Hong Kong. *Southern University of Science and Technology, Shenzhen, China. *Huawei Noah's Ark Lab. *The Hong Kong Polytechnic University.

• Framework

• Methodology

- fix the output positions of the fixed classes in the neural network classifier.
- The fixed classes occur in every meta-task Ti in the meta-learning stage.
- The adaptation of fixed classes is not needed in the fine-tuning stage

Algorithm 1 extended-MAML approach for few-shot spoken term classification **Require:** $p(\mathcal{T})$: distribution over tasks Require: X : training keywords set **Require:** S_{il} : silence class set, U_{nk} : unknown class set **Require:** S_i : support set, Q_i : query set **Require:** α , β : learning rates 1: Randomly initialize base model parameters θ 2: while not done do Sample a batch of meta-tasks $\mathcal{T}_i \sim p(\mathcal{T})$ 3: for all T_i do 4: 5: Sample a support set S_i from \mathcal{X} 6: Compute the gradient $\nabla_{\theta} \mathcal{L}_{S_i}(f_{\theta})$ using S_i and $\mathcal{L}_{S_{\epsilon}}(f_{\theta})$ in Equation (1) Update base model parameters with gradient descent: $\theta'_i = \theta - \alpha \nabla_{\theta} \mathcal{L}_{S_i}(f_{\theta}) \, \triangleright$ step 6 and step 7 can be repeated for several times 8. Sample a query set Q_i from the union $\{\mathcal{X}, \mathcal{S}_{il}, \mathcal{U}_{nk}\} \mathrel{\triangleright}$ selected keywords from \mathcal{X} in \mathcal{Q}_i and \mathcal{S}_i within \mathcal{T}_i are the same 9: Compute the loss $\mathcal{L}_{\mathcal{Q}_i}(f_{\theta'})$ using \mathcal{Q}_i and the updated model $f_{\theta'}$ end for 10: Update parameters θ using each Q_i and $\mathcal{L}_{Q_i}(f_{\theta'})$: 11: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \beta \nabla_{\boldsymbol{\theta}} \sum_{i} \mathcal{L}_{\mathcal{Q}_{i}}(f_{\boldsymbol{\theta}_{i}'})$ 12: end while


Chen Y, Ko T, Shang L, et al. An investigation of few-shot learning in spoken term classification[J]. arXiv preprint arXiv:1812.10233, 2018.

An Investigation of Few-Shot Learning in Spoken Term Classification

*City University of Hong Kong. *Southern University of Science and Technology, Shenzhen, China. *Huawei Noah's Ark Lab. *The Hong Kong Polytechnic University.

• Result

Methods	1-shot	5-shot	10-shot
Superv. L.	18.14 ± 0.44	24.83 ± 0.38	28.07 ± 0.34
MAML-ori	44.60 ± 0.98	60.88 ± 0.58	65.18 ± 0.62
MAML-ext	$\textbf{47.42} \pm \textbf{0.96}$	$\textbf{63.22} \pm \textbf{0.71}$	$\textbf{69.48} \pm \textbf{0.47}$
Methods	1-shot	5-shot	10-shot
Superv. L.	17.03 ± 0.48	22.42 ± 0.33	25.6 ± 0.26
14114	33.35 ± 0.80	50.31 ± 0.50	57.34 ± 0.41
MAML-ori	55.55 ± 0.60	50.51 ± 0.50	57.54 ± 0.41

Chen Y, Ko T, Shang L, et al. An investigation of few-shot learning in spoken term classification[J]. arXiv preprint arXiv:1812.10233, 2018.

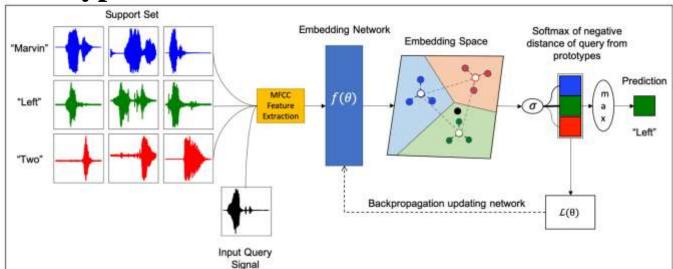
Few-Shot Keyword Spotting With Prototypical Networks

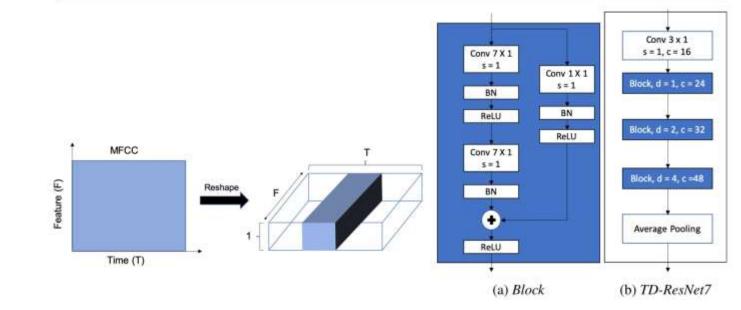
*The University of North Carolina at Charlotte.

• Motivation

- There is a growing need for KWS systems
 - (1) to recognize custom or new keywords on-device.
 - (2) to quickly adapt from a small number of user samples

• Methods


- Propose a few-shot KWS system(FS-KWS) with metric learning.
- Propose a temporally dilated CNN architecture as a better embedding function for FS-KWS.
- Release a FS-KWS dataset synthesized from Google's Speech command dataset.


Parnami A, Lee M. Few-shot keyword spotting with prototypical networks[C]//2022 7th International Conference on Machine Learning 11 Technologies (ICMLT). 2022: 277-283.

Few-Shot Keyword Spotting With Prototypical Networks

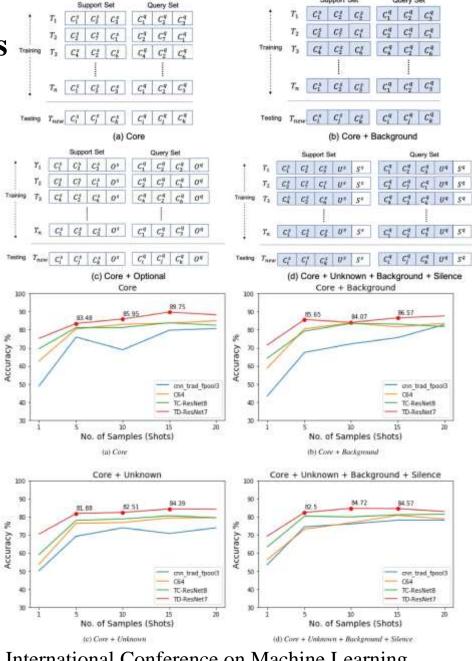
*The University of North Carolina at Charlotte.

• **Pipeline**
$$p_c = \frac{1}{|S_e^c|} \sum_{(s_i, y_i) \in S_e^c} f(s_i),$$

 $P(y = c \mid q_t, S_e, \theta) = \frac{exp(-d(f(q_t), p_c))}{\sum_n exp(-d(f(q_t), p_n))},$
 $L(\theta) = -\sum_{t=1}^{|Q_e|} \log P_{\theta}(y_t \mid q_t, S_e),$

Parnami A, Lee M. Few-shot keyword spotting with prototypical networks[C]//2022 7th International Conference on Machine Learning 12 Technologies (ICMLT). 2022: 277-283.

• Model architecture


- Audio Feature Extraction
- Embedding Network

Few-Shot Keyword Spotting With Prototypical Networks

*The University of North Carolina at Charlotte.

