
Wang and Wang

CSLT TECHNICAL REPORT-20150009 [Tuesday 28th April, 2015]

VMF-SNE: Embedding for Spherical Data
Mian Wang1,3 and Dong Wang1,2*

*Correspondence: wang-

dong99@cslt.riit.tsinghua.edu.cn
1CSLT, RIIT, Tsinghua University,

100084 Beijing, China

Full list of author information is

available at the end of the article

Abstract

T-SNE is a well-known approach to embedding high-dimensional data and has
been widely used in data visualization. The basic assumption of t-SNE is that the
data are non-constrained in the Euclidean space and the neighbouring proximity
can be modeled by Gaussian distributions. This assumption does not hold for a
wide range of data types in practical applications, for instance spherical data for
which the neighbouring proximity is better modelled by the von Mises-Fisher
(vMF) distribution instead of the Gaussian. This letter presents a vMF-SNE
embedding algorithm to embed spherical data. An iterative process is derived to
produce an efficient embedding. The results on a simulation data set
demonstrated that vMF-SNE produces better embeddings than t-SNE for
spherical data.
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1 Introduction
High-dimensional data embedding is a challenging task in machine learning and is

important for many applications particularly data visualization. Principally, data

embedding involves projecting high-dimensional data to a low-dimensional (often

2 or 3) space where the major structure (distribution) of the data in the original

space is mostly preserved. Therefore data embedding can be regarded as a special

task of data dimension reduction, with the objective function set to be preserving

the structure of the data. .

Various traditional dimension reduction approaches can be used to perform

data embedding, e.g., the principal component analysis(PCA) [11] and the multi-

dimensional scaling(MDS) [4]. PCA finds low-dimensional embeddings that preserve

the data covariance as much as possible. Classical MDS finds embeddings that pre-

serve inter-sample distances, which is equivalent to PCA if the distance is Euclidean.

Both the PCA and MDS are simple to implement and efficient in computation, and

are guaranteed to discover the true structure of data lying on or near a linear sub-

space of the high-dimensional input space. The shortage is that they are ineffective

for data within non-linear manifolds.

A multitude of non-linear embedding approaches have been proposed to deal with

non-linear manifolds. The first approach is to derive the global non-linear structure

from local proximity. For example, ISOMAP extends MDS by calculating simi-

larities of distant pairs based on similarities of neighbouring pairs [21, 22]. The

self-organizing map (SOM) or Kohonen net extends PCA and derives the global

non-linearity by simply ignoring distant pairs [13]. The same idea triggers the gen-

erative topographic mapping (GTM) [3], where the embedding problem is cast to a
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Bayesian inference with an EM procedure. The local linear embedding(LLE) follows

the same idea but formulates the embedding as a local-structure learning based on

linear prediction [17]. Another approach to deriving the global non-linear structure

involves various kernel learning methods, e.g., the semi-definite embedding based

on kernel PCA [24] and the colored maximum variance unfolding (CMVU) [19].

A major problem of the above non-linear embedding methods is that most of

them are not formulated in a probabilistic way, which leads to potential problems

in generalizability and tractability. The stochastic neighbor embedding(SNE) [10]

attempts to solve the problem. It models neighbouring proximity of data in both

the original and embedding space by Gaussian distributions, and the embedding

processing minimizes the kullback-leibler(KL) divergence of the distributions in the

original space and the embedding space.

A potential drawback of SNE is the ‘crowding problem’, i.e., the data samples

tend to be crowded together in the embedding space van2008visualizing. A UNI-

SNE approach was proposed to deal with the problem, which introduces a sym-

metric cost function and a smooth model when computing similarities between the

images of data in the embedding space [5]. With the problem in concern, [23] pro-

posed t-SNE, which also uses a symmetric cost function, but employs a Student

t-distribution rather a Gaussian distribution when computing similarities between

images (embeddings). T-SNE has shown clear superiority over other embedding

methods particularly for data that lie within several different, but related, low-

dimensional manifolds.

