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Abstract

Sparse discriminant analysis (SDA) imposes l-1 regularization to encourage
sparse coefficients in linear discriminant transform. This approach has found a
broad range of machine learning tasks, due to its capability of identifying the
most promising features so that the feature dimensionality can be significantly
reduced, leading to most robust and generalizable models. This paper reviews the
development of SDA from linear discriminative analysis (LDA), and presents its
application to the driving distraction detection task.
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1 Introduction
Machine learning methods suffer from curse of dimensionality, which means that the

amount of data required to train a reliable model is exponentially increased with

respect to the dimensionality of the feature. In the case where the the dimensionality

is high and the training data is limited, the trained model tends to be severely

over-fitting, i.e., performs very good on training data but degrades on test data

substantially [1]. To prevent over-fitting, it is often desirable to to reduce the feature

dimensionality. An attractive feature dimensionality reduction approach is to select

the important dimensions and ignore unimportant ones. A clear advantage of this

approach is that those dimensions that are easy to be contaminated by noise can

be removed, leading to more noise-robust models. In summary, machine learning

requires dimension reduction, keeping the most prominent dimensions (features)

and removing trivial and task-unrelated ones.

Linear discriminative analysis (LDA) is probably the simplest dimension reduction

approach. The objective of LDA is to discover a low-rank linear transform, by which

the training data are projected to a low-dimensional space where the intra-class

variance is minimized and the inter-class variance is maximized. This approach,

however, fails in situations where (1) the dimensionality of the data is very high;

(2) the classes can not be well described by a single Gaussian; (3) the classes can not

be well separated by linear boundaries [2]. Penalized discriminant analysis (PDA) [3]

and LDA based on Gaussian mixtures [4] were presented to address these difficulties.

The sparse discriminative analysis (SDA) [2] extended PDA and multi-Gaussian

LDA by introducing an l-1 norm, which encourages discovering sparse discriminant

directions, e.g., the non-zero elements of these directions are sparse. Almost at the

same time, [5] presented a similar l-1 penalization for LDA. Shao et al. [6] proposed

a sparse LDA that is asymptotically optimal under some sparsity conditions on the
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parameters. SDA, and other sparse version of discriminant analysis were thereafter

extensively studied and found a broad range of applications, e.g. [7, 8, 9, 7, 10, 11,

12, 13]. A number of toolkits have been designed to support SDA and its variants,

e.g., Spasm from Sjöstrand et al. [14].

This paper is organized as follows: in Section 2 we start from the classical LDA

and review three perspectives that can lead to LDA. Section 3 discusses some ex-

tensions based on different perspectives, including heterogeneous LDA, penalized

LDA, sparse LDA. Section 4 focuses on the sparse LDA, particularly the SDA mod-

el based on the optimal scoring framework. Section 5 presents an experiment to

demonstrate the capability of SDA, where SDA is used to select important fea-

tures from the EEG data and use the selected features to detect drivers’ mental

distraction. The entire paper is concluded in Section 6.

2 Linear discriminant analysis (LDA): Three perspectives
LDA can be derived from three perspectives [5]: Fisher’s discriminant, probabilistic

modeling and optimal scoring. These three perspectives are correlated and formu-

late the learning task from different angles: Fisher’s discriminant seeks for the best

discriminative directions on which the projected training samples are best classi-

fied; the probabilistic modeling approach formulates the classification problem as

a maximum likelihood estimation problem with a probabilistic model; the optimal

scoring approach reformulates the classification problem into a regression problem.

