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ABSTRACT
Due to the blossom of various large-scale knowledge bases
(KBs), most recent question answering (QA) systems query
KBs to answer a question, after parsing and transforming
natural language questions to KBs-executable forms (e.g.,
logical forms). As a well-known fact, KBs are far from com-
plete, so that information required to answer questions may
not always exist in KBs. In this paper, we take an alternative
path to question answering: our new QA system mines an-
swers directly from the large-scale web resources, and mean-
while employs KBs as a significant auxiliary to further boost
the QA performance.
Specifically, to the best of our knowledge, we make the

first attempt to link answer candidates to entities in Free-
base, during answer candidate generation. Several remark-
able advantages follow: (1) Redundancy among answer can-
didates is automatically reduced. (2) The types of an an-
swer candidate can be effortlessly determined by those of its
corresponding entity in Freebase. (3) Capitalizing on the
rich information about entities in Freebase, such as entity
description texts and entity types, we can naturally devel-
op semantic features for each answer candidate after linking
them to Freebase. Particularly, we construct answer-type
related features with two novel probabilistic models, which
directly evaluate the appropriateness of an answer candi-
date’s types under a given question. Overall, such semantic
features turn out to play significant roles in determining the
true answers from the large answer candidate pool. The ex-
perimental results show that across two testing datasets, our
QA system achieves an 18% ∼ 54% improvement under F1

metric, compared with various existing QA systems.

1. INTRODUCTION
Open-domain question answering (QA), which returns ex-

act answers to natural language questions posed by users,
is a challenging task and has been advocated as the key
problem for advancing web search [15]. Based on the in-
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formation sources used to find answers, QA systems can
be majorly categorized into knowledge base (KB)-based and
corpus-based. A KB-based QA system answers a question by
directly querying structured knowledge bases such as Free-
base [6], whereas a corpus-based QA system mines answers
from an unstructured corpus, such as news articles or other
diversified forms of documents available on the Web.

Large-scale knowledge bases, such as Freebase [6], DBpe-
dia [40], YAGO [38], Google’s Knowledge Graph and Mi-
crosoft’s Satori, contain a wealth of valuable information,
stored in the form of relation triples, e.g., (Obama, Place-of-
Birth, Honolulu). Recent blossom of such large-scale knowl-
edge bases have enabled numerous QA systems to directly
extract answers from KBs. For example, Berant et al. [2, 3]
develop semantic parsing techniques that map natural lan-
guage utterances into logical form queries, to execute on a
knowledge base. The Paralex system [18] extracts relation
tuples from general web corpora via information extraction
tools (e.g., ReVerb [16]) and stores them as extracted KBs;
during QA, it maps open-domain questions to queries over
the extracted KBs. QA systems developed in [17] resort to
both curated KBs such as Freebase and extracted KBs from
general corpora, to answer a question. Figure 1(a) briefly
illustrates the scheme of a KB-based QA system, where a
question gets answered by being parsed and transformed to
a specific form, suitable to execute on KBs.

However, despite their large size, existing knowledge bases
are still far from complete and not updated in a timely fash-
ion [14, 32, 42]. As a result, information required to answer
a question may not always exist in KBs. Furthermore, al-
though semantic parsing [2, 3] has been a hot research topic
recently, the problem of mapping natural language utter-
ances to logical-form queries is still considered largely un-
solved, which limits the practical use of a KB-based QA
system. In contrast, interesting or important facts and s-
tatements can often appear repeatedly in the rich web cor-
pus including news articles, Wikipedia-like pages, communi-
ty QA sites, blogs and forums. Driven by this observation of
web redundancy [7], in this paper, we study the second cat-
egory of QA systems, i.e., a corpus-based QA system, with
the focus on directly mining answers from the Web.

Prior to the blossom of KBs, QA systems are generally
viewed as a variation of information retrieval systems. This
view can be exemplified by the TREC QA tracks [41], where
each participant system is required to extract a small piece
of text from a large collection of documents, as the answer
to a natural language query. While most QA systems con-
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Figure 1: Process Diagrams of Different QA systems

duct sophisticated NLP analysis and try to integrate syntac-
tic, semantic and pragmatic knowledge for achieving better
performance (e.g., [22, 24]), systems like Mulder [26] and
AskMSR [7] take a different path by leveraging the crowd
knowledge from the Web. Without deep natural language
analysis, such systems issue simple reformulations of the
questions as queries to a search engine, and rank the re-
peatedly occurring N -grams in the top snippets as answers,
based on named entity recognition (NER) [31] and heuristic
answer type checking. Despite the simplicity of this strat-
egy, the corpus-based QA systems, particularly, Web-based
QA systems, are highly scalable and are among the top per-
forming systems in TREC-10 [8]. A high-level view of such
systems is illustrated in Figure 1(b).
One main weakness of such Web-based QA systems is its

insufficient knowledge about the generated answer candi-
dates. For instance, different mentions of the same entity
such as “President Obama” and “Barack Obama” are viewed
as different answer candidates, and will not be grouped to-
gether in most cases. Answer type checking, which verifies
whether the type of an answer candidate matches the ques-
tion, relies on a generic named entity recognition component
that provides a small set of crude type labels. As a result,
such systems are typically limited to answering questions in
only a handful of categories.
To address this issue, we propose a new QA system frame-

work, namedQuASE, (i.e., question answering via semantic
enrichment) in this work. Our system extends the tradi-
tional Web-based QA system by linking answer candidates
in the search texts to a knowledge base. Figure 1(c) briefly
illustrates how our system works, in contrast to the exist-
ing KB-based and Web-based QA systems respectively in
Figure 1(a) and Figure 1(b). Specifically, given a question,
QuASE first selects a set of most prominent sentences from
web resources. Then from those sentences, we utilize en-
tity linking tools [13] to detect answer candidates and link
them to entities in Freebase. Once each answer candidate is
mapped to the corresponding entity in Freebase, abundan-
t information, such as their description texts and Freebase
types, can be utilized for feature generation and modeling.
A ranking algorithm is subsequently trained based on such
features to rank correct answers as top choices.
By incorporating KBs as an important auxiliary in this