Although highly effective in general, t-SNE is weak in embedding data that are not

Gaussian. For example, there are many applications where the data are distributed

on a hyper-sphere, such as the topic vectors in document processing [16] and the

normalized i-vectors in speaker recognition [6]. These spherical data are naturally

modelled by the von Mises–Fisher (vMF) distribution rather than the Gaussian [9, 8,

15], hence unsuitable to be embedded by t-SNE. This paper will present a vMF-SNE

algorithm to embed spherical data, based on the SNE philosophy. Specifically, the

Gaussian distribution and the Student t-distribution used by t-SNE in the original

and the embedding space respectively are all replaced by vMF distributions, and an

EM-based iterative process is derived to conduct the embedding. The experimental

results on simulation data show that vMF-SNE produces better embeddings for

spherical data.

The rest of the paper is organized as follows. Section 2 describes the related

work, and Section 3 presents the vMF-SNE method. The simulation experiment is

presented in 4, and the paper is concluded in Section 5.

2 Related work
This work belongs to the extensively studied area of dimension reduction and data

embedding. Among the rich methods, the linear embedding approaches are simple

and fast, including PCA, MDS and their extensions [11, 4]. Non-linear embed-

ding approaches involve ISOMAP [21, 22], GTM [3]. LLE [17], Sammon map-

ping [18], curvilinear components analysis(CCA) [7], maximum variance unfold-

ing(MUV) [24, 19], and Laplacian eigenmaps [2]. SNE and its extensions [10, 5]

formulate the embedding problem as an optimization task in the probabilistic frame-

work, which is the foundation of this research. Particularly, t-SNE [23] solves the
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data crowding problem and has established the state-of-the-art in data embedding

and visualization. Our work is motivated by t-SNE, and is designed specifically to

embed spherical data which are not suitable to be processed by t-SNE. A more

related work is the parametric embedding (PE) [12], which embeds vectors of pos-

terior probabilities, thus sharing a similar goal as our proposal: both attempt to

embed data in a constrained space though the constrains are different (`-1 in PE

and `-2 in vMF-SNE).

Probably the most relevant work is the spherical semantic embedding (SSE) [14].

In the SSE approach, document vectors and topic vectors are constrained on a unit

sphere and are assumed to follow the vMF distribution. The topic model and the

embedding model are then jointly optimized in a generative model framework by

maximum likelihood. However, SSE infers local similarities between data samples

(document vectors in [14]) using a pre-defined latent structure (topic vectors), which

is difficult to be generalized to other tasks as the latent structure in most scenarios

is not available. Additionally, the cost function of SSE is the likelihood, while vMF-

SNE uses the symmetric Kullback-Leibler(KL) divergence.

3 vMF-distributed stochastic neighbouring embedding
3.1 Problems of t-SNE

Let {xi} denotes the data set in the high-dimensional space, and {yi} denotes the

corresponding embeddings, or images. The t-SNE algorithm measures the pairwise

similarities in the high-dimension space as the joint distribution of xi and xj which

is assumed to be Gaussian, formulated by the following:

pij =
e−||xi−xj ||2/2σ2∑

m6=n e
−||xm−xn||2/2σ2 . (1)

In the embedding space, the joint probability of yi and yj is modelled by a Student

t-distribution with one degree of freedom, given by:

qij =
(1 + ||yi − yj ||2)−1∑

m6=n (1 + ||ym − yn||2)−1
. (2)

The cost function of the embedding is the KL divergence between pi,j and qi,j ,

formulated by:

C = KL(P ||Q) =
∑
i

∑
j

pij log
pij
qij
.

A gradient descendant approach has been devised to conduct the optimization,

which is fairly efficient. Additionally, the symmetric form of Eq. (1) and the long-

tail property of the Student t-distribution alleviates the crowding problem of the

original SNE and other embedding approaches.

It should be highlighted the two assumptions that t-SNE holds: the joint probabili-

ties of the original data samples and the embeddings follow a Gaussian distribution
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and a Student t-distribution, respectively. This is general fine in most scenarios,

however fordata that are confined in a non-linear subspace, this assumption is po-

tentially invalid and the t-SNE embedding is no longer optimal. This paper focuses

on spherical data embedding, for which the t-SNE tends to fail as the Gaussian

distribution assumed by t-SNE can hardly model spherical data, and the Euclidean

distance associated with Gaussian distributions is not appropriate to measure simi-

larities on a hyper-sphere. A new embedding algorithm is proposed, which shares the

same embedding framework as in t-SNE, but uses a more appropriate distribution

form and a more suitable similarity measure to model spherical data.