2.1 Fisher discriminant view

let X = [x1x2...xN ]T ∈ RN×P denote a data matrix containing N observations of

P dimensions; further let Y ∈ {0, 1}N×K represent the class of the N observations,

where Ynk indicates whether the n-th observation belongs to the k-th class. The

projected image of xn is zn = βTxn, where β = [β1, β2, ..., βD] ∈ RP×D is the

projection matrix that projects a P -dimensional data sample x to a D-dimensional

image z. The definition of LDA is an optimal β by which the training data in dif-

ferent classes are mostly separated in the projected space, where the ‘separateness’

is measured by the Fisher criterion, defined as follows:

J(β) = Tr{(βSWβT )−1(βSBβ
T )} (1)

where SW and SB are within-class variance and between-class variance of the train-

ing data, respectively, and β projects the variance in the original data space to the

projected space. The between class SB is defined by:

SB =

K∑
k=1

Nk(x̄k − x̄)(x̄k − x̄)T

where Nk is the number of training samples in the k-th class, and x̄k is the mean

vector of the training data of the k-th class, and x̄ is the mean vector of all the

training data:
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x̄k =
1

Nk

∑
C(xn)=k

xn x̄ =
1

N

N∑
n=1

xn

where C(x) returns the class label of x. The within-class SW is defined as the sum

of the variance of individual classes:

SW =

K∑
k=1

∑
n∈Ck

(xn − x̄k)(xn − x̄k)T .

It was shown that for a particular dimension D, J(β) is maximized when the

columns of β (the discriminant directions) coincide with the D eigenvectors of

S−1W SB corresponding to the D largest eigenvalues [15]. This means the LDA prob-

lem under the Fisher discriminant view can be solved by simple eigen analysis.

2.2 Probabilistic model view

LDA can be also derived from a maximum likelihood estimation of a constrained

Gaussian model [16]. The definitions of X, β, x̄ and x̄k as as in the Fisher dis-

criminant view. The difference is that the training data of a particular class k

now is assumed to follow a Gaussian distribution N(µk,Σk). The projected image

z = βTx therefore follows a Gaussian distribution as well, denoted by N(mk, Vk),

where mk = βTµk, and Vk = βTΣkβ.

Define the between-class and within-class variances as follows:

SB =
1

N

N∑
i=1

(xi − x̄)(xi − x̄)T

SkW =
1

Nk

∑
C(x)=k

(x− x̄k)(x− x̄k)T

SW =
1

N

K∑
k=1

NkS
k
W .

Note that the definitions of SB and SW here are slightly different from the ones

in the Fisher discriminant view, but the basic idea is totally the same. Besides the

Gaussian assumption, LDA also assumes that only the first D dimensions of mk are

distinct for different k, and the covariance matrices of all the classes are identical.

These conditions are formally written as:
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mk =



mk,1

mk,2

...

mk,D

m0,D+1

..m0,P


=

[
mk
D

m0

]

Vk =

[
VD 0

0 V0

]

Under these constraints, LDA optimizes β such that the log likelihood function

J(β) =
∑
x logP (x;β) is maximized. Since | ∂z∂x | = |β|, we have :

P (x) = |β|P (z) =
|β|√

(2π)P |VC(x)|
exp{−

(βTx−mC(x))
TV −1C(x)(β

Tx−mC(x))

2
}

where C(x) denotes the class of x. The likelihood function is then written by:

J(β) =
∑
x

logP (x;β) (2)

= Nlog|β| − N

2
log|V | − 1

2

∑
x

{(βTx−mC(x))
TV −1(βTx−mC(x))}+ const

where const is a constant value unrelated to β. Maximizing J(β) with respect to β

leads to the optimal projection. Firstly treat β as fixed and optimize mk and V . A

simple computation shows:

m̂D
k = βTDx̄k k = 1, 2, ..,K

m̂0 = βT0 x̄

V̂ D = Diag(βTDSWβD)

V̂0 = Diag(βT0 SBβ0)

where βD is a submatrix that involves the first D columns of β, and β0 involves the

rest P −D columns of β. Substituting these results into Eq. 2 leads to:

J(β) = Nlog|β| − 1

2
log|Diag(βT0 SBβ

T
0 )| − N

2
log|Diag(βTDSWβD)|.