manner, our system not only maintains the scalability of
Web-based QA systems, but also will significantly enhance

the QA performance: (1) Redundancy among answer can-
didates is automatically reduced. In the previous exam-
ple, “President Obama” and “Barack Obama” shall be the
same answer candidate, as both can be linked to the entity
“Barack Obama” in Freebase; (2) Entity types stored in KBs
can be naturally used to determine the types of an answer
candidate. Freebase types vary at the thousands scale, al-
lowing us to deal with more types of questions. (3) KBs
contain a wealth of information about entities, which can be
adopted for featuring answer candidates. Particularly, we u-
tilize two kinds of information to develop semantic features:
(a) description texts of an entity for evaluating whether an
answer candidate contextually matches a question, and (b)
Freebase entity types of an answer candidate for evaluat-
ing their type-matching degree with a question. Specifical-
ly, unlike existing QA systems, we build novel probabilistic
models to directly evaluate the appropriateness of an answer
candidate’s Freebase types under a question, and treat the
evaluation scores as features for downstream ranking.

Our main contributions in this work are three-fold:
(1) New QA Framework – We make the first attempt

to incorporate entity linking in QA systems to ground an-
swer candidates on entities in knowledge bases. Then we
develop semantic features for each answer candidate based
on their rich semantics in KBs, including entity descrip-
tion texts and types, when evaluating their possibility as
true answers. Our proposed new architecture is very effec-
tive. Compared to existing QA systems, QuASE achieves
an 18%∼54% improvement in F1 and 5% ∼ 20% in MRR,
across different datasets.

(2) Answer Type Checking Models – In question an-
swering, checking whether an answer candidate meets the
expected answer types of a question is a crucial step. We
develop two novel probabilistic models to directly evaluate
the appropriateness of an answer candidate’s types (avail-
able in KBs) given a question. To train the models, ac-
quiring large-scale manually labeled data is generally very
expensive; here, we propose a creative way to obtain labels
from users’ implicit behavioral data in query click logs. Our
evaluations show that these two models can boost the QA
performance by around 2% under all metrics. Combining
these two models with other semantic features based on en-
tity description texts, the performance can be boosted by
5%, indicating the advantages of leveraging rich semantics
from KBs in question answering.



(3) Extensive Experimental Evaluation – In terms of
testing data, we not only test our system on the well-known
TREC dataset, which consists of well-formed questions, but
also build a new testing question set, composed of free-form
questions extracted from search engine query logs. More-
over, questions in this new dataset are from real online users
instead of editors, which reflects more realistic information
need than existing QA datasets. In addition to traditional
Web-based QA systems, we also compare our system to the
state-of-the-art KB-based QA systems. The results suggest
that KB-based QA systems do not perform well, which coin-
cides with our motivation that lots of knowledge is missing
from current KBs. This observation also indicates the great
importance of the Web-based QA system we are studying in
this paper.
The rest of paper is organized as follows: we present our

QA system framework in Section 2. Section 3 elaborates the
features we have developed for ranking answer candidates.
Two types of probabilistic models for extracting anwer-type
related features are developed in Section 4 and 5. We con-
duct detailed experiments to verify the effectiveness of our
system in Section 6. Section 7 reviews the related works.
We finally conclude this work in Section 8.

2. METHODOLOGY
Figure 2 shows an end-to-end pipeline of our QA frame-

work, which contains the following components in order: (1)
Web Sentence Selection via Search Engine; (2) Answer Can-
didate Generation via Entity Linking; (3) Feature Genera-
tion and Ranking. We elaborate the details of each compo-
nent as follows:
(1)Web Sentence Selection via Search Engine. Giv-

en a question, in order to find high-quality answer candi-
dates, we design the following mechanism to retrieve highly
relevant sentences from the Web that can potentially answer
the question. We first submit the question as a query to a
commercial search engine, and collect the top-50 returned
snippets, as well as the top-50 documents. Since a query
itself is generally short and contains only a few words, we
compute the word count vector based on the returned snip-
pets to represent the information for the query, denoted as
wq. For each sentence we parsed from the top-50 returned
documents, we compute its word count vector ws, and select
those sentences with a high cos(ws, wq) into the high-quality
sentence set. If the word vector ws deviates far from wq, the
corresponding sentence can be regarded as irrelevant and
thereby discarded.
(2) Answer Candidate Generation via Entity Link-

ing. Once we obtain the sentence set, one of the state-
of-the-art entity linking systems [13] is applied to identify
answer candidates linked to Freebase. This system achieves
the best scores at TAC-KBP 2013, by several novel designs
such as postponing surface form boundary detections and
discriminating concepts and entities in Wikipedia pages. S-
ince the major target of this work is to verify that incorpo-
rating rich information from KBs will greatly boost the QA
performance, we do not focus on constructing new entity
linking tools in this paper. Moreover, for questions whose
answers are not entities in Freebase, such as questions start-
ing with “when”, our system can be reduced to traditional
Web-based QA systems without the auxiliary of KBs. In
this paper, without loss of generality, we primarily focus on
those questions targeted at certain entities in KBs.

(3) Feature Generation and Ranking. For each an-
swer candidate, Freebase contains a wealth of information,
such as their description texts and entity types. A set of
semantic features shall be developed based on such rich in-
formation, and subsequently utilized in a ranking algorithm
to evaluate the appropriateness of each candidate as the true
answer.

Now we use an example to show how our system works.
Given a question “Who was the first American in space?”,
we submit it to a search engine to return a set of relevant
sentences {1. On May 5, 1961, Shepard piloted the Freedom
7 mission... ; 2. Alan Shepard became the first American
in space when the Freedom 7...; ... }. On this sentence set,
we apply entity linking to extract entities , such as Freedom
7, Alan Shepard, and Sally Ride, and link them to Free-
base. Such linked entities are treated as answer candidates
to the given question. For each answer candidate, seman-
tic features are developed based on their rich information in
Freebase, and subsequently integrated into a ranking algo-
rithm, so that the true answer“Alan Shepard”will be ranked
at the top of the candidate list.

