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[STM(1)

-- decaying error backflow
-- gradient based
-- constant error flow through constant error carousels

-- as for rnn, short-term memory, store representations of recent input
events in the form of activations; long-term, embodied by slowly
changing weights

-- traditional rnn, error signals explode or vanish exponentially
depending on the weights

-- previous work to bridge long time lags



[STM(1)

-- exponentially decaying error, analysis

/]

-- input gate to protect the memory contents from perturbation by
irrelevant inputs

-- output gate to protect other units from perturbation by currently
irrelevant memory contents
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Figure 1: Architecture of memory cell ; (the box) and its gate units in;, out;. The
self-recurrent connection (with weight 1.0) indicates feedback with a delay of
one time step. It builds the basis of the CEC. The gate units open and close access
to CEC. See text and appendix A.1 for details.
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[STM(1)

-- input gate(output gate) may use inputs form other memory cells to
decide whether to store (access) certain information in its memory cell

-- (why gate units) To avoid input weight conflicts, input weight controls
the error flow to memory cell’s input connections. To circumvent cell’s
output weight conflicts, output gate controls the error flow from
output connections.(BP) That is, the net can use input gate to decide
when to keep or override information in memory cell and output gate
to decide when to access memory cell and when to prevent other units
from being perturbed.(Propagate)

-- by scaling the errors, open/close access to constant error flow



[STM(1)

-- out gate sometimes prevent the net’s attempts at storing long-time-
lag memories(hard to learn) from perturbing activations representing
easily learnable short-time-lag memories

-- may abuse cell

-- tasks to demonstrate the quality of a novel long-time-lag algorithm:
minimal time lags; complex enough



LSTM(2)

-- instantiate dynamics

-- LSTM(1) not for very long or continual time series that are not a prior
segmented, causing the internal values of the cells to grow without bound

-- any training procedure for rnns which is powerful enough to span long
time lags must also address the issue of forgetting in short term
memory(unit activations)

-- forgetting may occur rhythmically or in an input-dependent fashion

-- when in/out are closed(activation around zero), irrelevant inputs and noise
don not enter the cell, and the cell state does not perturb the remainder of
the network



LSTM(2)

-- LSTM(1) may have saturation of output squashing function, cell
states are explicitly reset to zero, not “forever” memory

-- adaptive “forget gates”
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Figure 2: Memory block with only one cell for the extended LSTM. A multiplicative forget gate can reset
the cell’s inner state s..




LSTM(2)

-- the forget gate’s activation ranges between 0 and 1, “gradually restes”

-- bias weights for gates are initialized with negative values for input
and output gates positive for forget. Implies in the beginning, forget
gate activation will be almost 1.0 and the entire cell will be behave like
a standard LSTM cell. Forget anything until it has learned to forget.

-- backward pass, fusion of bp through time(BPTT) and real time
recurrent learning(RTRL)



LSTM(3)

-- cell provides short-term memory storage for extended time periods

-- input, forget and output gate can be trained to learn, respectively,
what information to store in the memory ,how long to store it and
when to read it out.

-- each gate receives connections from the input units and the outputs
of all cells, no direct connection from the CEC it is supposed to control



LSTM(3)
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Figure 2: LSTM memory block with peephole connections from the CEC to the gates.
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Fig. 1. LSTM based RNN architectures with a recurrent projection
layer and an optional non-recurrent projection layer. A single mem-

ory block is shown for clarity.



Encoder-decoder(1)

-- two rnns, one encodes a sequence of symbols into a fixed-length
vector representation and the other decodes the representation into
another sequence of symbols.

-- jointly trained to maximize the conditional probability of a target
sequence given a source sequence.

-- rnn to predict the next symbol in a sequence, to compute the
probabililty of the sequence, the sample a new sequence by iteratively
sampling a symbol at each time step



Encoder-decoder(1)
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Figure 1: An illustration of the proposed RNN
Encoder—Decoder.



Encoder-decoder(2)

-- a fixed-length context vector is problematic for long sentences

-- sequence to sequence, automatically (soft-)search for parts of a
source sentence that are relevant to predicting a target word, without
having to form these parts as a hard segment explicitly

-- with attention
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Figure 1: The graphical illus-
tration of the proposed model
trying to generate the ¢-th tar-
get word y; given a source
sentence (1, Z2,...,TT).



Attention based(1)

-- maximize the likelihood of the target description sentence given the
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Figure 3. LSTM model combined with a CNN image embedder
(as defined 1n [[12]) and word embeddings. The unrolled connec-
tions between the LSTM memories are in blue and they corre-

spond to the recurrent connections in Figure 2] All LSTMs share
the same parameters.



Attention based(2)

-- cnn to extract a set of feature vectors which we refer to as
annotation vectors

Figure 1. Our model learns a words/image alignment. The visual-
ized attentional maps (3) are explained in section 3.1 & 5.4
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Neural Turing Machine

-- computer program: elementary operations, logical flow control,
external memory (write to and read from).

-- rnn is turing complete
-- controller, memory bank
-- read: memory matrix, with a vector of weightings over the locations

-- write: taking inspiration from input and forget gates in LSTM, an
erase followed by an add

-- controller as registers in the processor
-- dnn controller mimics rnn



Neural Turing Machine
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Figure 1: Neural Turing Machine Architecture. During each update cycle, the controller
network receives inputs from an external environment and emits outputs in response. It also
reads to and writes from a memory matrix via a set of parallel read and write heads. The dashed
line indicates the division between the NTM circuit and the outside world.
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Figure 2: Flow Diagram of the Addressing Mechanism.
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The key vector, k;, and key

strength, [3;, are used to perform content-based addressing of the memory matrix, M;. The
resulting content-based weighting is interpolated with the weighting from the previous time step
based on the value of the interpolation gate, g:. The shift weighting, s;, determines whether
and by how much the weighting is rotated. Finally, depending on ~;, the weighting is sharpened
and used for memory access.



Memory Network

-- | input feature map

-- G: generalization

-- O: output feature map
-- R: response

-- they can potentially use any existing ideas from ML literature, e.g.,
SUM, dnn, decision tree.



Memory Network

Given an mput z (e.g., an input character, word or sentence depending on the granularity chosen, an
image or an audio signal) the flow of the model is as follows:

1. Convert x to an internal feature representation /().

2. Update memories m; given the new input: m; = G(m,, I(x), m), Vi.

3. Compute output features o given the new input and the memory: o = O(I(x), m).

4. Finally, decode output features o to give the final response: r = R(o0).