Kumar [17] proved that taking the eigenvectors of S−1W SB corresponding to the D

largest eigenvalues as βD and the rest eigenvectors as β0 also maximizes the above

J(β). Note that these eigenvectors are also the solution of the conventional LDA
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based on the Fisher discriminant, thus confirming that LDA can be regarded as a

maximum likelihood parameter estimation of a constrained Gaussian model, where

(1) some dimensions of the class-dependent Gaussians are distinguishable, and (2)

the covariance matrices of all the classes are identical.

The probabilistic model that LDA assumes can be written as a neat form:

xk,i = µ+Bzk + σk,i (3)

where xk,i is the i-th sample of the k-th class, µ the global mean vector, and zk
is the mean vector of the k-th class in the projected space. B is the projection

matrix, and σk,i ∼ N(0,Σ) is the residual Gaussian noise. It is easy to verify that

this formulation holds the same assumptions as LDA: all the classes are Gaussians

with shared covariance. Note that this is a linear Gaussian model and similar to

principle component analysis (PCA) and factor analysis, except that the data are

labelled in class.

2.3 Optimal scoring view

The third approach that can lead to LDA is to cast the classification problem to a

linear regression problem. The main difficulty, obviously, is that the regression target

is a categorical variable, which often leads to high sensitivity with outliers in the

training data, if the regression is simply conducted on the categorical targets. The

optimal scoring approach [3] tackles the problem by turning the one-hot categorical

target (class label) to a continuous vector θk. The objective function takes the

following form [18]:

minβk,θk{||Y θk −Xβk||22} s.t.
1

N
θTk Y

TY θk = 1, θTk Y
TY θl = 0 ∀l < k, (4)

where θk is the score vector of the k-th class, and βk is the k-th discriminative

direction vector. Note that this is a sequential optimization problem where the

‘discriminative directions’ {βk} are attained one by one, and the new derived dis-

criminant direction is orthogonal to all the existing discriminant directions.

3 LDA extension based on different perspectives
A couple of extensions have been proposed to improve LDA, based on different

perspectives of the LDA formulation. We review several typical ones and discuss

their correlation.

3.1 Penalized LDA based on the Fisher discriminant view

Based on the Fisher discriminant formulation, Witten and Tibshirani [5] proposed to

add a convex penalty to the objective function. According to the Fisher discriminant

view, the original LDA problem can be formulated as:

maxβk
(βTk SBβk) s.t. βTk SWβk ≤ 1, βTk SWβi = 0 ∀i < k

Note that this criterion looks different from the one in Section 2.1, but it can be

easily verified that they state the same thing, if we adapt the length of βk to meet

βTk SWβk = 1 in Eq.1. Adding a penalty on β leads to:
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maxβk
(βTk SBβk − P (βk)) s.t. βTk SWβk ≤ 1, βTk SWβi = 0 ∀i < k

where P (βk) is the added regulation item. In Witten’s work [5], two types of penalty

terms are investigated: the first one is the l-1 norm
∑P
j=1 |σjβkj | where σj is the

within-class standard deviation of the j-th feature. This penalty pushes unimportant

features to zero, leading to a sparse βk. The second penalty encourages smoothness

between adjacent dimensions, formulated by
∑P
j=2 |σjβk,j − σj−1βk,j−1|.

3.2 Heterogeneous LDA based on the probabilistic model view

According to the probabilistic model view, the assumption behind LDA is that

all the classes are Gaussian and the covariances are shared. If the covariance ma-

trices are not shared, we reach the heterogeneous LDA (HLDA), as proposed by

Kumar [16].

Following the notation in Section 2.2, the variance Vk of the k-th class can be

written by:

Vk =

[
V Dk 0

0 V0

]

The likelihood function is J(β) =
∑
x logP (x;β), where

P (x) = |β|P (z) =
|β|√

(2π)P |VC(x)|
exp{−

(βTx−mC(x))
TV −1C(x)(β

Tx−mC(x))

2
}.