Our QA system distinguishes itself from existing ones, in
that it not only mines answers directly from the large-scale
web resources, but also employs Freebase as a significant
auxiliary to boost the performance. Freebase plays a signif-
icant role in both answer candidate generation and feature
generation. As discussed in Section 1, by linking answer
candidates to Freebase, our system is entitled with several
unique advantages, such as reducing the redundancy among
answer candidates and effortlessly granting answer candi-
dates with Freebase entity types. Moreover, two kinds of
rich information in KBs, entity description texts and entity
types, will be naturally utilized to develop semantic features
for downstream answer candidate ranking.

3. FEATURE DEVELOPMENT
Upon the generation of an answer candidate pool, effec-

tive features shall be developed in order to rank true answer-
s as top choices. In this section, we elaborate the features
developed for answer candidate ranking. Given a question,
totally three categories of features are computed for each an-
swer candidate. The features include both (1) non-semantic
features: frequency that an answer candidate occurs in the
retrieved sentence set, and (2) semantic features: Since we
have linked each answer candidate to Freebase via entity
linking, we are able to utilize their rich information in KBs
to develop semantic features.

3.1 Count
The sentence set, returned by the sentence selection com-

ponent, is considered quite related to the given question.
The more frequent an answer candidate occurs in the sen-
tence set, the more related it is to the question. Therefore,
the count or frequency of each answer candidate serves as a
significant indicator of being the correct answer or not. We
compute the count of each answer candidate as one feature.

3.2 Textual Relevance
Given a question, the context where the true answer oc-

curs and its descriptions in KBs should match the ques-
tion. To evaluate the relevance of an answer candidate to a
question, we first extract textual information from both the
question side and the answer candidate side.
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Textual Information on Question Side
(1) The set of words in question q;
(2) The relevant sentence set returned for question q.

Textual Information on Answer Candidate Side
(3) The context windows where an answer candidate a

appears in retrieved sentences. Due to the general short
length of a sentence, the size of a context window is set at
2, i.e., 2 words before and after answer candidate a compose
the context where a occurs in a sentence. We collect all
the context windows for each answer candidate in all the
sentences.
(4) The description texts of answer candidate a in KBs.

For example, Freebase describes entity “Alan Shepard”, as
“Alan Bartlett ‘Al’ Shepard, Jr., was an American naval of-
ficer and aviator, test pilot, flag officer, one of the original
NASA Mercury Seven astronauts ...”.
Based on the textual information for both questions and

answer candidates, there can be many methods to measure
the matching degree between a question and an answer can-
didate. We utilize a most intuitive method: For each piece of
information (1) to (4), we compute the word frequency vec-
tor denoted as vq, sq, ca, and da respectively. Then we apply
cosine similarity measure between the textual information
on the question side and that on the answer candidate side.
As shown in Figure 3, we totally compute 4 features based
on textual information for each <question, answer candi-
date> pair. Despite their simplicity, the features turn out
to be very effective in improving QA performance. In fact,
as future work, more complicated features can be developed
and incorporated into our framework, such as deep semantic
features learnt via deep learning [23].

3.3 Answer Type Related Features
Given a question “the first American in space”, in the sen-

tence set we selected, both the entity “Alan Shepard” (the
astronaut) and the entity “Freedom 7” (the spaceflight) oc-
cur frequently. Both of them would be textually related to

the question measured by features in Section 3.2. Therefore,
the above count and textual relevance features turn out to be
insufficient for such questions. However, by further checking
the expected answer type of the question, it is obvious that
the question is looking for a person instead of a spaceflight.
Therefore, in order to find correct answers, there is a sig-
nificant request for us to build answer-type related features,
which evaluate the appropriateness of an answer candidate’s
types under a question.

There have been many works studying the expected an-
swer types of a question [1, 27, 28, 33, 34, 35]. Directly ap-
plying their methodology to our setting is not trivial. First,
previous type-prediction methods adopt a supervised learn-
ing methodology where they classify questions into a small
set of types such as person and location. Such methods
can hardly scale to thousands of entity types in Freebase,
especially when the expected answer of a question is asso-
ciated with multiple types in Freebase, e.g., entity “Barack
Obama” associated with multiple types such as “governmen-
t.president”, “people.person”, and “celebrities.celebrity”. On
the other hand, it is quite challenging, if not impossible,
to build a mapping between the small set of types and an
answer candidate’s Freebase types, since Freebase contains
thousands of fine-grained types while the types studied in
previous methods are quite general and limited. In this pa-
per, we directly handle thousands of Freebase types, and
propose probabilistic models to directly measure the match-
ing degree between a question and an answer candidate’s
Freebase types. The intuition behind such models is that
words in a question should correlate with its answer type-
s. Given a question q, we try to model the probability
P (ta|q) or P (q, ta), where ta is the set of Freebase types
associated with answer candidate a. Answer candidate a
with correct types should correspond to a higher P (ta|q) or
P (q, ta). We will discuss two perspectives to model P (ta|q)
and P (q, ta) respectively, and build our answer-type related
features based on them. In Section 4, we first consider the
type predictive power of a single word by modeling P (t|w),
where t is a single freebase type and w is a single word. Then
different integration models based on P (t|w) are explored,
to predict multiple answer types given multiple words in q
(i.e., P (ta|q)). In Section 5, we simultaneously capture the
joint associations among all the words in q and all the types
in ta, by building a unified generative model for P (q, ta).