• Result

Case	Embedding	2-way	y Acc.	4-way	y Acc.
Case	Network	1-shot	5-shot	1-shot	5-shot
	cnn_trad_fpool3	69.23 ± 0.03	87.07 ± 0.02	48.83 ± 0.02	75.93 ± 0.01
	C64	77.20 ± 0.03	89.97 ± 0.02	62.63 ± 0.02	80.48 ± 0.01
core	TC-ResNet8	82.70 ± 0.03	89.00 ± 0.02	69.47 ± 0.02	81.20 ± 0.01
	TD-ResNet7 (ours)	$\textbf{85.43} \pm \textbf{0.03}$	$\textbf{94.10} \pm \textbf{0.01}$	$\textbf{75.22} \pm \textbf{0.02}$	$\textbf{83.48} \pm \textbf{0.02}$
Waterst	cnn_trad_fpool3	69.53 ± 0.04	86.8 ± 0.02	43.3 ± 0.02	67.42 ± 0.01
core	C64	78.30 ± 0.03	90.03 ± 0.02	58.83 ± 0.02	80.52 ± 0.01
+	TC-ResNet8	77.40 ± 0.03	$\textbf{91.40} \pm \textbf{0.02}$	64.23 ± 0.02	79.25 ± 0.01
background	TD-ResNet7 (ours)	$\textbf{82.23} \pm \textbf{0.03}$	91.00 ± 0.02	$\textbf{71.58} \pm \textbf{0.02}$	$\textbf{85.65} \pm \textbf{0.01}$
o anatara 👘	cnn_trad_fpool3	58.33 ± 0.03	78.36 ± 0.02	50.15 ± 0.02	69.25 ± 0.01
core	C64	63.42 ± 0.03	78.47 ± 0.02	53.69 ± 0.02	76.43 ± 0.01
+	TC-ResNet8	68.84 ± 0.03	80.49 ± 0.02	59.08 ± 0.02	78.07 ± 0.01
unknown	TD-ResNet7 (ours)	$\textbf{77.24} \pm \textbf{0.02}$	$\textbf{87.22} \pm \textbf{0.01}$	$\textbf{70.45} \pm \textbf{0.02}$	$\textbf{81.88} \pm \textbf{0.01}$
core +	cnn_trad_fpool3	67.43 ± 0.02	82.32 ± 0.01	53.51 ± 0.02	74.54 ± 0.01
unknown +	C64	65.83 ± 0.02	81.15 ± 0.01	56.38 ± 0.01	73.20 ± 0.01
background +	TC-ResNet8	78.63 ± 0.02	85.98 ± 0.01	63.37 ± 0.02	80.39 ± 0.01
silence	TD-ResNet7 (ours)	$\textbf{82.77} \pm \textbf{0.02}$	$\textbf{89.45} \pm \textbf{0.01}$	69.34 ± 0.01	$\textbf{82.50} \pm \textbf{0.01}$

Query Set

Support Set

Parnami A, Lee M. Few-shot keyword spotting with prototypical networks[C]//2022 7th International Conference on Machine Learning 13 Technologies (ICMLT). 2022: 277-283.

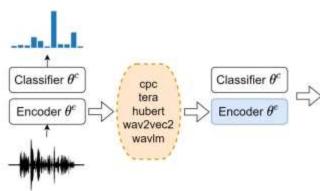
ON THE EFFICIENCY OF INTEGRATING SELF-SUPERVISED LEARNING AND META-LEARNING FOR USER-DEFINED FEW-SHOT KEYWORD SPOTTING

*Graduate Institute of Communication Engineering, National Taiwan University. *intelliGo Technology inc.

• Motivation

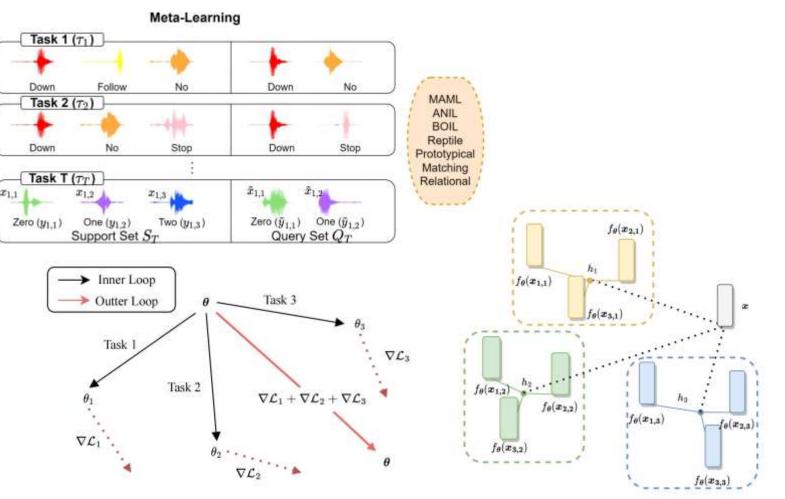
- Previous works about User-defined keyword spotting try to incorporate self-supervised learning models or apply meta-learning algorithms.
- It is unclear whether self-supervised learning and meta-learning are complementary and which combination of the two types of approaches is most effective for few-shot keyword discovery.

• Methods


- Compare 5 widely used SSL models to answer which pre-trained model is the best for few-shot KWS.
- Training the SSL models by 7 meta-learning algorithms to shed light on the effectiveness of combining the pre-training and meta-learning approaches.

Kao W T, Wu Y K, Chen C P, et al. On the efficiency of integrating self-supervised learning and meta-learning for user-defined few-shot 14 keyword spotting[C]//2022 IEEE Spoken Language Technology Workshop (SLT). IEEE, 2023: 414-421.

ON THE EFFICIENCY OF INTEGRATING SELF-SUPERVISED LEARNING AND META-LEARNING FOR USER-DEFINED FEW-SHOT KEYWORD SPOTTING


*Graduate Institute of Communication Engineering, National Taiwan University. *intelliGo Technology inc.

• Pipeline Self-supervised Learning

- Meta-learning methods
 - Optimization-based methods MAML, ANIL, BOIL, Reptile
 - Metric-based methods

Prototypical network, Relational network, Matching network

Kao W T, Wu Y K, Chen C P, et al. On the efficiency of integrating self-supervised learning and meta-learning for user-defined few-shot 15 keyword spotting[C]//2022 IEEE Spoken Language Technology Workshop (SLT). IEEE, 2023: 414-421.

ON THE EFFICIENCY OF INTEGRATING SELF-SUPERVISED LEARNING AND META-LEARNING FOR USER-DEFINED FEW-SHOT KEYWORD SPOTTING

*Graduate Institute of Communication Engineering, National Taiwan University. *intelliGo Technology inc.