Note the covariance matrices of different classes are different. The objective function

is then derived as:

J(β) =
∑
x

logP (x;β) (5)

= Nlog|β| − N

2
log|VC(x)| −

1

2

∑
x

{(βTx−mC(x))
TV −1(βTx−mC(x))}+ const

where const is a constant value unrelated to β. Fixing β and optimizing mk and Vk

leads to:

m̂D
k = βTDx̄k k = 1, 2, ..,K

m̂0 = βT0 x̄

V̂ Dk = Diag(βTDS
k
WβD) k = 1, 2, ..,K

V̂0 = Diag(βT0 SBβ0)
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Substituting these results into Eq. 5 leads to:

J(β) = Nlog|β| − 1

2
log|Diag(βT0 SBβ

T
0 )| −

K∑
k=1

Nk
2
log|Diag(βTDS

k
WβD)|.

Formulating HLDA as a linear Gaussian model gives:

xk,i = µ+Bzk + σk,i.

where σk,i ∼ N(0,Σk), i.e., the variance of the residual noise is different for different

classes.

3.3 Probabilistic LDA based on the probabilistic model view

A key note of the linear Gaussian model of LDA (Eq. (3)) is that zk, the mean vector

of class k in the latent space, is deterministic rather than probabilistic, i.e., zk is a

parameter that should be learned during model training. Once the model has been

trained, the values of {zk} are fixed. This leads to several disadvantages: firstly,

zk is ‘almost purely’ estimated from the data of the k-th class. For classes with

limited training data, zk tends to be weakly estimated. Secondly, it is impossible to

introduce new classes once the model has been trained, preventing it from dealing

with new classes at inference (test) time.

To overcome this problem, probabilistic LDA was proposed by several authors [19,

20]. The basic idea is to change zk from a deterministic parameter to a random

variable, so that zk can be inferred from data during the test phase. A simple

setting is to assume a normal distribution for zk, i.e., zk ∼ N(0, 1), although more

complex settings are possible. With the prior distribution, it would be possible to

infer the projected image zk,i even if the class has never been seen in the training

data.

3.4 Regularized LDA based on the optimal scoring view

The optimal scoring view casts the classification problem to a regression problem,

opening rich opportunities to involve various regularizations. For example, Clem-

mensen et al. [5, 2] appended an l-2 term and an l-1 term to the cost function

Eq.(4), leading to:

minβk,θk{||Y θk −Xβk||22 + γβTk Ωβk + λ||βk||1}

s.t.
1

N
θTk Y

TY θk = 1, θTk Y
TY θl = 0 ∀l < k,

(6)

where Ω is a positive definite matrix to avoid singularity when the observations are

mutually dependent or when the dimension is large, i.e., P > N , and λ and γ are

non-negative hyperparameters. Note that the l-1 penalty introduced by the third

term in the above equation enforces sparsity on βk, and more dimensions of βk are

driven to zeros with a larger λ [21]. More discussion about this model can be seen

in the next section.
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3.5 Some discussions

We have reviewed a number of extensions for LDA. The underlying idea of these ex-

tensions can be categorized into two fold: regularization and assumption relaxation.

Regularization imposes additional terms to the objective functions to encourage

particular properties, e.g., parameter shrinkage or sparsity [3, 5, 2]. This regulariza-

tion is also a principle approach to solving the singularity problem caused by high

feature dimensionality or limited training data. Assumption relaxation, on the oth-

er hand, tries to substitute the strong shared-covariance Gaussian assumption with

more realistic assumptions, e.g., the distinct-covariance assumption in HLDA [16]

and the multiple Gaussian assumption in the Gaussian mixture LDA [4].