4. WORD TO ANSWER TYPE MODEL
Now we first model the type predictive power of a sin-

gle word, and then explore different models to integrate the
predictive power of each word in a question. To emphasize
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Figure 4: Word to Answer Type (WAT) Model

the separate consideration of each word in the first step, the
underlying methods are named word to answer type (WAT)
models.
In WAT, we define P (t|w) as the conditional probability

of observing Freebase type t as one answer type, if word
w occurs in the question. To learn P (t|w), we rely on a
training set of questions, each of which is paired with its
expected answer types. We will give more details on such
training sets in our experiments. Given such a training set,
we model P (t|w) as follows:

P (t|w) =
#(w, t)∑
t #(w, t)

(1)

where #(w, t) represents the co-occurrence frequency of word
w and type t in the <question, answer types> pairs. The
more frequently a type t co-occurs with a word w, the more
likely the answer contains type t, if word w is in the question.
Given a question q with a set of words {wi} and answer

candidate a with a set of Freebase types ta = {tj}, Figure 4
shows the point-wise word-to-type conditional probability,
between the word set in q and the type set of a. Based on this
point-wise conditional probability, the probability P (ta|q),
can be estimated using the following different models.
1. Best Word-to-Type: Choose the highest point-wise con-
ditional probability as P (ta|q).

P (ta|q) = max
wi∈q,tj∈ta

P (tj |wi) (2)

2. Pivot Word: Choose the word in q that generates the
highest productive conditional probability for all the types
in ta

P (ta|q) = max
wi∈q

∏
tj∈ta

P (tj |wi) (3)

3. Pivot Word-to-Type: Choose the best set of point-wise
conditional probabilities that generate the highest produc-
tive conditional probability for all the types in ta.

P (ta|q) =
∏

tj∈ta

max
wi∈q

P (tj |wi) (4)

Now we define theWAT feature for answer candidate a based
on the perplexity [5] of its type set ta as:

Perplexity(ta) = exp(− log(P (ta|q))
|ta|

) (5)

Where |ta| is the number of types in ta. For Best Word-To-
Type, since only one type is considered in the calculation,
|ta| = 1.
Perplexity has been applied for the evaluation of differ-

ent topic models such as LDA [5], whereas in our work we
use it as a matching measure between an answer candidate’s

Freebase types and words in a question. WAT model works
based on the assumption that words in a question are pre-
dictive of the expected answer types. Based on golden pairs
of questions and their expected answer types, we extract the
distribution pattern of different types given a specific word
in a question. For a new question and one answer candidate,
if the answer candidate’s types are expected, they should
be better explained under the WAT models, i.e., associat-
ed with a higher P (ta|q), than otherwise. Correspondingly,
WAT features for answer candidates with expected types
should be lower than those with unmatched types.

Overall three WAT features can be extracted, with P (ta|q)
respectively instantiated by one of the three models pro-
posed above.

5. JOINT <QUESTION, ANSWER TYPE> AS-
SOCIATION

In this section, we consider the question “How likely can
we observe a question and an entity with certain Freebase
types, as a question-answer pair?” Different from WAT, we
consider the predictive power of all the words simultaneously
in a question. Given a question-answer pair, where answer
a is associated with multiple Freebase types ta, we build a
generative model of the joint likelihood P (q, ta), to measure
the matching of ta with the question.

We assume the observation of a question q and its associ-
ated answer types ta, can be explained by latent association
patterns. One of such latent associations might be, word-
s such as “city”, “place”, “where” will occur frequently in a
question, if the expected answer type of the question is “lo-
cation” in Freebase. The interplay of multiple latent associ-
ations can be captured by a generative model, named joint
<question, answer type> association (JQA) model. Fig-
ure 5 shows the graphical representation of our generative
model for JQA. We first clarify the notations in the figure as
follows: (1) D is the set of <question, answer types> pairs
while |D| denotes the set size. A plate means replicating a
process for multiple times. (2) θi is theK×1 mixture weight-
s of K latent association patterns, for the i-th <question,
answer types> pair. (3) α, a K × 1 vector, is parameters
in a Dirichlet prior, and serves as a constraint of the mix-
ture weights θi’s. A Dirichlet prior for the mixture weights
tends to alleviate over-fitting problems [5]. (4) Zi is the
hidden pattern label that can explain the joint observation
of the current question and its answer types. Here we as-
sume all the words in q and types in ta are generated from
the same latent association, since the number of words in a
question, together with its associated types, is usually very
small. (5) qi and tia respectively refer to the i-th question
and its answer types. (6) βQ, a K × |V Q| matrix, defines
the probability distribution over the word vocabulary V Q,
under K hidden patterns. βT , a K × |V T | matrix, defines
the probability distribution over the Freebase type vocabu-
lary V T , under K hidden patterns. (7) The shaded variable
w indicates one word observed in qi while t represents one
type in tia.

Figure 5 conveys the generative process of a question and
its answer types under multiple latent associations. Now we
formally describe the generative process as follows:

For the i-th <question, answer types> pair in D,

– Draw the mixture weights ofK hidden association
patterns: θi ∼ Dir(α).
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Figure 5: JQA Generative Model

– Draw a pattern label: Zi ∼ Mult(θi).

∗ Draw a word for the question qi from V Q:
w ∼ βQ

Zi,:
.

∗ Draw a type for the answer ai from V T :
t ∼ βT

Zi,:
.

We formulate the likelihood of observing all the question
and its associated answer types as follows:

L =
∏
i∈D

P (qi, tia|α, βQ, βT )

=
∏
i∈D

∫
θi

P (θi|α)P (qi, tia|θi, βQ, βT ) dθi

(6)

Here,
P (qi, tia|θi, βQ, βT )

=
∑
Zi

P (Zi|θi)
∏

w∈qi

P (w|Zi, β
Q)

∏
t∈tia

P (t|Zi, β
T ) (7)

Finally, we resort to the maximum likelihood estimation
approach to optimize the parameters in the model:

arg max
α,βQ,βT

logL (8)

5.1 Model Solution

5.1.1 Variational Inference
Due to the interdependence of the latent variables, their

true posterior distributions are computationally intractable.
We introduce a variational distribution Q [4] in which the la-
tent variables are independent of each other to approximate
their true posterior distribution, i.e., Q(θ, Z) = Q(θ)Q(Z),
where θ = {θi,∀i ∈ D} and Z = {Zi, ∀i ∈ D}. Ac-
cording to the variational distribution, Q(θi) ∼ Dir(γi),
Q(Zi) ∼ Mult(ϕi), where γi and ϕi are K × 1 variation-
al parameters.
Instead of directly maximizing L which is intractable, we

can maximize the lower bound of the log likelihood under
the variational distribution and Jensen’s inequality:

logL ≥ EQlogP (D, θ, Z|α, βT , βQ) +H(Q) = ⌊logL⌋ (9)

where D denotes all the questions and their associated an-
swer types. We expand the lower bound of the log likelihood
as follows:

