
CUBLAS LIBRARY

DU-06702-001_v7.0 | March 2015

User Guide

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 2

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 1

Chapter 1.
INTRODUCTION

The cuBLAS library is an implementation of BLAS (Basic Linear Algebra Subprograms)
on top of the NVIDIA®CUDA™ runtime. It allows the user to access the computational
resources of NVIDIA Graphics Processing Unit (GPU).

Starting with CUDA 6.0, the cuBLAS Library now exposes two sets of API, the regular
cuBLAS API which is simply called cuBLAS API in this document and the CUBLASXT
API.

To use the cuBLAS API, the application must allocate the required matrices and vectors
in the GPU memory space, fill them with data, call the sequence of desired cuBLAS
functions, and then upload the results from the GPU memory space back to the host.
The cuBLAS API also provides helper functions for writing and retrieving data from the
GPU.

To use the CUBLASXT API, the application must keep the data on the Host and the
Library will take care of dispatching the operation to one or multiple GPUS present in
the system, depending on the user request.

1.1. Data layout
For maximum compatibility with existing Fortran environments, the cuBLAS library
uses column-major storage, and 1-based indexing. Since C and C++ use row-major
storage, applications written in these languages can not use the native array semantics
for two-dimensional arrays. Instead, macros or inline functions should be defined to
implement matrices on top of one-dimensional arrays. For Fortran code ported to C
in mechanical fashion, one may chose to retain 1-based indexing to avoid the need to
transform loops. In this case, the array index of a matrix element in row “i” and column
“j” can be computed via the following macro
#define IDX2F(i,j,ld) ((((j)-1)*(ld))+((i)-1))

Here, ld refers to the leading dimension of the matrix, which in the case of column-major
storage is the number of rows of the allocated matrix (even if only a submatrix of it is
being used). For natively written C and C++ code, one would most likely choose 0-based

Introduction

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 2

indexing, in which case the array index of a matrix element in row “i” and column “j”
can be computed via the following macro
#define IDX2C(i,j,ld) (((j)*(ld))+(i))

1.2. New and Legacy cuBLAS API
Starting with version 4.0, the cuBLAS Library provides a new updated API, in addition
to the existing legacy API. This section discusses why a new API is provided, the
advantages of using it, and the differences with the existing legacy API.

The new cuBLAS library API can be used by including the header file “cublas_v2.h”. It
has the following features that the legacy cuBLAS API does not have:

‣ the handle to the cuBLAS library context is initialized using the function and is
explicitly passed to every subsequent library function call. This allows the user to
have more control over the library setup when using multiple host threads and
multiple GPUs. This also allows the cuBLAS APIs to be reentrant.

‣ the scalars and can be passed by reference on the host or the device, instead
of only being allowed to be passed by value on the host. This change allows
library functions to execute asynchronously using streams even when and are
generated by a previous kernel.

‣ when a library routine returns a scalar result, it can be returned by reference on
the host or the device, instead of only being allowed to be returned by value only
on the host. This change allows library routines to be called asynchronously when
the scalar result is generated and returned by reference on the device resulting in
maximum parallelism.

‣ the error status cublasStatus_t is returned by all cuBLAS library function calls.
This change facilitates debugging and simplifies software development. Note that
cublasStatus was renamed cublasStatus_t to be more consistent with other
types in the cuBLAS library.

‣ the cublasAlloc() and cublasFree() functions have been deprecated.
This change removes these unnecessary wrappers around cudaMalloc() and
cudaFree(), respectively.

‣ the function cublasSetKernelStream() was renamed cublasSetStream() to be
more consistent with the other CUDA libraries.

The legacy cuBLAS API, explained in more detail in the Appendix A, can be used by
including the header file “cublas.h”. Since the legacy API is identical to the previously
released cuBLAS library API, existing applications will work out of the box and
automatically use this legacy API without any source code changes. In general, new
applications should not use the legacy cuBLAS API, and existing existing applications
should convert to using the new API if it requires sophisticated and optimal stream
parallelism or if it calls cuBLAS routines concurrently from multiple threads. For the rest
of the document, the new cuBLAS Library API will simply be referred to as the cuBLAS
Library API.

As mentioned earlier the interfaces to the legacy and the cuBLAS library APIs are the
header file “cublas.h” and “cublas_v2.h”, respectively. In addition, applications using
the cuBLAS library need to link against the DSO cublas.so (Linux), the DLL cublas.dll

Introduction

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 3

(Windows), or the dynamic library cublas.dylib (Mac OS X). Note: the same dynamic
library implements both the new and legacy cuBLAS APIs.