Compared to the three perspectives, the Fisher discriminant view is the most s-

traightforward and the inference is easy to interpret. The standard solutions based

on eigen analysis makes it easy to implement by using off-the-shelf eigen analysis

tools. It is also easy to add regularization terms to the cost function, but the addi-

tional terms may cause difficulty in optimization as it may not be simply an egien

problem. The optimal scoring view is particularly easy to add regularization, but it

is not simple to change the model structure, i.e., involving more realistic assump-

tions. The probabilistic model is a more principle way to deal with both model

change and regularization introduction. Since the probabilistic model describes the

underlying assumptions in a simple and explicit way, and many regularizations can

be derived from a prior distribution, the probabilistic view provides a theoretical

framework to enhance the model structure, leading to an elegant way to involve

human knowledge, plausible assumptions, and trade-off between performance and

complexity.

4 Sparse linear discriminant analysis (SDA)
In this section, we focus on a particular regularization for LDA: the sparsity con-

straint. The importance of this regularization can be attributed to several aspects.

Firstly, it can address the singularity problem associated with very high dimensional

features. Secondly, it helps identify the most discriminant feature group, leading to

a natural dimension reduction approach. Thirdly, the sparsity constraint promotes

the most discriminative information and ignores unimportant nuances, leading to

more noise-robust features in the projected space. This section reviews a typical

sparsity-oriented LDA, named as ‘sparse discriminative analysis’, or SDA.

SDA resorts to the l-1 penalty to achieve sparse projections (discriminative direc-

tions). Imposing an l-1 penalty to achieve sparsity has been extensively studied in

both regression [21, 22] and classification [18, 5, 23, 24]. By adding to the objective

function an l-1 regularization term with respect to the model parameters, unim-

portant parameters tend to be driven to zeros. For a linear model σ(βTx) where

σ(·) denotes the activation function, x the input data and β the parameters, an

l-1 regularized objective function encourages the coefficient βi to zero if xi is less

important, leading to a natural and efficient approach for feature selection.

The SDA approach described in [18] belongs to such l-1 derived sparse model. It

is based on the optimal scoring formulation of LDA, and adds an l-2 term and an

l-1 term to the cost function, leading to:
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minβk,θk{||Y θk −Xβk||22 + γβTk Ωβk + λ||βk||1}

s.t.
1

N
θTk Y

TY θk = 1, θTk Y
TY θl = 0 ∀l < k,

(7)

where Ω is a positive definite matrix to avoid singularity, and λ and γ are non-

negative hyperparameters. Note that the l-1 penalty introduced by the third term

in the above equation enforces sparsity on βk, and more dimensions of βk are driven

to zeros with a larger λ [21].

In the case of a two-class classification problem, there is only one discriminative

direction β. The optimization problem is then reduced to the following:

minβ,θ{||Y θ −Xβ||22 + γβTΩβ + λ||β||1}

s.t.
1

N
θTY TY θ = 1.

(8)

Eliminating θ by a simple variable substitution leads to:

minβ{||Ŷ −Xβ||22 + γβTΩβ + λ||β||1}, (9)

where Ŷ is the normalized class indicator matrix whose elements are given by:

Ŷn,k =

√
N

Nk
,

where Nk is the number of observations of the k-th class. We see that the opti-

mization problem for the classification task equals to the optimization problem of a

regression task in the case of two classes, which has been stated in [1]. Furthermore,

notice that Eq. (9) is an elastic net problem if Ω = I, and a generalized elastic

net problem for an arbitrary symmetric positive definite matrix Ω. This elastic net

problem can be solved by the algorithm proposed by [22].

The mental distraction detection task that we will study in this paper is a two-

class problem. In this case, the discriminative direction β actually plays a role of

feature selection, i.e., the dimensions whose corresponding elements of β are zero

are simply discarded. Note that Eq. (9) coincides with the elastic net regression

proposed by [22]. For multiple classification tasks, the SDA model is a general

framework to derive sparse coefficients {βk}. In this case, the non-zero dimensions

of different βk are usually different, requiring task-dependent treatment.