3.2 vMF-SNE

It has been shown that the vMF distribution is a better choice than the Gaussian

in modelling spherical data, and the associated cosine distance is better than the

Euclidean distance in measuring data similarities in a hyper-spherical space, for

instance, in tasks such as spherical data clustering [20, 1]. Therefore, the vMF-SNE

presented here assumes vMF distributions in both the original and the embedding

space.

Mathematically, the probability density function of the vMF distribution on the

(d-1)-dimensional sphere in Rd is given by:

fd(x;µ, κ) = Cd(κ)eκµ
T x

where ||x|| = ||µ|| = 1, κ > 0 and µ are parameters of the distribution and Cd(κ)

is the normalization constant. Note that the vMF distribution implies the cosine

distance. As in t-SNE, the symmetric distance is used in both the original and

embedding space. In the original space, define the conditional probability of xj
given xi as:

pj|i =
fd(xj ;xi, κi)∑

m 6=i fd(xm;xi, κi)
,

the joint distribution pij is defined as follows:

pij =
pi|j + pj|i

2
. (3)

In the embedding space, a simpler form of joint distribution is chosen by setting

the concentration parameter ki the same for all yi. This choice follows t-SNE, and

the rationale is that the distribution pj|i in the original space needs to be adjusted

according to the data scattering around xi, however doing so in the embedding space

will cause complexity in computation, as we will see shortly. The joint distribution

qij with this simplification is given by:

qij =
eκy

T
i yj∑

m6=n e
κyTmyn

. (4)
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As in t-SNE, the KL divergence between the two distributions is used as the cost

function:

L =
∑
i

∑
j

pij ln
pij
qij

(5)

By gradient descendant, minimizing L with respect to {yi} leads to the optimal

embedding. The gradients will be derived in the following section.

3.3 Gradient derivation

Note that

L =
∑
i,j

pij ln(pij)−
∑
i,j

pij ln(qij).

Since the first item on the right hand side of the equation is in dependent of the

embedding, minimizing L reduces to maximizing the following cost function:

L̃ =
∑
i,j

pij ln(qij).

Define Z =
∑
m6=n e

kyTmyn , we have:

L̃ = κ
∑
i,j

pijy
T
i yj − lnZ

where
∑
i,j pij = 1 has been employed. The gradient of L̃ with respect to the

embedding yk is then derived as:

∂L̃
∂yk

= 2κ
∑
i

pikyi −
1

Z

∂lnZ

∂yk
(6)

= 2κ
∑
i

pikyi −
2κ

Z
{
∑
i

eκy
T
i ykyi} (7)

= 2κ
∑
i

(pik − qik)yi (8)

This is a rather simple form and the computation is efficient. Note that this sim-

plicity is partly due to the identical κ in the embedding space.

Algorithm 1 illustrates the vMF-SNE process. Notice that in the original data

space, κi is required. Following [23], κi is set to a value that makes the perplexity

Pi is equal to a pre-defined value P, formulated by:

Pi = 2H(pj|i) (9)
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where H(·) is information entropy defined by:

H(pj|i) = −
∑
j

pj|ilog2(pj|i)

where pj|i has been defined in Eq. (3). As mentioned in [23], making the perplexity

associated to each data point the same value normalizes the data scattering and so

benefits outliers and crowding areas.

Algorithm 1 vMF-SNE
Input & Output:

Input:
{xi; ||xi|| = 1, i = 1, ..., N}: data to embed
P: perplexity in the original space
κ: concentration parameter in the embedding space
T: number of iterations η: learning rate
Output:
{yi; ||yi|| = 1, i = 1, ..., N}: data embeddings

Implementation:
1: compute {κi} according to Eq. (9)
2: compute pij according to Eq. (3), and set pii = 0
3: randomly initialize {yi}
4: for t = 1 to T do
5: compute qij according to Eq. (4)
6: for i = 1 to N do
7: δi =

∂L̃
∂yi

according to Eq. (8)

8: yi = yi + ηδi
9: end for

10: end for

4 Experiment
To evaluate the proposed vMF-SNE, it is employed to visualize both spherical data

and Gaussian data and is compared with the traditional t-SNE. Since visualization

is not a quantitative evaluation, an entropy-based criterion is proposed to compare

the two embedding approaches.