⌊logL⌋ =
∑
i∈D

EQ logP (θi|α) +
∑
i∈D

EQ logP (Zi|θi)

+
∑
i∈D

EQ logP (w ∈ qi, t ∈ tia|Zi, β
Q, βT )

+H(Q(θ, Z))

(10)

Each term on the right-hand side of the above equation, is
a function over the model parameters as shown in Eqn. 11
to Eqn. 14.∑

i∈D
EQ logP (θi|α)

= −|D| ·B(α) +
∑
i∈D

∑
k

(αk − 1)[ψ(γi,k)− ψ(
∑
k

γi,k)]
(11)

where B(α) =
∏

k Γ(αk)

Γ(
∑

k αk)
is the normalization constant of the

Dirichlet distribution Dir(α).

∑
D
EQ logP (Zi|θi) =

∑
i∈D

∑
k

ϕi,k[ψ(γi,k)− ψ(
∑
k

γi,k)] (12)

The third term

∑
i∈D

EQ logP (w ∈ qi, t ∈ tia|Zi, β
Q, βT )

=
∑
i∈D

∑
k

ϕik(
∑
w∈qi

Nqi

w log βQ
k,w +

∑
t∈tia

log βT
k,t)

(13)

where Nqi

w is the frequency of word w in question qi. The
entropy term

H(Q(θ, Z))

= −
∑
i∈D

EQ logQ(θi|γi) +
∑
i∈D

EQ logQ(Zi|ϕi)

=
∑
i∈D

[logB(γi)−
∑
k

(γi,k − 1)(ψ(γi,k)− ψ(
∑
k

γi,k))]

−
∑
i∈D

∑
k

ϕik log ϕik

(14)

5.1.2 Parameter Estimation
The model parameters are estimated by using the varia-

tional expectation-maximization (EM) algorithm. In E-step,
we update the variational parameters {γ’s, ϕ’s} while in M-
step, we update the model parameters α, βQ, and βT so
that ⌊logL⌋ is maximized.

Specifically, E-step updates the variational parameters ac-
cording to Eqn. 15 and 16.

ϕi,k ∼ exp(
∑
w∈qi

Nqi

w log βQ
k,w +

∑
t∈tia

log βT
k,t

+ ψ(γi,k)− ψ(
∑
k

γi,k)− 1)

(15)

γi,k = αk + ϕi,k (16)

During M-step, we maximize the lower bound over the pa-
rameter α, βQ, and βT , by utilizing the classic L-BFGS opti-
mization algorithm [29]. The derivatives over the parameter
α are calculated in Eqn. 17.

∂⌊logL⌋
∂αk

= |D|[−ψ(αk) + ψ(
∑
k

αk)] +
∑
i∈D

[ψ(γi,k)− ψ(
∑
k

γi,k)]

(17)



Datasets Example Questions
TREC What are pennies made of?

1700 training What is the tallest building in Japan?
202 testing Who sang “Tennessee Waltz”?

Bing query the highest flying bird
4725 training indiana jones named after
1164 testing designer of the golden gate bridge

Table 1: Two Question Sets in Our Experiments

We solve βQ and βT by βQ
k,w ∝

∑
i∈D ϕi,kN

qi

w and βT
k,t ∝∑

i∈D ϕi,k.
We conduct E-step and M-step iteratively until the algo-

rithm converges, indicating the current model parameters fit
the observed training data.

5.2 JQA Feature Extraction
Now we discuss how to apply the learnt JQA model to

evaluate the appropriateness of an answer candidate’s type-
s w.r.t a given question. Given a new question qnew and
an answer candidate anew with types tanew , we evaluate
P (qnew, tanew |α, βQ, βT ) using Eqn. 10. A standard inference
procedure is employed to a new <question, answer types>
pair [5]: α, βQ, βT are fixed as learnt from training data
while variational parameters γ and ϕ are specifically esti-
mated for the new pair according to Eqn. 15 and 16.
Similar to WAT, perplexity of observing question qnew and

answer types tanew is defined as:

Perplexity(qnew, tanew ) = exp(−
log(P (qnew, tanew |α, βQ, βT ))

|qnew|+ |tanew |
)

This perplexity is named JQA feature for answer candi-
date ranking. The rationale behind JQA is similar to WAT.
JQA assumes words in a question are associated with its
expected answer types. We try to capture such association-
s by training JQA on golden pairs of questions and their
expected answer types.

6. EXPERIMENTS
In this section, we are interested in evaluating QuASE in

terms of the following aspects: (1) How do different feature
combinations affect QuASE’s performance? (2) How does
QuASE compare to the state-of-the-art question answering
systems? (3) What are the advantages of incorporating rich
semantics in KBs into Web-based QA systems? (4) What
are the advantages of our answer-type related features JQA
and WAT? We further provide a detailed error analysis of
different QA systems on questions they fail to answer.

6.1 Experimental Setup

QA Evaluation Datasets
We evaluate different question answering systems on two
datasets: TREC questions and Bing queries. Table 1 shows
statistics and example questions from each set.
TREC. The Text REtrieval Conference (TREC) had a

QA track [41] since 1999. In the competition, editors first
prepared some questions, and each participant system then
finds answers from a big collection of news articles. TREC
data have been publicly available, and become popular bench-
marks for evaluating QA systems. We used factoid questions

from TREC 8-12 as the TREC dataset in this work. Exam-
ple questions are listed in Table 1. For questions to which
answers are not entities in KBs, such as those starting with
“when”, QuASE can be reduced to traditional Web-based
QA systems without incorporating KBs. Without loss of
generality, we thus eliminate those questions from the o-
riginal dataset. Among the remaining 1902 questions, 202
questions from TREC 12 are used for testing and 1700 from
TREC 8-11 for training. Although answers to these ques-
tions are provided by TREC, they are incomplete or some-
times incorrect for two reasons. First, the provided answers
were detected from the given corpus. It is possible that some
correct answers do not occur in the corpus, and therefore
not included. Second, the correct answers to some questions
may have changed, such as “Who is the prime minister of
France?”. In order to have a fair evaluation, we revised the
answers using Amazon MTurk (see [39] for detail).