• Result

	SSL	MAML	ANIL	BOIL	Reptile	Prototypical	Matching	Relational	Trans-1	Trans-2
	CPC	31.64	46.18	21.08	27.79	46.40	46.98	40.81	8.58	
3.3.5	TERA	44.66	39.93	43.97	37.84	48.12	53.62	42.16	44.88	
1-shot	HuBERT	50.00	63.13	38.53	53.78	67.99	70.39	49.34	63.33	41.12
fine-tune	Wav2Vec2	53.10	56.60	53.47	45.10	63.39	64.82	38.97	65.71	
	WavLM	39.12	53.88	46.34	38.81	69.90	76.16	42.83	58.26	2
	CPC	33.97	27	21	23.48	39.73	41.63	35.71	47.69	1
1-shot	TERA	41.55	Ξ.		27.90	43.00	48.18	37.91	45.45	
fix-	HuBERT	61.43	-	-	47.34	70.03	79.30	64.18	66.37	56.58
encoder	Wav2Vec2	57.41	-	-	35.04	56.69	71.07	57.99	66.5	
	WavLM	63.84	-	-	33.75	55.51	75.27	64.12	59.61	
	CPC	32.02	58.49	21.68	52.05	67.90	64.55	59.39	9.06	
9400 A 2002	TERA	52.89	68.39	69.92	69.59	75.40	73.93	58.15	66.76	
5-shot	HuBERT	65.26	83.18	79.85	83.95	85.88	88.98	56.21	84.93	79.95
fine-tune	Wav2Vec2	60.58	78.76	70.84	82.45	80.49	86.47	52.89	84.82	
	WavLM	80.72	82.26	82.35	81.24	78.51	87.30	58.35	81.52	
	CPC	30.88	-	(-)	35.60	56.98	58.32	51.61	49.62	
5-shot	TERA	45.56	2	S40	44.67	60.55	62.71	50.93	66.6	
fix-	HuBERT	70.80	27	20	38.02	85.84	90.86	73.60	85.03	78.42
encoder	Wav2Vec2	54.53	7.5		53.95	82.68	85.52	76.00	84.88	0.0021000.000
	WavLM	70.24	-	-	49.02	83.06	86.39	67.75	81.16	

20		ANI	L	Match	ing	Trans	-1
1-shot fine-t	une	6.82	2	6.24	4	12.9	9
5-shot fine-t	une	3.23	3	2.5	8	3.92	2
	Pr	ototyp	ical	Mat	ching	Rel	ational
-shot HuBERT		67.99)	7().39	4	9.34
-shot scratch		38.95	5	4().80	4	1.23
shot HuBERT		85.88	3	88	3.98	5	6.21
shot scratch		61.56	5	60).26	5	0.91
	•	4	*	•			
(a) meta+SSL		(b) m	eta o	nly		(c) SSL	only
	AN	VIL	Ma	tching	; Tı	ans-1	_
1-shot	63	.62	8	0.41	2	2.77	

90.3

24.33

77.32

5-shot

Kao W T, Wu Y K, Chen C P, et al. On the efficiency of integrating self-supervised learning and meta-learning for user-defined few-shot 16 keyword spotting[C]//2022 IEEE Spoken Language Technology Workshop (SLT). IEEE, 2023: 414-421.

TRAINING KEYWORD SPOTTERS WITH LIMITED AND SYNTHESIZED SPEECH DATA

keyword

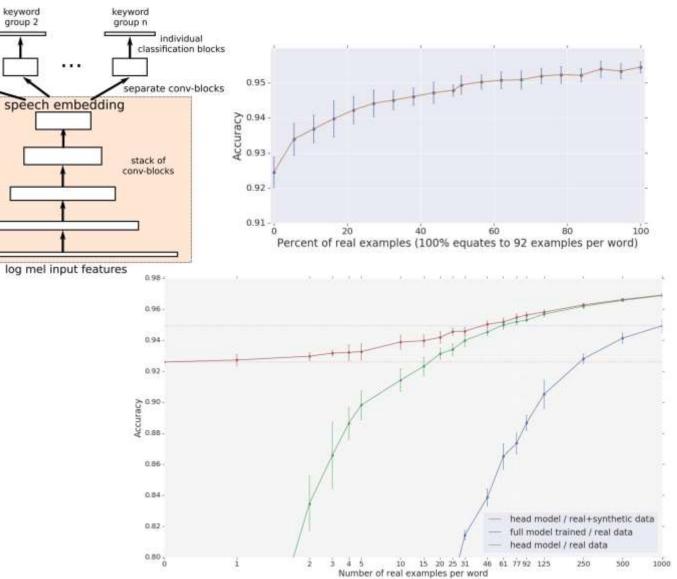
group 1

*Google Research.

• Motivation

Explore the effectiveness of synthesized ٠ speech data in training small, spoken term detection models.

• Model architecture


• Embedding model.

Each Conv block consists of 5 layers

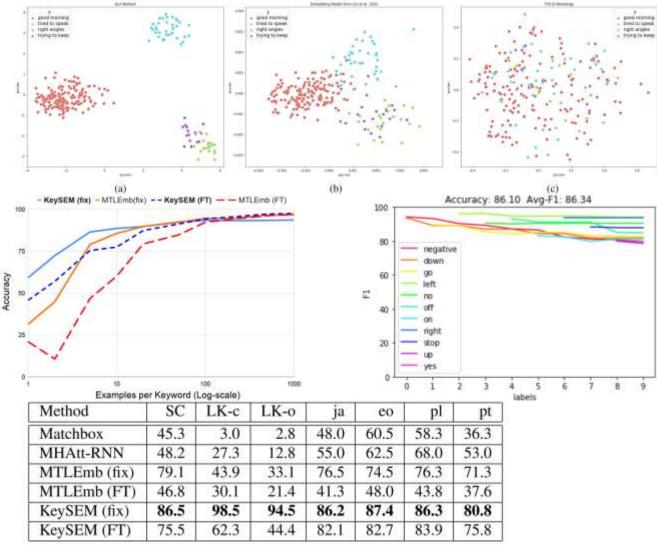
Head model. •

Result \bullet

Training data	Size	Full model	Head model
speech commands	80k	97.4%	97.7%
synthetic data	3220	56.7%	92.6%
equivalent real data	3220	88.7%	95.3%

Lin J, Kilgour K, Roblek D, et al. Training keyword spotters with limited and synthesized speech data[C] (ICASSP2020).

Teaching keyword spotters to spot new keywords with limited examples


*Google Research, Switzerland. *Indian Institute of Technology Bombay, India.

• Motivation

- Present a speech embedding model (KeySEM) which allows for more accurate KWS models to be learned from fewer training examples.
- Model architecture
 - Similar architecture to Lin et al.

• Result

Method	SC	LK-c	LK-0	ja	eo	pl	pt
Matchbox	98.0	97.3	89.8	76.0	88.5	85.0	84.3
MHAtt-RNN	98.0	99.7	95.3	86.0	87.0	87.3	79.3
MTLEmb (fix)	96.6	95.1	87.2	86.7	87.4	89.5	82.6
MTLEmb (FT)	97.7	94.9	88.1	75.0	79.6	74.2	72.1
KeySEM (rand)	97.2	93.6	78.1	83.2	84.1	85.4	78.3
KeySEM (fix)	93.9	99.8	97.8	92.3	91.2	90.3	82.4
KeySEM (FT)	98.2	97.8	93.2	92.9	89.1	90.3	84.7

Awasthi A, Kilgour K, Rom H. Teaching keyword spotters to spot new keywords with limited examples[J]. arXiv preprint arXiv:2106.02443, 18

Few-Shot Keyword Spotting in Any Language

*Harvard University, USA. *Coqui, Germany. *Google, USA.

• Motivation

• Training KWS models requires the manual collection and curation of thousands of target samples across a diverse pool of speakers and accents for each keyword of interest. It is a prohibitive requirement for under-resourced languages.