4.1 Data simulation

The experiments are based on simulation data. The basic idea is to sample k clus-

ters of data samples and examine if the cluster structure can be preserved after

embedding. The sampling is straightforward for Gaussian data; for spherical data

following the vMF distribution, it deserves some discussion.

The sampling process starts from the centers of the k clusters, i.e., {µi; ||µi|| =

1, i = 1, ..., k}. This is attained by sampling each dimension of µi independently

according to a Gaussian N(0, 1), and then place an `-2 normalization to respect

||µi|| = 1. This process can be repeated to obtain every µi independently. However,

a different approach is adopted in this study: firstly sample the first center µ1,

and then a new µi is derived by randomly selecting a subset of the dimensions of

µ1 and then flipping the sign of the values on these dimensions. By this way, the

centers {µi} are ensured to be separated on the hyper-sphere, which generates a

clear cluster structure associated with the data.

Once the cluster centers are generated, it is easy to sample the data points for each

cluster following the vMF distribution. A toolkit provided by Arindam Banerjee and
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Figure 1 The 3-dimensional embedding with vMF-SNE, with data generated following a vMF
distribution by setting κ = 15 (left) and κ = 40 (right). The original dimension is 50, and there
are 4 clusters, each of which is represented by a particular color.

Suvrit Sra was adopted to conduct the vMF sampling[1]. In this work, the dimension

of the data point is set to 50, and the number of clusters varies from 4 to 16. For

each cluster 200 data points are sampled. The concentration parameter κ used in

the sampling also varies, in order to investigate the performance of the embedding

approaches in different overlapping conditions.

4.2 Visualization test

The first experiment visualizes the spherical data with vMF-SNE. The perplex-

ity P is set to 40, and the value of κ in the embedding space is fixed to 2 (see

Algorithm 1). The data are generated following vMF distributions by setting the

scattering parameter κ to different values. Fig. 1 presents the embedding results

on 3-dimensional spheres with vMF-SNE, where the two pictures show the results

with κ=15 and κ=40 respectively. Note that the κ here is used in data sampling,

neither the κ used to model the original data (which is computed from P for each

data point) nor the κ used to model the embedding data (which has been fixed to

2). It can be seen that vMF-SNE indeed preserves the cluster structure of the data

in the embedding space, and not surprisingly, data generated with a larger κ are

more separated in the embedding space.

For comparison, the same data are embedded with t-SNE in 2-dimensional space.

The tool provided by Laurens van der Maaten is used to conduct the embdding[2],

where the perplexity is set to 40. The comparative results are shown in Fig. 2 and

Fig. 3 for data generated by setting κ=15 and κ=10 respectively. It can be observed

that when κ is large (Fig. 2), both vMF-SNE and t-SNE perform well and the cluster

structure is clearly preserved. However when κ is small (Fig. 3), vMF-SNE shows

clear superiority. This suggests that t-SNE is capable to model spherical data if the

structure is clear, even if the underling distribution is non-Gaussian; however in the

case where the structure is less discernable in the high-dimensional space, t-SNE

tends to mess the boundary while vMF-SNE still works well.

[1]http://suvrit.de/work/soft/movmf
[2]http://lvdmaaten.github.io/tsne/
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Figure 2 The 3-dimensional embedding with vMF-SNE (left) and 2-dimensional embedding with
t-SNE (right). The data was generated following a vMF distribution by setting κ = 15.
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Figure 3 The 3-dimensional embedding with vMF-SNE (left) and 2-dimensional embedding with
t-SNE (right). The data was generated following a vMF distribution by setting κ = 10.

