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Self-training for event detection
Zn |, K“-i“ __,é Zn Ky~ In ;@_an
*@_ Hn | UNIT i ,

DELAY [ YES NO
A : . A A
‘ Zn - Hn ) = ;\{ | CB{IJSE en =)
Kn+ “‘”*\R_;t;"ffl _____  SWITCH

- (Zo HiY (Kt Ko ¥ (ZaHg) |
—_1(““{(\"}_,_ % n" At LRNTRp a~Hn

Scudder. Probability of error of some adaptive pattern-recognition machines.IEEE Transactions on
InformationTheory, 11(3):363-371, 1965.
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Figure 1. Denoising performance (d3 in KODAK dataset) as a function of training epoch for additive Gaussian noise. (a) For i.i.d. (white)
Gaussian noise, clean and noisy targets lead to very similar convergence speed and eventual quality. (b) For brown Gaussian noise, we
observe that increased inter-pixel noise correlation (wider spatial blur; one graph per bandwidth) slows convergence down, but eventual
performance remains close. (c) Effect of different allocations of a fixed capture budget to noisy vs. clean examples (see text).

Lehtinen J, Munkberg J, Hasselgren J, et al. Noise2noise: Learning image restoration without clean
data[J]. arXiv preprint arXiv:1803.04189, 2018.



Noisy data only training
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Theorem 1 ([23,130]). The random variable n(h(y)) is an unbiased estimator of
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or

R )

Soltanayev et al., Training deep learning based denoisers without ground truth data, NIPS 2018.



(a) Noisy image (c) SDA-MSE-GT (d) SDA-SURE (e) SDA-SURE-T (f) SDA-REG

Figure 1: Denoising results of SDA with various methods for MNIST dataset at a noise level of o=50.

(a) Noisy image / 14.76dB  (b) BM3D / 26.14dB (c) SURE/26.46dB  (d) SURE-T/ 26.46dB (e) MSE/ 26.85dB

Figure 5: Denoising results of an image from the BSD68 dataset for 0=50



Frame-by-Frame self-supervision
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Figure 1: From the same starting point and only using the video, our fine-tuned network is able to denoise different noises
without any artifact. The top images are the noisy and the bottom ones the denoised. From left to right: Gaussian noise,
Poisson type noise, salt and pepper type noise and JPEG compressed Gaussian noise.

Ehret, Model-blind Video Denoising Via Frame-to-frame Training, CVPR 2019.



Noise mask training

* Mask center and predict the center
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Fig. 2. Qualitative results for three images (rows) from the datasets we used in this
manuscript. Left to right: raw image (NR1), zoomed inset, predictions by U-Net (trad.),
U-Net (N2V), U-Net (PN2V), and ground truth data.

Krull et al, Noise2Void:Unsupervised Content-Aware Denoising, 2019.



More extension
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High-Quality Self-Supervised Deep Image Denoising, NIPS 2019



Figure 1: Top: In our blind-spot network architecture, we effectively construct four denoiser net-
work branches, each having its receptive field restricted to a different direction. A single-pixel offset
at the end of each branch separates the receptive field from the center pixel. The results are then
combined by 1 X1 convolutions. Bottom: In practice, we run four rotated versions of each input im-
age through a single receptive field -restricted branch, yielding a simpler architecture that performs
the same function. This also implicitly shares the convolution kernels between the branches and thus
avoids the four-fold increase in the number of trainable weights.



NoiseZ2Noise
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Example training pairs

Figure 3. Removing random text overlays corresponds to seeking the median pixel color, accomplished using the L, loss. The mean (L2
loss) is not the correct answer: note shift towards mean text color. Only corrupted images shown during training.



Noise as clean
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Fig. 2. Proposed “Noisy-As-Clean’ strategy for training self-supervised image denoising networks. In our NAC strategy, we take the observed noisy
image y = x + n, as the “clean” target, and take the simulated noisy image z = y + ny as the input. We do not regard the clean image x as target. Afier
training, the inference is performed on the target noisy image y = x + n,,.

Noisy-As-Clean: Learning Self-supervised Denoising from the Corrupted Image, 2020, May



Noise2Self

e Assuming noise at different dimensions are independent

noisy NLM BM3D N2S(UNet) ~ N2S(DnCNN) ~ N2N(UNet)  N2T (DnCNN) true
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Batson J, Royer L. Noise2self: Blind denoising by self-supervision[J]. arXiv preprint arXiv:1901.11365,
20109.