• Methods

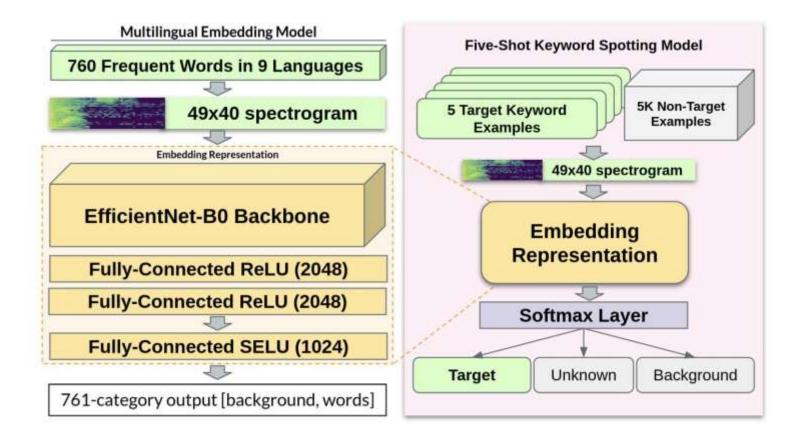
• Introduce a few-shot transfer learning method for keyword spotting in any language.

Leveraging Common Voice corpora, by applying forced alignment to automatically extract 760 frequent words across nine languages and use it to train an embedding model.

Then finetune this embedding model to classify a target keyword.

Few-Shot Keyword Spotting in Any Language

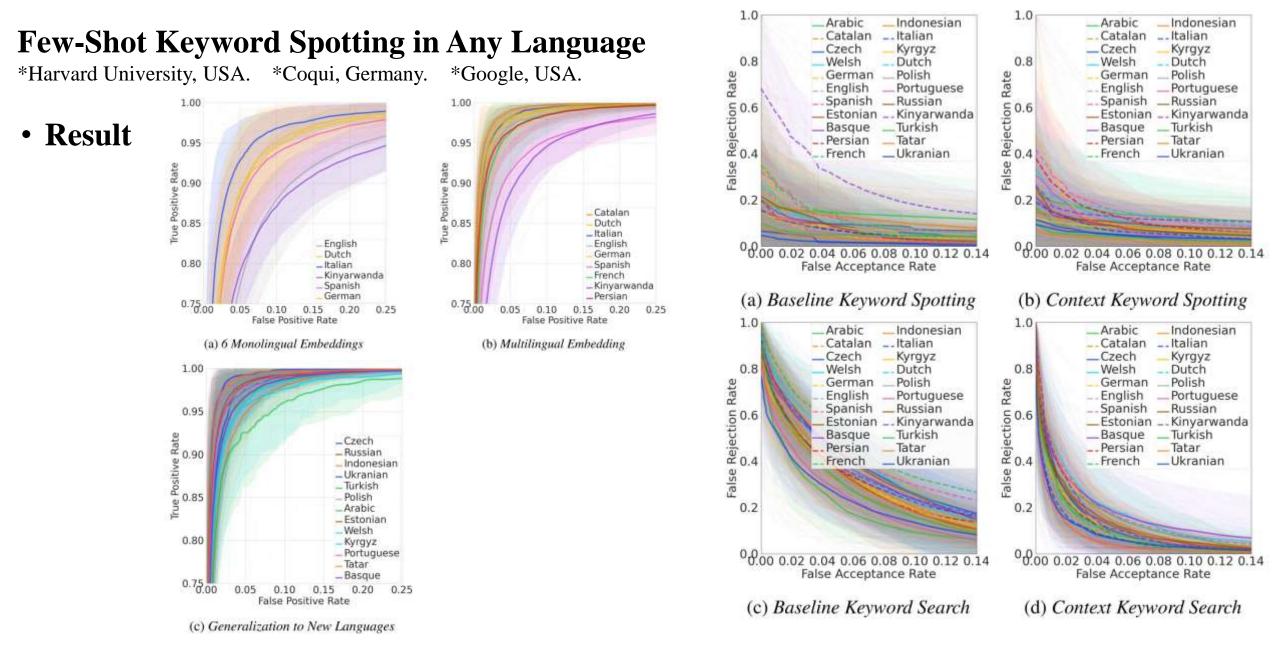
*Harvard University, USA. *Coqui, Germany. *Google, USA.


Model architecture

- Multilingual Embedding Model
- 5-shot Transfer Learning Model

• Result

Language	# words	# train	# val	val acc
English	265	518760	57640	78.95
German	152	287100	31900	79.90
French	105	205920	22880	79.16
Kinyarwanda	68	134640	14960	73.64
Catalan	80	132660	14740	87.63
Persian	35	69300	7700	85.70
Spanish	31	61380	6820	79.65
Italian	17	31680	3520	81.16
Dutch	7	13860	1540	72.60
Model	760	1455300	161700	79.81


Training	GSC	Extracted
GSC	93.42%	90.49%
Extracted	78.07%	92.23%

(a) Multilingual embedding model

(b) 5-shot keyword spotting

Mazumder M, Banbury C, Meyer J, et al. Few-shot keyword spotting in any language[J]. arXiv preprint arXiv:2104.01454, 2021.

Mazumder M, Banbury C, Meyer J, et al. Few-shot keyword spotting in any language[J]. arXiv preprint arXiv:2104.01454, 2021.

METRIC LEARNING FOR USER-DEFINED KEYWORD SPOTTING

*Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea. *Hyundai Motor Company. *42dot Inc., Seoul, Republic of Korea.

• Motivation

• Detect new spoken terms defined by users.

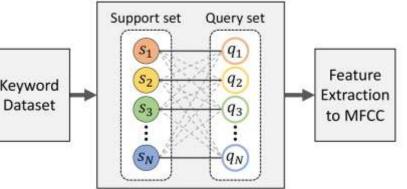
• Methods

• Propose a metric learning-based training strategy for user-defined keyword spotting.

(1) Construct a large-scale keyword dataset with an existing speech corpus and propose a filtering method to remove data that degrade model training.

(2)Propose a two-stage training strategy (pre-train + finetune).

(3)Propose unified evaluation protocol and metrics(FRR at given FAR).

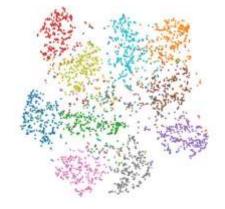

METRIC LEARNING FOR USER-DEFINED KEYWORD SPOTTING

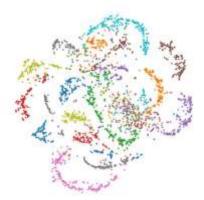
*Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea. *Hyundai Motor Company. *42dot Inc., Seoul, Republic of Korea.

- LibriSpeech Keywords (LSK) Dataset
 - Utilize a pre-trained wav2vec 2.0 model to force-align individual words from utterance-level labels.
 - Compute CER score on each keyword in dataset with the pre-trained wav2vec 2.0 model to filter misaligned examples.
 - The 13 most frequent words and one-letter words are removed, because they consist mostly of articles and prepositions.
 - 10 keywords in GSC dataset that are used as the user-defined keywords are removed.

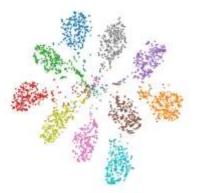
• Training Strategy

- Pre-train(LSK) + Finetune(25 keywords of GSC)
- Compare the softmax loss, AM-Softmax and Angular Prototypical loss Keyword


Jung J, Kim Y, Park J, et al. Metric Learning for User-Defined Keyword Spotting[C] (ICASSP 2023)


METRIC LEARNING FOR USER-DEFINED KEYWORD SPOTTING

*Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea. *Hyundai Motor Company. *42dot Inc., Seoul, Republic of Korea.