Bing query. Although roughly 10% of the queries sub-
mitted to a search engine are with specific informational
intent, only one fifth of them are formulated as well-formed
questions (e.g., lack of Wh-words) [43]. Bing query dataset
in Table 1 shows several such examples. We created Bing
query dataset by selecting queries from Bing users: queries
are not well-formed questions, but targeted at certain en-
tities in Freebase. Questions in this dataset are from real
search engine users and reflect more realistic information
need than existing QA benchmark datasets. We crowd-
sourced each question to at least three experienced human
labelers for collecting correct entity answers in Freebase.
Once all the labelers reach an agreement on the correct an-
swers, we save the question paired with the correct answers.
In the end, we gathered approximately 6000 question-answer
pairs in total, from which we randomly select around 20%
for testing and 80% for training.

Training Dataset for JQA and WAT
To train JQA and WAT proposed in Section 4 and 5, a suffi-
ciently large training dataset with golden <question, answer
types> pairs is indispensable. In reality, we do not have pu-
rified data available for training. Instead, we adopt a novel
alternative way to obtain labels by joining users’ implicit
behavioral data in query click logs and the Freebase data.
Specifically, we can obtain the <query, clicked url> pairs
from the query click logs. Moreover, each entity in Freebase
is also linked to some urls that are related to this entity
(mostly Wikipedia pages or official web sites of this entity).
Hence once a user issued a query and clicked on an entity
related url, we can form a <question, answer types> pair:
The question is the query given by the user, while we use the
Freebase types of the entity corresponding to the clicked url
as the answer types. Although such collected dataset is noisy
in the sense that the clicked url might not be what the user
truly look for, we will show that useful answer-type related
features can still be learnt from the large amount of data
to benefit the ultimate QA performance. Overall we collect
a dataset of around 1.3 million <question, answer types>
pairs based on Bing query logs. We also tried directly using
the training portion of each dataset in Table 1 to train the
models. However, the training portions contain too limited
questions, and features learnt from them can not perform as
well as those learnt from the big query log dataset.



Answer Candidate Ranking
For each input question, our question answering pipeline
produces an answer candidate pool. To rank these candi-
dates, we first extract all the features discussed in Section 3
∼ Section 5, and map an answer candidate to a feature vec-
tor representation w.r.t the question. Our ranker then as-
signs a score to each feature vector and orders the answer
candidates accordingly. In our experiments, we use an in-
house fast implementation of the MART gradient boosting
decision tree algorithm [9, 21] to learn our ranker using the
training set of our data. This algorithm learns an ensem-
ble of regression trees and has shown great performance in
various search ranking tasks [10].

Evaluation Measures
We compare different QA systems on each dataset using the
following metrics:
(1) Precision, Recall & F1: As in [17], we treat the top

ranked answer candidate as the answer returned to a ques-
tion. Notice that because the answer candidate pool might
be empty, it is possible that no answer is returned by a
QA system. As usual, precision and recall are defined as
#(correct answers)/#(questions with answers returned) and
#(correct answers)/#questions. We also compute the F1 s-
core, which is the harmonic mean of precision and recall.
(2) Mean Reciprocal Rank (MRR). Given a question, Re-

ciprocal Rank (RR) is the reciprocal of the highest ranking
position of a correct answer [36]. MRR is the average of the
reciprocal ranks over questions:

MRR =
1

N

N∑
i=1

1

ri
, (18)

where N is the number of questions and ri is the highest
ranking position of an answer to question i. If the true
answer to a question is not detected, the RR for the question
is 0.

Alternative QA systems
We compare QuASE with existing Web-based and KB-based
QA systems. Due to unavailability of most existing QA
systems, we select one representative from each category to
compare.
(1) Web-based QA system: AskMSR+ [39]. As men-

tioned briefly in Section 1, early Web-based systems like
Mulder [26] and AskMSR [7] have demonstrated that by
leveraging the data redundancy in the Web, a simple system
can be very competitive and outperform systems conduct-
ing sophisticated linguistic analysis of either questions or an-
swer candidates1. We compare QuASE with AskMSR+ [39],
an advanced version of AskMSR with two main changes.
First, instead of reformulating a question according to some
statement-like patterns as query terms to a search engine,
AskMSR+ issues the question directly, as [39] found out that
question reformulation no longer helps retrieve high-quality
snippets. This may be due to the better performance of
modern search engines, as well as the increased coverage of
various community QA sites. Second, instead of using on-
ly N-grams extracted from snippets as answer candidates,
AskMSR+ requires candidates to be specific types of named
entities that can match the question. For instance, only a

1For instance, AskMSR is one of the top systems in TREC-
10 [8].

location entity can be a candidate to the “where” questions.
With these design changes and other enhancements detailed
in [39], AskMSR+ increases MRR by roughly 25% on the
TREC dataset, compared to the original AskMSR system,
and is thus a solid baseline.

(2) KB-based QA system: Sempre[2, 3]. Sempre[2] and
ParaSempre[3] develop semantic parsers to parse natural
language questions to logical forms, which are subsequently
executed against knowledge bases. They have shown great
performance for questions that are directly coined based on
relation tuples in KBs. Here we test them on questions that
are not necessarily answerable in KBs. The implementation
of their systems is publicly available2, as well as the well-
trained systems. We applied the well-trained systems to our
evaluation datasets, and also re-trained the systems on our
training datasets. We finally show the best performance we
could obtain by these two systems.