5 SDA for driving distraction detection
Mental distraction in car driving is very dangerous and is one of the major causes of

traffic disasters. It would be highly valuable if we can monitor the mental status of

drivers and produce some alarms when they are in distraction. Mental distraction

can be caused by various factors, e.g., answering calls, tuning air conditions, looking
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at people besides or behind, etc. These ‘explicit distraction’ can be detected by

either eye fixation or driving behavior [25, 26]. However, for distraction caused

by psychological overload, e.g., thinking some puzzling things, it would be hard

to detect by just monitoring drivers’ face or behavior. One way to detect such

‘implicit distraction’ is to monitor the activity of drivers’ brain. In this study, we

investigate using electroencephalography (EEG) data to detect mental distraction.

Although it is still far from practice (it would be not easy to persuade drivers

to wear EEG helmets), the study at least can show a possible way of detecting

psychological distraction. More importantly, we hope to discover more evidence for

the connection between psychological load and brain activities.

5.0.1 Data

The EEG data was provided by Prof. Guozhen Zhao from the psychological re-

search institute of Chinese academy of social science (CASS). The data were col-

lected from 8 subjects using a driving simulation. The collection was divided into 6

phases, where two phases are normal driving, while the other four phases are men-

tal distracted, by increasing the drivers’ psychological load with some disturbing

tasks. The data were collected using 34 electrodes (channels), with the sampling

rate of 10 Hz. Three features were selected from each channel according to previous

psychological studies, lead to a feature of 102 dimensions. Note that this high-

dimensional feature involves much redundance and noise, as neighbouring channels

tend to record similar patterns, and some channels provide noise only.

5.0.2 SVM results on all channels

In the first set of experiments, we use an off-the-shell machine learning tool to

discriminate normal and distracted mental status. Due to its simplicity and high

performance, the SVM model is selected as the classifier, for which the LibSVM

package is used for model training and inference.[1] Positive samples (distracted)

and negative samples (normal) are balanced by random sampling some negative

data.

Two experiments are conducted: the first ‘Single-subject’ experiment trains a

single SVM for each subject, and the second ‘Multi-subject’ experiment trains a

single SVM with the data from all the subjects, though the test is still conducted

on individual subjects.

The results are shown in Table 1, where the performance is evaluated in terms

of frame error rate (FER), i.e., the proportion of the frames that are classified

incorrectly. It can be seen that with either approach, the performance on the training

set is very good (almost 100% correct), while the performance on the test set is

pretty low. This suggests that using all the features leads to severe over-fitting. It is

not surprising as the training data is very limited (about 900 positive samples and

300 negative samples per subject), and the dimensionality is pretty high (102). We

will see the over-fitting problem exists with linear models as well.

[1]http://www.csie.ntu.edu.tw/ cjlin/libsvm/
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Table 1 Results of SVM, based on features collected on all channels.

Training Approach Training subject Test subject Training FER Test FER
Single 1 1 0.00 48.54
Single 2 2 0.00 48.85
Single 3 3 0.00 38.16
Single 4 4 0.00 49.70
Single 5 5 0.00 41.54
Single 6 6 0.00 49.40
Single 7 7 0.00 49.70
Single 8 8 0.00 47.43

Multi 1-8 1 - 48.55
Multi 1-8 2 - 49.00
Multi 1-8 3 - 49.47
Multi 1-8 4 - 49.70
Multi 1-8 5 - 49.08
Multi 1-8 6 - 50.30
Multi 1-8 7 - 49.70
Multi 1-8 8 - 48.93
Multi 1-8 1-8 0.02 48.93

5.0.3 SVM approach on selected channels

To alleviate the over-fitting problem, the feature dimensionality needs to be reduced.

From previous studies, it has been shown that some channels are more related to

mental status. By this knowledge, we choose the most prominent 5 channels, leading

to 15 features. This feature selection is purely psychologically driven.