• Result

Traini	ng loss		EER	4		Acc ↑			F1-score	1	FR	R@FAR=	2.5 ↓	FR	R@FAR=	10↓
Pre-train	Fine-tune	1-shot	5-shot	10-shot	1-shot	5-shot	10-shot	1-shot	5-shot	10-shot	1-shot	5-shot	10-shot	1-shot	5-shot	10-shot
[19] w/ In	c. Training		-	9.0†	-		-	-	-	-	-	-	17.0†		1	8.3†
Sublit	Softmax	17.31	9.52	7.79	69.57	84.13	84.10	0.68	0.84	0.84	44.47	24.30	19.83	24.17	8.83	6.03
-	AM-Soft	17.43	8.91	7.20	63.43	84.60	86.97	0.63	0.85	0.87	55.10	21.33	18.30	26.57	7.73	5.10
	AP	20.47	9.33	8.50	61.37	80.30	80.13	0,60	0.80	0.80	56.53	26.60	23.00	35.47	8.57	6.93
	2	30.77	20.64	19.01	47.07	62.23	67.23	0.47	0.63	0.68	66.10	59.57	44.10	51.20	36.87	27.77
Softmax	Softmax	16.91	11.00	9.20	69.47	83.23	85.47	0.68	0.83	0.85	48.33	26.67	21.67	25.10	11.67	8.67
Dominala	AM-Soft	10.47	4.75	4.01	85.43	94.80	95.33	0.85	0.95	0.95	24.20	6.90	5.97	10.87	3.07	2.03
	AP	10.10	5.20	3.77	83.53	94,23	95.00	0.83	0.94	0.95	23.00	7.67	5.47	10.23	3.40	2.20
		34.78	26.87	22.65	41.73	56.83	63.30	0.43	0.58	0.64	75.77	75.00	61.53	61.80	51.23	38.87
AM-Soft	Softmax	23.60	15.38	13.80	53.17	70,50	77.93	0.54	0.70	0.78	65.23	44.07	37.87	41.73	22.73	18.27
	AM-Soft	10.88	6.54	5.64	85.13	92,57	93.63	0.85	0.93	0.94	26.40	11.87	9.60	11.63	4.80	3.50
	AP	11.80	6.57	4.80	80.27	92.40	93.07	0.79	0.92	0.93	28.20	12.43	7.63	13.70	4.70	3.13
		32.70	24.81	21.01	41.23	60.03	69.37	0.45	0.61	0.70	80.50	74.03	57.67	59.60	50.77	36.23
AP	Softmax	15.81	10.97	8.87	70.07	80.77	83.33	0.71	0.81	0.84	55.10	29.60	20.77	25.83	12.07	7.57
	AM-Soft AP	8.08 7.77	5.31 4.49	4.27 3.24	88.53 89.97	94.03 93.93	95.53 95.97	0.88	0.94	0.96	17.10 16.77	7.50 6.67	5.67 4.20	6.90 5.93	3.37	2.60
2.																
D	ataset	# Clas	ses †	# Samples	s 1	EER↓	/	Acc ↑	F1-9	score ↑	FRR	FAR=	2.5↓	FRR@	FAR=1	$\downarrow 0$
		500)	500		4.13	9	94.50	().95		6.07		1	2.13	
		500)	1.000		3.94		94.60	0).95						
	LSK							95.07								
LSF	K+KSK							0.132.0.0		2011 A		- 600000			100000	1.2
	LSK K+KSK	500 500 1,00 1,00 2,00		0 0	1,000 0 500 0 1,000	1,000 0 500 0 1,000	1,000 3.94 0 500 3.63 0 1,000 3.24	1,000 3.94 9 0 500 3.63 9 0 1,000 3.24 9	1,000 3.94 94.60 0 500 3.63 95.07 0 1,000 3.24 95.97	1,000 3.94 94.60 0 0 500 3.63 95.07 0 0 1,000 3.24 95.97 0	1,000 3.94 94.60 0.95 0 500 3.63 95.07 0.95 0 1,000 3.24 95.97 0.96	1,000 3.94 94.60 0.95 0 500 3.63 95.07 0.95 0 1,000 3.24 95.97 0.96	1,000 3.94 94.60 0.95 5.23 0 500 3.63 95.07 0.95 5.13 0 1,000 3.24 95.97 0.96 4.20	1,000 3.94 94.60 0.95 5.23 0 500 3.63 95.07 0.95 5.13 0 1,000 3.24 95.97 0.96 4.20	1,000 3.94 94.60 0.95 5.23 1 0 500 3.63 95.07 0.95 5.13 1 0 1,000 3.24 95.97 0.96 4.20 1	1,000 3.94 94.60 0.95 5.23 1.97 0 500 3.63 95.07 0.95 5.13 1.47 0 1,000 3.24 95.97 0.96 4.20 1.20
Ē	Filtering	E	ER↓	Acc	· ↑	F1-sc	ore ↑	FR	R@F	AR=2	5	FRF	R@FA	R=10	1	
	-	-	-	and the second second			1990 C				$\nabla \Psi$				¥	
	×	3	3.47	95.6	57	0.9	90		4.	.83			1.4	/		
	1	3	3.24	95.9	97	0.9	96		4.	.20			1.2	D		

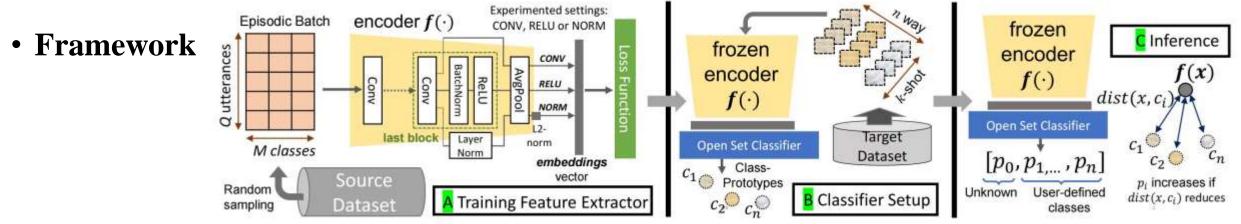
(a) Trained only on the GSC dataset. (b) Pre-trained only on the LSK dataset.

(c) Pre-trained on the LSK dataset, then fine-tuned on the GSC dataset.

Jung J, Kim Y, Park J, et al. Metric Learning for User-Defined Keyword Spotting[C] (ICASSP 2023)

Few-Shot Open-Set Learning for On-Device Customization of KeyWord Spotting Systems *PSI, KU Leuven, Belgium.

• Motivation


• The design of a custom KWS algorithm typically demands the training of a model on a dataset of collected user-defined keywords, preventing users from obtaining a custom solution in a short time.

• Methods

• Contributes an evaluation framework for FSL architectures composed by a feature encoder and a prototypebased open-set classifier initialized with few-shot samples.

Train a feature extractor using the prototypical loss, its angular variant or the triplet loss.

Few-Shot Open-Set Learning for On-Device Customization of KeyWord Spotting Systems *PSI, KU Leuven, Belgium.

• Model architecture

• Feature encoder

DSCNN: composed of a stacked sequence of depthwise and pointwise convolution blocks)

• Open-set classifier

Open Nearest Class Mean (openNCM)

OpenMAX

Dummy Proto (DProto)

$$c_j = \frac{1}{S} \sum_{i=1}^{S} f(x_{i,j}^S)$$
(1)

$$L_{PN} = -\frac{1}{Q \cdot M} \sum_{i=1}^{Q} \sum_{j=1}^{M} \log \frac{\exp(\mathbf{s}(x_{i,j}^{Q}, j))}{\sum_{k=1}^{M} \exp(\mathbf{s}(x_{i,j}^{Q}, k))}$$
(2)

where

 $\mathbf{s}(x,j) = -d_{L2}(f(x),c_j)$ (3)

$$\mathbf{s}(x,j) = w \cdot (\cos(f(x),c_j) - m) + b \tag{4}$$

$$L_{TL} = \frac{1}{N_t} \sum_{i=1}^{N_t} \max(0, d_{L2}(x_i, x_i^+) - d_{L2}(x_i, x_i^-) + m)$$
(5)

Rusci M, Tuytelaars T. Few-Shot Open-Set Learning for On-Device Customization of KeyWord Spotting Systems[J].(INTERSPEECH2023)

Few-Shot Open-Set Learning for On-Device Customization of KeyWord Spotting Systems

*PSI, KU Leuven, Belgium.