6.2 Experimental Results
Results of different feature combinations in QuASE are

summarized in Table 2. We have made the following ob-
servations: (1) As we discussed in Section 3.1, Count is a
significant indicator of the true answer to a question. Al-
though the simplest feature, it performs the best compared
with other separated features. Such observation is consis-
tent with the conclusion in [7] that based on data redundan-
cy, simple techniques without complicated linguistic analy-
ses can work well in QA systems. (2) Combined with the
Textual Relevance (TR) features, Count+TR can further
boost the performance by around 3% under F1 and MRR,
on both datasets. TR can be effective when some wrong
answer candidates appear very frequently but their contex-
t information does not match the question. For example,
given a question “Who first landed on the moon?”, entity
“American”, which is the nationality of the astronaut, occurs
quite frequently in the retrieved texts. However, the textual
information related to “American” in Freebase can distin-
guish itself from the true answer, as its description is about
American people, rather than people first landing on the
moon. (3) Comparing Count+TR+WAT+JQA with Coun-
t+TR, our answer-type related features WAT and JQA turn
out to be effective: they further improve the performance
by around 2% on TREC and by 2% ∼ 5% on Bing query
across all the metrics. (4) The advantages of incorporat-
ing rich semantics in KBs into QuASE can be observed by
comparing Count+TR+WAT+JQA with Count+TR−KBs,
where TR−KBs denote the two textual relevance features
without involving entity description texts from KBs, , i.e.,
cos(vq, ca) + cos(sq, ca) in Figure 3. With around 5% im-
provements on both datasets, utilizing rich semantics in KBs
can obviously benefit the QA performance.

Table 3 shows the performance of different QA system-
s. Compared with AskMSR+ system, which also utilized
the count of an answer candidate for ranking, the single
feature Count in QuASE, as shown in Table 2, performs
better by at least 10% in terms of F1. The potential rea-
son is that through linking answer candidates to KBs, same
answer candidates with different surface forms can be au-
tomatically merged, and therefore, redundancy and noise
among answer candidates can be significantly reduced. On
Bing query, QuASE with all the features can obtain around
54% improvement on F1 and 20% improvement under MR-

2https://github.com/percyliang/sempre



Bing query TREC
Features in QuASE Precision Recall F1 MRR Precision Recall F1 MRR

Count 0.5513 0.5262 0.5384 0.6111 0.5446 0.5446 0.5446 0.6224
TR 0.5243 0.5004 0.5121 0.5880 0.4554 0.4554 0.4554 0.5740
JQA 0.1358 0.1296 0.1326 0.2737 0.1980 0.1980 0.1980 0.3579
WAT 0.1709 0.1631 0.1669 0.3100 0.2624 0.2624 0.2624 0.4049

Count+TR 0.5674 0.5416 0.5512 0.6239 0.5644 0.5644 0.5644 0.6425
Count+TR+WAT 0.5926 0.5657 0.5788 0.6370 0.5693 0.5693 0.5693 0.6513
Count+TR+JQA 0.5764 0.5502 0.5630 0.6296 0.5743 0.5743 0.5743 0.6476

Count+TR+WAT+JQA 0.5962 0.5691 0.5823 0.6402 0.5792 0.5792 0.5792 0.6532

Count+TR−KBs 0.5638 0.5382 0.5507 0.6187 0.5495 0.5495 0.5495 0.6281

Table 2: Comparison among Different Feature Combinations in QuASE

Bing query TREC
QA Systems Precision Recall F1 MRR Precision Recall F1 MRR
QuASE 0.5962 0.5691 0.5823 0.6402 0.5792 0.5792 0.5792 0.6532

AskMSR+ [39] 0.3782 0.3760 0.3771 0.5337 0.4925 0.4901 0.4913 0.6223
Sempre [2, 3] 0.2646 01940 0.2239 0.2372 0.1567 0.1040 0.1250 0.1437

Table 3: Comparison among Different QA Systems

R, while on TREC, it can achieve about 18% improvement
under F1 and 5% improvement under MRR. The great im-
provement further verifies the advantages of employing KBs
as an auxiliary into Web-based QA systems. The improve-
ment on F1 measure is generally higher. MRR takes into
account the entire candidate list while F1 focuses on the first
ranking position, implying AskMSR+ has a poor ability to
rank the true answer at the top position. We will give more
detailed analysis on QuASE and AskMSR+ in Section 6.3.
Sempre systems formulate a question into logical forms to
be executed against KBs. They are among the state-of-the-
art KB-based QA systems on questions that are guaranteed
answerable in KBs. However as shown in Table 2, the per-
formance of Sempre is generally much lower than our system
under all the measures. Similar performance of Sempre on
TREC has also been reported in [17]. There are potential-
ly two reasons why Sempre systems cannot perform well on
Bing query and TREC dataset. First, the knowledge re-
quired to answer questions might not exist in KBs. For
example, given one example question in TREC “What color
is indigo?”, there is no relationship between the true answer
“blue” and “indigo” corresponding to “alias” or “synonym”
although both entities “blue” and “indigo” exist in Freebase.
Second, many questions, especially those not well-formed
ones in Bing query, are generally hard to be transformed
to logical forms and thereby unsuccessful to obtain answers
by executing logical forms against KBs. Since Sempre turns
out to be much less effective on both datasets, we will not
include it in the following experiments.
To examine the sensitivity of the parameter K in JQA,

we conducted 5-fold cross validation on each training set.
Figure 6 shows that MRR does not vary too much as we
vary K in JQA. The cross-validation result under F1 ob-
serves a similar pattern, which is omitted here due to space
constraints. Since larger K implies more numerical compu-
tations and larger complexities, we fixed K = 3 in all of our
experiments.

6.3 System Comparison on Failed Questions
In this section, we provide detailed analysis of QuASE and
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Figure 6: Cross Validation of Different K

AskMSR+ on their respective failed questions. We first de-
fine the failed questions for each system: AskMSR+’s failed
questions are those where AskMSR+ ranks the true answer
lower than QuASE, whereas QuASE’s failed questions as
those where QuASE ranks the true answer lower than AskM-
SR+. If there are multiple answers to a question, we con-
sider the highest-ranked answer in defining failed questions.