4.3 Entropy and accuracy test

Visualization test is not quantitative. For further investigation, we propose to use

the clustering accuracy and entropy as the criteria to measure the quality of the

embedding. This is achieved by first finding the images of the cluster centers, de-

noted by {µ̂i}, and cluster the data by finding their nearest {µ̂i} in the embedding

space. The classification accuracy is computed as the proportion of the data that

are correctly assigned to their clusters in the original space. The entropy of the i-th

cluster is then derived by

H(i) =

k∑
j=1

c(i, j)

where c(i, j) is the proportion of the data points generated from the j-th cluster but

are assigned to i-th cluster according to the nearest-neighbour rule in the embedding

space. The entropy of the entire dataset is computed as the average of H(i) over

all the clusters. The results are presented in Table 1. It can be observed that in the

case of 4 clusters, vMF-SNE achieves lower entropy and better accuracy than t-SNE

when κ is small. If κ is large, both the two methods can achieve good performance,

for the reason that we have discussed.
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Table 1 Embedding on vMF data

4 Clusters Entropy Accuracy
κ t-SNE vMF-SNE t-SNE vMF-SNE
10 0.6556 0.5922 42% 64.13%
20 0.4725 0.4187 85.38% 92.63%
30 0.3804 0.3676 97.38% 98.5%
40 0.3485 0.3466 99.75% 99.95%
16 Clusters Entropy Accuracy
10 0.3152 0.2975 15.5% 16.88%
20 0.2812 0.2608 38.25% 40.75%
30 0.2312 0.2383 68.25% 55.13%
40 0.1964 0.2187 91.25% 60.63%

Table 2 Embedding on Gaussian Data

4 Clusters Entropy Accuracy
α σ t-SNE vMF-SNE t-SNE vMF-SNE
8 6 1.1778 1.1147 91.5% 92%
8 6.5 1.5508 1.2595 85.5% 91%
9 6 0.7753 0.5982 94.25% 96.5%
9 6.5 1.1802 0.9499 90% 93.75%
10 6 0.6438 0.5297 96.75% 97.75%
10 6.5 0.8238 0.6006 94.5% 96.5%
16 Clusters Entropy Accuracy
8 6 16.9689 18.6505 49% 44%
8 6.5 19.4723 20.2595 47.25% 42%
9 6 16.0618 18.1033 52.75% 45.5%
9 6.5 16.9288 18.5997 51.75% 44.25%
10 6 12.3825 13.1265 61.5% 53.25%
10 6.5 13.3391 16.5243 60.5% 49%

In the case of 16 clusters, it is observed that vMF-SNE outperforms t-SNE with

small κ values (large overlaps). This seems an interesting property and demon-

strates that using the matched distribution (vMF) is helpful to improve embedding

for overlapped data. However, with kappa increases, vMF-SNE can not research

a performance as good as obtained by t-SNE. A possible reason is that the large

number of clusters leads to data crowding which can be better addressed with the

long-tail Student t-distribution used by t-SNE. Nevertheless, this requires further

investigation.

Another interesting investigation is to examine the performance of t-SNE and

vmf-SNE on Gaussian data. The data generation process is similar to the one used

for generating the vMF data. Firstly sample a center vector µ1 following a Gaussian

distribution and normalize its vector length to α. After that, the rest cluster centers

{µi} are produced by flipping the sign of the values of a subset of dimensions of µ1.

Once the cluster centers are obtained, the data points of each cluster are generated

by an isotropic Gaussian N(µi, σ), where σ controls the within-class variance.

The results are presented in Table 2. The interesting observation is that when the

number of data clusters are small, vMF-SNE is still better than t-SNE, and if the

number of clusters increase, t-SNE is superior. Again, we conjecture the discrepancy

is caused by the capability of the long-tail property of the Student t-distribution

used in t-SNE, which is capable of modeling crowding data.

5 Conclusions
We propose a vMF-SNE algorithm for embedding high-dimensional spherical data.

Compared with the widely used t-SNE, vMF-SNE assumes vMF distributions and

cosine similarities of the original data and the embeddings, hence suitable for spher-

ical data embedding. The experiments on a simulation dataset demonstrated that
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the proposed approach works fairly well. Further work involves studying long-tail

vMF distributions to handle crowding data, as t-SNE does with the Student t-

distribution.
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