Lo	SS	Feature	ope	nNCM 5-	shot	Ope	nMAX 5	-shot	D	proto 5-sh	ot	oper	NCM 10	-shot	Ope	nMAX 10	-shot	D	proto 10-s	hot
		Extractor	$ACC_{5\%}^+$	AUROC	$FRR_{5\%}^+$	ACC_{591}^+	AUROC	$FRR_{5\%}^+$	ACC_{59L}^+	AUROC	$FRR_{5\%}^+$	$ACC_{5\%}^+$	AUROC	$FRR_{5\%}^+$	$ACC_{5\%}^+$	AUROC	$FRR_{5\%}^+$	$ACC_{5\%}^+$	AUROC	$FRR_{5\%}^+$
		DSCNN-L-NORM	0.21	0.66	0.78	0.23	0.79	0.77	0.21	0.64	0.79	0.22	0.68	0.78	0.23	0.75	0.77	0.22	0.67	0.78
P	N	DSCNN-L-CONV	0.54	0.86	0.46	0.12	0.87	0.87	0.64	0.91	0.35	0.62	0.89	0.37	0.48	0.89	0.50	0.71	0.93	0.28
		DSCNN-L-RELU	0.56	0.87	0.43	0.14	0.91	0.85	0.66	0.92	0.32	0.63	0.89	0.37	0.56	0.92	0.40	0.71	0.93	0.28
A	P	DSCNN-L-NORM	0.66	0.92	0.29	0.44	0.94	0.54	0.65	0.93	0.30	0.71	0.93	0.25	0.66	0.93	0.30	0.70	0.94	0.25
		DSCNN-L-NORM	0.71	0.93	0.26	0.37	0.94	0.62				0.76	0.94	0.21	0.71	0.94	0.24			
T	L -	DSCNN-L-CONV	0.58	0.88	0.41	0.25	0.95	0.74				0.63	0.89	0.36	0.67	0.95	0.29			
		DSCNN-L-RELU	0.66	0.90	0.33	0.20	0.96	0.80				0.71	0.91	0.28	0.64	0.96	0.32			
Ĩ		DSCNN-S-NORM	0.14	0.57	0.85	0.14	0.72	0.85	0.14	0.54	0.85	0.17	0.59	0.83	0.17	0.69	0.83	0.15	0.55	0.84
P	N	DSCNN-S-CONV	0.40	0.81	0.60	0.14	0.83	0.84	0.40	0.81	0.59	0.48	0.85	0.51	0.38	0.86	0.60	0.43	0.83	0.57
		DSCNN-S-RELU	0.39	0.80	0.60	0.20	0.86	0.77	0.39	0.80	0.60	0.45	0.84	0.54	0.44	0.87	0.54	0.44	0.81	0.56
A	P	DSCNN-S-NORM	0.39	0.83	0.60	0.34	0.87	0.64	0.31	0.81	0.68	0.41	0.84	0.57	0.36	0.86	0.63	0.33	0.82	0.66
		DSCNN-S-NORM	0.51	0.87	0.46	0.38	0.91	0.59				0.56	0.89	0.42	0.54	0.91	0.42			
T	L	DSCNN-S-CONV	0.39	0.80	0.60	0.26	0.92	0.70				0.42	0.82	0.57	0.56	0.92	0.39			
		DSCNN-S-RELU	0.42	0.82	0.57	0.28	0.92	0.69				0.49	0.85	0.50	0.58	0.93	0.37			

DSCNN-L — params: 407k	$ACC^+_{5\%}$	AUROC	Train Data	Extra Params
openNCM+Classif [22]+ NORM	0.52	0.89	source	<u></u>
openNCM+TL+NORM	0.76	0.94	source	0
dProto [10]+RELU	0.71	0.93	source	
PEELER [20]	0.76	0.94	source	+6.3M
end-to-end [4]	0.76	0.93	target	ang di kanang di kana Tang di kanang di kana
DSCNN-S — params: 22k	$ACC_{5\%}^+$	AUROC	Train Data	Extra Params
openNCM+Classif [22]+ NORM	0.47	0.85	source	-
openNCM+TL+NORM	0.56	0.89	source	÷
dProto [10]+RELU	0.44	0.82	source	Ξ.
PEELER [20]	0.60	0.88	source	+341k
end-to-end [4]	0.72	0.93	target	1. S.

Rusci M, Tuytelaars T. Few-Shot Open-Set Learning for On-Device Customization of KeyWord Spotting Systems[J].(INTERSPEECH2023)

 Model Pretraining based Mix training 				
MepiavatignPre-train Dataset:	e			
(1) (h) Editilizing WHEAet A friend and ignspratic by harge ustale		Ac	oustic space	
KWSndattaecanEinetwoldgbedsthe lebrikpyecobreleaamples. Data typ	e User-	100_shot	10_shot	5_shot
(2) Ve Filiging the editection of the set the set the set type	Pre-train	Finetune	Finetune	Finetune
mixeerkappingowith GSC are removed.	1000k	3.6k	0.36k	0.18k
Valid	5k	9.9k	9.9k	9.9k
Prepairing Principanthe poteras learned by mix training Clean_Test	400k	4.8k	4.8k	4.8k
outperforms the base based training strategy in clean Mixed_Test	-	4.0 <mark>7k</mark>	pee4.07k	4.07k
scenario in the training set of GSC_v2.		CO.	mmand	

(b)Each subset contains 36 classes, and 100/10/5

audios are randomly sampled from each class.

- Model Pretraining based Mix training Result
 - (1)Pretrain model performance
 - (2)Without model pretraining performance in clean scenario

The performance in Top-1 Accuracy(%) of different training strategies when detecting clean keywords.

All the models are trained without model pretraining.

	GSC_v2	GSC_100_shot	GSC_10_shot	GSC_5_shot
	Top-1 Acc.(%)	Top-1 Acc.(%)	Top-1 Acc.(%)	Top-1 Acc.(%)
Base(CE+softmax)	96.81	84.56±0.62	overfit	overfit
MT(BCE+sigmod)	97.03	87.71±0.54	23.96 ± 2.74	16.03±2.12

The performance on pre-train model

metric	Acc.(%)	EER
Base(CE+softmax)	90.93	0.0025
MT(BCE+sigmoid)	91.47	0.0035

• Model Pretraining based Mix training Result

(3)Without model pretraining performance in mixed scenario.

The performance in Top-2 Accuracy(%) of different training strategies when detecting mixed keywords.

All the models are trained	without model	pretraining.
----------------------------	---------------	--------------

	GSC_v2	GSC_100_shot	GSC_10_shot	GSC_5_shot
	Top-2 Acc.(%)	Top-2 Acc.(%)	Top-2 Acc.(%)	Top-2 Acc.(%)
Base(CE+softmax)	60.59	42.64±0.93	overfit	overfit
MT(BCE+sigmod)	90.35	69.65±0.49	16.45 ± 1.56	10.69 ± 2.01

• Model Pretraining based Mix training Result

(4)Model pretraining performance in clean scenario.