Table 4 shows the rank distribution of the true answer
given by each system on their respective failed question-
s. r = ∞ means the true answer is not in the candidate
list. For those questions where QuASE performs worse than
AskMSR+, in most cases, we do not have the answer in the
candidate list, i.e., r = ∞ . However, for those AskMSR+
performs worse, in most cases, AskMSR+ did find the true
answer, but ranks it lower than QuASE. This result verifies
that compared with AskMSR+, features in QuASE for rank-
ing are effective as long as true answers are in the candidate
list.

Due to the imperfectness of any answer candidate gen-
eration technique, including entity linking or named entity
detection, true answers to many questions might not be de-
tected and included in the candidate list. Therefore, no



The distribution of QuASE’s rank on failed questions
Dataset r = ∞ r=2 r=3 r=4 r ≥ 5
Bing 63.76% 12.86% 7.62% 2.86% 11.90%
Trec 53.57% 14.29% 12.50% 3.57% 16.07%

The distribution of AskMSR+’s rank on failed questions
Dataset r = ∞ r=2 r=3 r = 4 r ≥ 5
Bing 13.82% 27.88% 21.66% 11.75% 24.88%
Trec 19.64% 35.71% 14.29% 10.71% 19.64%

Table 4: Error Analysis of QuASE and AskMSR+

matter how effective a ranking feature is, the performance
on questions without true answers in the candidate list, can-
not be boosted. For each method, we define the answerable
question set as those questions with true answers included
in their candidate list. Table 5 shows the performance of
QuASE and AskMSR+ on their respective answerable ques-
tion sets. Although the answerable questions by QuASE are
slightly fewer than those by AskMSR+ system, the perfor-
mance of QuASE is significantly better than AskMSR+ with
a 17% ∼ 38% improvement on MRR and a 31% ∼ 74%
improvement on F1. For QuASE, how to improve entity
linking performance, in order to include true answers in the
candidate list, can be important to further improve QA per-
formance. However the study of that problem is beyond the
scope of this paper and we leave it as future work.

Bing AQS
Systems MRR F1 |AQS|
QuASE 0.8583 0.7629 869

AskMSR+ [39] 0.6230 0.4388 998
Trec AQS

QuASE 0.8195 0.7267 161
AskMSR+ [39] 0.7023 0.5530 179

Table 5: Results on Answerable Question Sets

7. RELATED WORK
Our work is mainly related to previous studies in three

categories: (1) KB-based QA systems; (2) Web-based QA
systems; (3) Answer type prediction.

KB-based QA systems. The advances of large-scale knowl-
edge bases(KBs) have enabled numerous QA systems to di-
rectly query KBs. Examples of the most recent KB-based
QA systems include [2, 3, 17, 18, 40, 44, 45, 46]. Apart from
[2, 3, 17, 18] discussed in Section 1, Unger et al. [40] relies on
parsing a question to produce a SPARQL template, which
mirrors the internal structure of the question. This template
is then instantiated using statistical entity identification and
predicate detection. Similarly, Yahya et al. [44] presents a
methodology for translating natural language questions in-
to structured SPARQL queries based on an integer linear
program. Zou et al. [46] propose to represent a natural lan-
guage question using a semantic graph query to be matched
with a subgraph in KBs and reduce question answering to
a subgraph matching problem. Yao et al. [45] proposes to
associate questions patterns with answer patterns described
by Freebase with the help of a web-scale corpus. Differen-
t from such KB-based QA systems, we take an alternative
path to question answering by mining answers directly from

the rich web corpus, instead of querying either curated KBs
such as Freebase or extracted KBs from the Web as in [45].

Web-based QA systems. Prior to the availability and
popularity of knowledge bases, most of early QA systems
such as [7, 12, 25, 20, 37, 41], mine answers from TREC [41]
document collections or the rich web corpus. Brill et al. [7]
constructed the AskMSR QA system by utilizing the rich
web resources. In [25], Ko et al. focus on a general model
to estimate the correctness of answer candidates, instead of
developing an entire QA system. Ferrucci et al. [20] gives an
overview of IBM Watson system framework including ques-
tion analysis, search, hypothesis generation, and hypothe-
sis scoring. Most of existing web-based QA systems detect
answer candidates via exploring N-grams or named entity
recognition. However, we advocate linking answer candi-
dates to Freebase via entity linking, which induces several
remarkable advantages. Our system can be regarded as a
fundamental and expandable QA system with the new con-
cept to incorporate rich information in KBs into Web-based
QA systems.

Answer Type Prediction. In our QA system, we develop
features that evaluate the appropriateness of an answer can-
didate’s types under a question. Previous works such as [1,
11, 27, 28, 30, 33, 34, 35] on predicting the expected answer
types of a question are related. In [28], Li et al. classify
questions into a hierarchy of classes. Question analysis and
answer type validation in Watson QA system are detailed
in [27, 33]. [34] utilizes WordNet [19] as the answer type
taxonomy to do question classification while [1] addresses
automatically annotating queries with target types from the
DBpedia ontology. [30] develop answer type related features
by finding what matters in a question. Researchers in [11,
35] model the answer types as latent variables to avoid the
requirement of the predefined type taxonomies. Such meth-
ods simultaneously capture the “clustering” information of
questions and model the answer relevance conditioned on la-
tent variables. The significant differences between our mod-
els for answer-type related features and previous methods
have been discussed in Section 3.3. Overall we directly work
with thousands of freebase types and propose probabilistic
models to measure the matching degree between a question
and the Freebase types of an answer candidate.

8. CONCLUSION AND FUTURE WORK
In this paper, we develop a novel Web-based question

answering framework with KBs as a significant auxiliary.
Driven by the incompleteness problem of KBs, our system
directly mines answers from the Web and shows great ad-
vantages on questions not necessarily answerable by KBs.
Unlike existing Web-based QA systems, our system links
answer candidates to KBs during answer candidate gener-
ation, after which, rich semantics of entities, such as their
description texts and entity types in KBs, are utilized to
develop effective features for downstream answer candidate
ranking. Compared with various QA systems, our system
framework has achieved an 18%∼54% improvement under
F1. As future work, other information reserved in KBs such
as various relationships among entities, can also be explored
as semantic features to be incorporated in our system.
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