Again, a ‘Single-subject’ experiment that trains a single SVM for each subject,

and a ‘Multi-subject’ experiment that trains a single SVM for all subjects are con-

ducted. The results are shown in Table 2. It can be seen that the over-fitting is

alleviated a little bit, but the performance is still unacceptable. This indicates that

the psychology-based feature dimension reduction is not ideal.

Table 2 Results of SVM, based on features collected from selected channels.

Training Approach Training subject Test subject Training FER Test FER
Single 1 1 0.00 43.80
Single 2 2 0.15 49.92
Single 3 3 0.40 47.36
Single 4 4 0.00 45.35
Single 5 5 0.05 49.23
Single 6 6 6.90 57.06
Single 7 7 0.05 50.30
Single 8 8 0.15 49.24

Multi 1-8 1 - 42.42
Multi 1-8 2 - 51.77
Multi 1-8 3 - 46.46
Multi 1-8 4 - 47.45
Multi 1-8 5 - 48.92
Multi 1-8 6 - 53.45
Multi 1-8 7 - 54.29
Multi 1-8 8 - 48.64
Multi 1-8 1-8 9.70 49.29

5.0.4 SDA approach: Multi-subject model

In this experiment, we employ SDA to select the most representative features from

the 102 dimensions. Once the features are selected, a simple linear model (logistic

regression) is applied to conduct the classification. The data from all the 8 subjects

are used to train the SDA and the classifier (so it is a ‘Multi-subject’ experiment),

and then test on each subject as well as the entire test data. The results on the

entire training set and test set are reported in Fig. 1 and Fig. 2 respectively, where
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the sparsity of SDA is set in different values so that the dimensionality of the

selected features changes from 1 to 102. It can be seen that on the training set, more

dimensions lead to better performance, while on the test set, there is an optimal

dimensionality that leads to the best test performance. This confirms the existence

of over-fitting, and demonstrates that SDA can help select the most prominent

features so that the over-fitting problem can be alleviated. Compared to the SVM

results in the previous section, it can be seen that the best performance with SDA

is much better than with the simple SVM.

The results on each subject are presented in Fig. 3, where each subject is repre-

sented by a curve. We observe that there is a large variance among subjects: some

subjects can obtain very good performance, while others’ performances are rather

poor.

0 20 40 60 80 100 120
30

32

34

36

38

40

42

Dim

F
E

R
%

Figure 1 FER on the entire train set, with SDA based on features of all channels. Models are
trained on data of all subjects.

5.0.5 SDA approach: Single-subject model

Motivated by the great variance among subjects, we train specific SDAs for indi-

vidual subjects in this experiment. The results on the training sets and test sets are

presented in Fig. 4 and Fig. 5 respectively.

From the results on the training data, it can be observed that the single models

can learn each subject very well and obtain rather good performance, compared to

the multi-subject model shown in Fig. 1. The results on test sets do not shown much

advantage compared to those obtained with the multi-subject model as shown in

Fig. 3; however, there are no subjects that perform very bad as in Fig. 3. This again

suggests that subject variability is an important factor, and training subject-specific

models is necessary. However, the subject-specific model suffers from data sparsity

more seriously, leading to more serious over-fitting. This is why the highest perfor-

mance obtained by the single-subject models is even worse than the one obtained

with the multi-subject model.
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Figure 2 FER on the entire test set, with SDA based on features of all channels. Models are
trained on data of all subjects.

6 Conclusion
In this paper, we review three perspectives of LDA and several extensions based

on different perspectives. We particularly focus on a typical sparsity-oriented LDA

approach, SDA, and present an experiment that applies this technique to the task

of mental distraction detection based on EEG data. Our experiments show that

the SDA-based feature selection works pretty good and can deliver even better

performance than the human selection approach based on psychological knowledge.
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Figure 4 FER on training data of each subject, with SDA based on features of all channels.
Models are trained on data of each subject.
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Figure 5 FER on test data of each subject, with SDA based on features of all channels. Models
are trained on data of each subject.