Denoise by corruption prior
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Pajot et al., UNSUPERVISEDADVERSARIALIMAGERECONSTRUCTION, ICLR 2019.



SGD via Prior net
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(a) We show original images (top row) and reconstructions by (b) We show original images (top row), low resolution version
Lasso (middle row) and our algorithm (bottom row). of original images (middle row) and reconstructions (last row).
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Figure 2: Results on MNIST. Reconstruction with 100 measurements (left) and Super-resolution (right)

Ashish Bora, Ajil Jalal, Eric Price, and Alexandros G Dimakis. Compressed sensing using
generative models.arXiv preprint arXiv:1703.03208, 2017.



Lasso (Wavelet] Lasso (DCT) Qriginal

DCGAN

Figure 3: Reconstruction results on celebA with m = 500 measurements (of n = 12288 dimensional vector). We
show original images (top row), and reconstructions by Lasso with DCT basis (second row), Lasso with wavelet basis
(third row), and our algorithm (last row).



Deep image prior

Ulyanov D, Vedaldi A, Lempitsky V. Deep image
prior[C]//Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2018: 9446-9454.
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(c) Bicubic, Not trained d) Deep prior, Not trained

Figure 1: Super-resolution using the deep image prior.
Our method uses a randomly-initialized ConvNet to upsam-
ple an image, using its structure as an image prior; similar
to bicubic upsampling, this method does not require learn-
ing, but produces much cleaner results with sharper edges.
In fact, our results are quite close to state-of-the-art super-
resolution methods that use ConvNets learned from large
datasets. The deep image prior works well for all inverse
problems we could test.
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(e) ResNet, depth=8

Figure 8: Inpainting using different depths and architectures. The figure shows that much better inpainting results can be
obtained by using deeper random networks. However, adding skip connections to ResNet in U-Net is highly detrimental.



Regularization for DIP
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(a) Reconstructions - Chest X-ray (b) Reconstructions - MNIST

Figure 2: Reconstruction results on x-ray images for m = 2000 measurements (of n = 65536 pixels)
and MNIST for m = 75 measurements (of n = 784 pixels). From top to bottom row: original image,
reconstructions by our algorithm, then reconstructions by baselines BM3D-AMP, TVALS3, and Lasso.
For x-ray images the number of measurements obtained are 3% the number of pixels (i.e. 7+ =.03),

for which BM3D-AMP often fails to converge.

Veen et al., Compressed Sensing with Deep Image Prior andLearned Regularization, 2019.



Noisy student with self-learning

Train teacher mﬂdcm R (Iﬂfﬁl’ pseudo-labels
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Stochastic depth o and noise injected

Self-training with Noisy Student improves ImageNet classification, CVPR 2020.



Noisy student with self-learning

Method | # Params Extra Data Top-1 Acc. Top-5 Acc.
ResNet-50 [30] 26M - 76.0% 93.0%
ResNet-152 [30] 60M - 77.8% 93.8%
DenseNet-264 [36] 34M - T7.9% 93.9%
Inception-v3 [£0] 24M - 78.8% 94.4%
Xception [ 5] 23M - 79.0% 94.5%
Inception-v4 [ 78] 48M - 80.0% 95.0%
Inception-resnet-v2 [78] 56M - 80.1% 95.1%
ResNeXt-101 [20] 84M - 80.9% 95.6%
PolyNet [95] 92M - 81.3% 95.8%
SENet [35] 146M - 82.7% 96.2%
NASNet-A [102] 89M - 82.7% 96.2%
AmoebaNet-A [65] 8™ - 82.8% 96.1%
PNASNet [50] 86M - 82.9% 96.2%
AmoebaNet-C [17] 155M - 83.5% 96.5%
GPipe [35] 557M - 84.3% 97.0%
EfficientNet-B7 [52] 66M - 85.0% 97.2%
EfficientNet-L2 [82] 480M - 85.5% 97.5%
ResNet-50 Billion-scale [91] 26M 81.2% 96.0%
ResNeXt-101 Billion-scale [91] 193M ] . 84.8% -
ResNeXt-101 WSL [55] 829M JHmages Iahaled withiiags 85.4% 97.6%
FixRes ResNeXt-101 WSL [54] 829M 86.4% 98.0%
Big Transfer (BiT-L) [4 ;]’r | 928M 300M weakly labeled images from JFT ‘ 87.5% 98.5%

NoisyStudent (EfficientNet-L2) | 430M 300M unlabeled images from JFT ‘ 88.4% 98.7 %




Self-training is better than pretraining
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Figure 1: The effects of data augmentation and dataset size on pre-training. Left: Supervised
object detection performance under various ImageNet pre-trained checkpoint qualities and data
augmentation strengths on COCO. Right: Supervised object detection performance under various
COCO dataset sizes and ImageNet pre-trained checkpoint qualities. All models use Augment-S4 (for
similar results with other augmentation methods see Appendix .