Finetune: start update layer = the 7th MBConvBlock

	Pre-train		Finetune		GSC_10_shot	GSC_10_shot_Aug
-			1 111		Top 1 Acc (0/)	$Top \ 1 \ Acc \ (\%)$
_	MT	base	MT	base	Top-1 Acc.(%)	Top-1 Acc.(%)
	×	\checkmark	×	\checkmark	60.67 <u>±</u> 2.32	66.98±1.23
	×	\checkmark	\checkmark	×	61.45±0.82	63.18±1.36
•	\checkmark	×	×	\checkmark	61.46 <u>±</u> 2.25	66.51±1.37
-	\checkmark	×	\checkmark	×	59.11±1.31	61.41±1.58

Pre-train Finetune		GSC_v2 GSC_100_shot		Pre-train Fine		etune	GSC_5_shot	GSC_5_shot_Aug				
		1 111		$T_{a,a} = 1 \Lambda_{a,a} \langle 0 \rangle$	$T_{ap} = 1 \Lambda_{ab} (0/)$	110-		I metune		$\mathbf{T}_{\mathbf{r}} = 1 \mathbf{A}_{\mathbf{r}} \mathbf{c} \left(0 \right)$		
MT	base	MT	base	Top-1 Acc.(%)	Top-1 Acc.(%)	MT	base	MT	base	Top-1 Acc.(%)	Top-1 Acc.(%)	
×	✓	×	~	96.36	91.82±0.38	×	\checkmark	×	~	33.50±4.24	38.15±5.06	
×	✓	\checkmark	×	97.14	92.60±0.31	×	\checkmark	\checkmark	×	43.05±3.08	41.75±4.03	
\checkmark	×	×	 ✓ 	96.22	91.84±0.28	\checkmark	×	×	✓	31.37±3.80	37.23 ± 3.07	
√	×	\checkmark	×	97.12	91.91±0.33	✓	×	\checkmark	×	42.24±3.31	42.30±4.17	

• Model Pretraining based Mix training Result

(5)Model pretraining performance in mixed scenario.

Finetune: start update layer = the 7th MBConvBlock

	Pre-train		Finetune		GSC_10_shot	GSC_10_shot_Aug	
_					Top 2 Acc (0/)	Top 2 Acc (%)	
_	MT	base	MT	base	Top-2 Acc.(%)	Top-2 Acc.(%)	
	×	\checkmark	×	\checkmark	39.70±0.64	34.94±1.81	
	×	\checkmark	\checkmark	×	42.80±0.67	41.84±1.34	
0.	\checkmark	×	×	✓	42.03±0.77	39.19±1.95	
-	\checkmark	×	\checkmark	×	44.76±1.92	42.78±1.15	

Pre-train Finetune		GSC_v2	GSC_100_shot	Pre-train		Finetune		GSC_5_shot	GSC_5_shot_Aug			
		1 111		T 2 A (0/)	$\mathbf{T}_{\mathbf{a},\mathbf{r}} \mathbf{A}_{\mathbf{a},\mathbf{a}} \left(0 \right)$			Timetune				
MT	base	MT	base	Top-2 Acc.(%)	Top-2 Acc.(%)	MT	base	MT	base	Top-2 Acc.(%)	Top-2 Acc.(%)	
×	✓	×	 ✓ 	60.86	52.95 ± 1.14	×	✓	×	~	20.34 ± 2.74	25.15±4.09	
×	✓	\checkmark	×	87.82	74.32±0.69	×	✓	\checkmark	×	30.40 ± 2.57	29.44±3.17	
\checkmark	×	×	 ✓ 	64.31	55.24 ± 0.34	\checkmark	×	×	✓	21.34±2.99	27.26 ± 0.95	
√	×	\checkmark	×	90.61	78.06±0.59	✓	×	\checkmark	×	32.08±3.21	31.80±3.31	

• Model Pretraining based Mix training Result

(6)Model pretraining performance in clean scenario.(a)start update layer: the 7th MBConvBlock(b)start update layer the last EC layer

(b)start update layer: the last FC layer

_	1				I	
_	Pre-train		Finetune		GSC_5_shot	GSC_5_shot_Aug
_	110-				$T_{op} = 1 \Lambda_{oo} (0/)$	Top 1 Λ oc (%)
_	MT	base	MT	base	Top-1 Acc.(%)	Top-1 Acc.(%)
	×	\checkmark	×	\checkmark	33.50 ± 4.24	38.15±5.06
	×	\checkmark	\checkmark	×	43.05±3.08	41.75±4.03
).	\checkmark	×	×	\checkmark	31.37±3.80	37.23±3.07
	\checkmark	×	\checkmark	×	42.24±3.31	42.30±4.17

The performance in Top-1 Accuracy(%) on (a).

The performance in Top-1 Accuracy(%) on (b).

	_			•		
Pre-train		etune	GSC_5_shot	GSC_5_shot_Aug		
	Filletulle				$T_{op} = 1 \Lambda_{oo} (0/)$	Top 1 A as $(0/)$
base	MT	base	10p-1 Acc.(%)	Top-1 Acc.(%)		
✓	×	\checkmark	48.29±2.23	51.32±3.32		
✓	\checkmark	×	50.08 ± 2.57	51.29 ± 3.07		
×	×	\checkmark	51.59±3.38	53.02±3.03		
×	\checkmark	×	51.54 ± 3.08	51.73±3.34		
	base ✓ ✓ ★	base MT ✓ × ✓ ✓ × ×	base MT base ✓ X ✓ ✓ X ✓ X × ✓ × × ✓	trainFinetune $\Box = \Box$ baseMTbaseTop-1 Acc.(%) \checkmark \bigstar \checkmark 48.29 ± 2.23 \checkmark \checkmark \bigstar 50.08 \pm 2.57 \bigstar \bigstar \checkmark 51.59 \pm 3.38		

• Model Pretraining based Mix training Result

(7)Model pretraining performance in mixed scenario.(a)start update layer: the 7th MBConvBlock

(b)start update layer: the last FC layer

	I				I	
Pre-train		Finetune		GSC_5_shot	GSC_5_shot_Aug	
	110-				$T_{a,a} \rightarrow A_{a,a} \left(0 \right)$	$\operatorname{Tep} 2 \operatorname{App} (0/2)$
1	MT	base	MT	base	Top-2 Acc.(%)	Top-2 Acc.(%)
	×	\checkmark	×	\checkmark	20.34 ± 2.74	25.15±4.09
	×	\checkmark	\checkmark	×	30.40 ± 2.57	29.44±3.17
0.	\checkmark	×	×	\checkmark	21.34±2.99	27.26 ± 0.95
	\checkmark	×	\checkmark	×	32.08±3.21	31.80±3.31

The performance in Top-2 Accuracy(%) on (b).

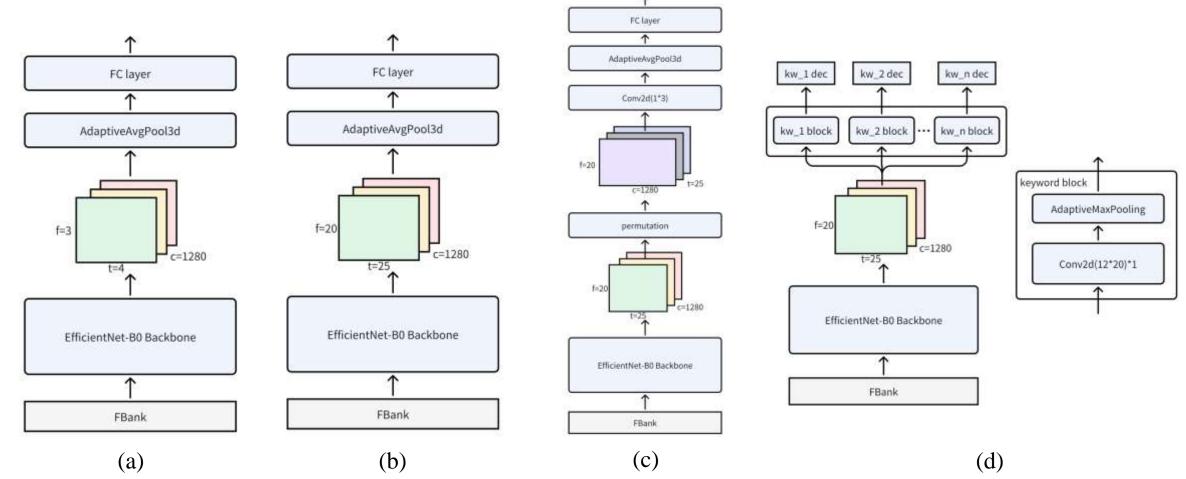
_					-	•	
Pre-train		Finetune		GSC_5_shot	GSC_5_shot_Aug		
				$T_{a,a} \rightarrow A_{a,a} \left(0 \right)$	$\mathbf{T}_{\mathbf{a}}$		
_	MT	base	MT	base	Top-2 Acc.(%)	Top-2 Acc.(%)	
	×	\checkmark	×	\checkmark	30.03 ± 3.25	33.51±2.38	
	×	\checkmark	\checkmark	×	34.10±2.83	34.43±2.79	
	\checkmark	×	×	\checkmark	35.83 <u>+</u> 4.08	38.22 ± 3.24	
_	\checkmark	×	\checkmark	×	37.46±3.36	39.02±3.33	

The performance in Top-2 Accuracy(%) on (a).

• Model Pretraining based Mix training Conclusion

(1) In the Few-shot case, model pretraining demonstrates greater effectiveness, with its advantages diminishing gradually as the number of shots increases.

Only in the 5-shot, finetuning the final layer yield optimal results.


(2) In the Few-shot case, mix training(MT) proves superior to base-based methods in mixed scenario, with the optimal performance achieved through MT+MT.

In extreme scenarios(10-shot/5-shot), the overall performance is consistently poor.

(3) Mix training shows a slight advantage over base-based methods in clean scenario, possibly due to the better learning of patterns.

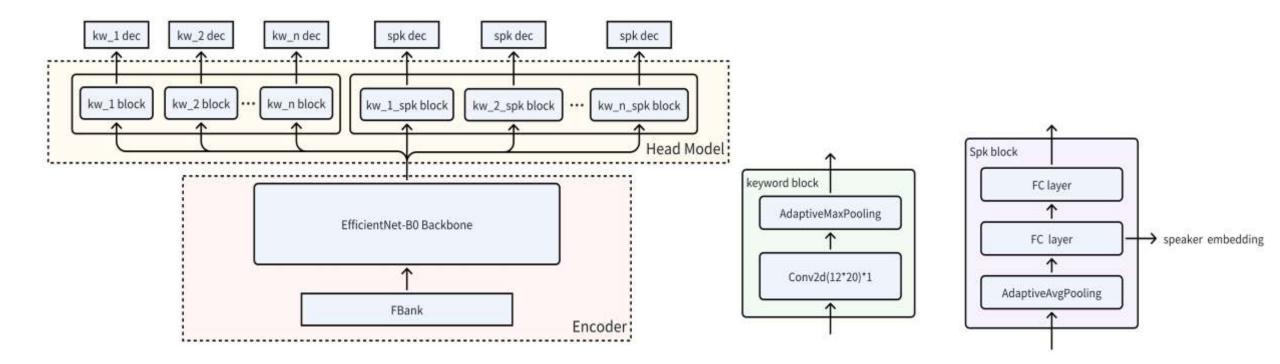
In extreme scenarios(10-shot/5-shot), it is challenging to discern this trend.

• Extend Temporal feature to reduce the FAR

• Extend Temporal feature to reduce the FAR

Dataset

Sampled on fyt dataset (pretrain: 5000 keywords, finetune: 51 keywords + unknown).


Result

(1)Model pretraining(pretrain: base, finetune: MT) performance on fyt clean scenario.

Data type	Pre-train	100_shot Finetune	Model structure	Top-1 Acc.(%)	FAR(%)
Set type			(a) raw	97.07±0.37	1.21 ± 0.32
Train	1480k	5.2k	(b) CHG str	96.81±0.25	1.32 ± 0.66
Valid	8.24k	3.28k	(c) CHG str + trans + 2d-conv	96.64±0.37	7.82 <u>+</u> 7.12
ACC_Test	-	1.55k	(d) CHG str + 52 2d-conv	95.91±0.31	6.22 ± 2.26
FAR_Test	-	8k	(d) CHG str + 52 2d-conv+SE	96.36±0.34	7.62 ± 2.61

• Multi-task(KWS+SID/ASV) based mix training

Structure

• Multi-task(KWS+SID/ASV) based mix training Result

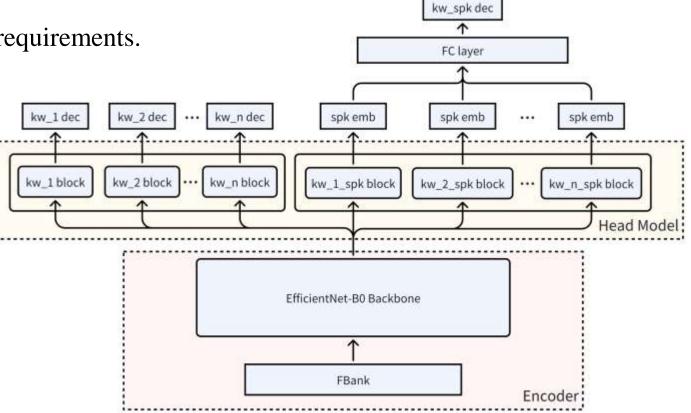
(1)Model performance in clean scenario.

	KWS+SID task			KWS+ASV task	
Training strategy / dataset	KW Top-1 Acc.(%)	Spk Top-1 Acc.(%)	Total Acc.(%)	KW Top-1 Acc.(%)	Spk EER.(%)
base / data_v1	94.65	73.49	71.86	86.45	4.67
base / data_v1_aug	95.12	90.23	86.51	86.04	4.14
MT(self corruption) / data_v1	100	91.39	91.39	93.38	3.22
MT(self corruption) / data_v1_aug	99.53	90.93	90.69	92.77	2.86

• Multi-task(KWS+SID/ASV) based mix training Result

(1)Model performance in mixed scenario.

	KWS+SID task			KWS+ASV task	
Training strategy / dataset	KW Top-2 Acc.(%)	Spk Top-1 Acc.(%)	Total Acc.(%)	KW Top-2 Acc.(%)	Spk EER.(%)
base / data_v1	58.02	10.58	0.00	52.51	24.69
base / data_v1_aug	61.16	30.23	0.46	54.79	22.02
MT(self corruption) / data_v1	94.53	47.44	17.67	83.35	10.57
MT(self corruption) / data_v1_aug	95.58	78.14	56.74	84.56	9.04


• Multi-task(KWS+SID/ASV) based mix training

Defect

. . . .

- (1) The available data does not quite fit the requirements.
- (2) The number of parameters is very large.

Shared FC layer

请大家批评指正

Thank You !