Barret Zoph* , Golnaz Ghiasi* , Tsung-Yi Lin* ,Yin Cui, Hanxiao Liu, Ekin Cubuk, Quoc V. Le, Rethinking Pre-training and Self-training, Google Brain, 2020.



Self-training is better than pretraining

Setup Augment-S1  Augment-S2  Augment-S3  Augment-S4
Rand Init 302 41.5 439 443
ImageNet Init (+0.3) 39.5 (-0.7) 40.7 (-0.8) 43.2 (-1.0) 43.3
Rand Init w/ ImageNet Self-training (+1.7) 40.9 (+1.5)43.0 (+1.5)454 (+1.3)45.6

Table 2: In regimes where pre-training hurts, self-training with the same data source helps. All

models are trained on the full COCO dataset.

Setup 20% Dataset | 50% Dataset | 100% Dataset
Rand Init 30.7 39.6 44.3
Rand Init w/ ImageNet Self-training (+3.4) 34.1 (+1.8)41.4 (+1.3)45.6
ImageNet Init 33.3 38.8 43.3
ImageNet Init w/ ImageNet Self-training (+2.7) 36.0 (+1.7) 40.5 (+1.3) 44.6
ImageNet++ Init 35.9 35.0 43.8
ImageNet++ Init w/ ImageNet Self-training (+1.3) 37.2 (+1.6) 41.5 (+0.8) 44.6

Table 3: Self-training improves performance for all model initializations across all labeled dataset
sizes. All models are trained on COCO using Augment-S4.



Self-training is better than pretraining

Setup COCO AP

Rand Init 41.1

ImageNet Init (Supervised) | (-0.7) 40.4

ImageNet Init (SimCLR) (-0.7) 40.4

Rand Init w/ Self-training (+0.8) 41.9
Table 4: Self-supervised pre-training (S1mCLR) hurts performance on COCO just like standard super-
vised pre-training. Performance of ResNet-50 backbone model with different model initializations on
full COCO. All models use Augment-S4.




Speech recognition with self-training

No LM With LM
Method Dev WER Test WER (WRR) Dev WER Test WER (WRR)
clean other clean other clean other clean other

Baseline Paired 100hr 14.00 37.02 14.85 39.95 T.78 28.15 8.06 30.44

Paired 100hr + Unpaired 360hr clean speech
Oracle 720 2532 7.99 26.59 3.98 17.00 4.23 17.36
Single Pseudo 9.61 29.72 10.27 (66.8%) 30.50(70.7%) | 5.84 21.86 6.46(41.8%) 22.90(57.6%)
Ensemble (5 models) 9.00 27.74 9.62(76.2%) 29.53(78.0%) | 5.41 20.31 5.79(59.3%) 21.63(67.4%)

Paired 100hr + Unpaired 500hr noisy speech
Oracle 6.90 17.55 7.09 18.36 3.74 10.49 3.83 11.28
Single Pseudo 1090 28.37 11.48 (43.4%) 29.73(47.3%) | 6.38 1998 6.56 (35.5%) 22.09 (43.6%)
Ensemble (4 models) 10.41 27.00 10.50(56.1%) 29.25(49.6%) | 6.01 18.95 6.20(44.0%) 20.11 (53.9%)

Table 1. Best results from single runs tuned on the dev sets. The best filtering setup found in Section[4.3.1]is applied.



Speech recognition with self-training

No LM With LM
Text Test clean Test clean
(# words) WER (WRR) WER (WRR)

Cycle TTE [9] 4.8M  21.5(27.6%) 19.5(30.6%)
ASR+TTS [10]  3.6M 17.5 (38.0%) 16.6 (-)
this work 842.5M 9.62 (76.2%) 3.79 (39.3%)

Method

Table 2. A comparison with previous work using 100hr
paired data and 360hr unpaired audio. WRR is computed with
the baseline and oracle WER from the original work if avail-
able. (*: The oracle WER is without LM decoding, so the
WRR is an upper bound estimation.)

Jacob Kahn, Ann Lee, and Awni Hannun. Self-training for end-to-end speech recognition. FaceBook,
CASSP,2019.