1.3. Example code
For sample code references please see the two examples below. They show an
application written in C using the cuBLAS library API with two indexing styles

Introduction

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 4

(Example 1. "Application Using C and CUBLAS: 1-based indexing" and Example 2.
"Application Using C and CUBLAS: 0-based Indexing").
//Example 1. Application Using C and CUBLAS: 1-based indexing
//---
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <cuda_runtime.h>
#include "cublas_v2.h"
#define M 6
#define N 5
#define IDX2F(i,j,ld) ((((j)-1)*(ld))+((i)-1))

static __inline__ void modify (cublasHandle_t handle, float *m, int ldm, int
 n, int p, int q, float alpha, float beta){
 cublasSscal (handle, n-p+1, &alpha, &m[IDX2F(p,q,ldm)], ldm);
 cublasSscal (handle, ldm-p+1, &beta, &m[IDX2F(p,q,ldm)], 1);
}

int main (void){
 cudaError_t cudaStat;
 cublasStatus_t stat;
 cublasHandle_t handle;
 int i, j;
 float* devPtrA;
 float* a = 0;
 a = (float *)malloc (M * N * sizeof (*a));
 if (!a) {
 printf ("host memory allocation failed");
 return EXIT_FAILURE;
 }
 for (j = 1; j <= N; j++) {
 for (i = 1; i <= M; i++) {
 a[IDX2F(i,j,M)] = (float)((i-1) * M + j);
 }
 }
 cudaStat = cudaMalloc ((void**)&devPtrA, M*N*sizeof(*a));
 if (cudaStat != cudaSuccess) {
 printf ("device memory allocation failed");
 return EXIT_FAILURE;
 }
 stat = cublasCreate(&handle);
 if (stat != CUBLAS_STATUS_SUCCESS) {
 printf ("CUBLAS initialization failed\n");
 return EXIT_FAILURE;
 }
 stat = cublasSetMatrix (M, N, sizeof(*a), a, M, devPtrA, M);
 if (stat != CUBLAS_STATUS_SUCCESS) {
 printf ("data download failed");
 cudaFree (devPtrA);
 cublasDestroy(handle);
 return EXIT_FAILURE;
 }
 modify (handle, devPtrA, M, N, 2, 3, 16.0f, 12.0f);
 stat = cublasGetMatrix (M, N, sizeof(*a), devPtrA, M, a, M);
 if (stat != CUBLAS_STATUS_SUCCESS) {
 printf ("data upload failed");
 cudaFree (devPtrA);
 cublasDestroy(handle);
 return EXIT_FAILURE;
 }
 cudaFree (devPtrA);
 cublasDestroy(handle);
 for (j = 1; j <= N; j++) {
 for (i = 1; i <= M; i++) {
 printf ("%7.0f", a[IDX2F(i,j,M)]);
 }
 printf ("\n");
 }
 free(a);
 return EXIT_SUCCESS;
}

//Example 2. Application Using C and CUBLAS: 0-based indexing
//---
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <cuda_runtime.h>
#include "cublas_v2.h"
#define M 6
#define N 5
#define IDX2C(i,j,ld) (((j)*(ld))+(i))

static __inline__ void modify (cublasHandle_t handle, float *m, int ldm, int
 n, int p, int q, float alpha, float beta){
 cublasSscal (handle, n-p, &alpha, &m[IDX2C(p,q,ldm)], ldm);
 cublasSscal (handle, ldm-p, &beta, &m[IDX2C(p,q,ldm)], 1);
}

int main (void){
 cudaError_t cudaStat;
 cublasStatus_t stat;
 cublasHandle_t handle;
 int i, j;
 float* devPtrA;
 float* a = 0;
 a = (float *)malloc (M * N * sizeof (*a));
 if (!a) {
 printf ("host memory allocation failed");
 return EXIT_FAILURE;
 }
 for (j = 0; j < N; j++) {
 for (i = 0; i < M; i++) {
 a[IDX2C(i,j,M)] = (float)(i * M + j + 1);
 }
 }
 cudaStat = cudaMalloc ((void**)&devPtrA, M*N*sizeof(*a));
 if (cudaStat != cudaSuccess) {
 printf ("device memory allocation failed");
 return EXIT_FAILURE;
 }
 stat = cublasCreate(&handle);
 if (stat != CUBLAS_STATUS_SUCCESS) {
 printf ("CUBLAS initialization failed\n");
 return EXIT_FAILURE;
 }
 stat = cublasSetMatrix (M, N, sizeof(*a), a, M, devPtrA, M);
 if (stat != CUBLAS_STATUS_SUCCESS) {
 printf ("data download failed");
 cudaFree (devPtrA);
 cublasDestroy(handle);
 return EXIT_FAILURE;
 }
 modify (handle, devPtrA, M, N, 1, 2, 16.0f, 12.0f);
 stat = cublasGetMatrix (M, N, sizeof(*a), devPtrA, M, a, M);
 if (stat != CUBLAS_STATUS_SUCCESS) {
 printf ("data upload failed");
 cudaFree (devPtrA);
 cublasDestroy(handle);
 return EXIT_FAILURE;
 }
 cudaFree (devPtrA);
 cublasDestroy(handle);
 for (j = 0; j < N; j++) {
 for (i = 0; i < M; i++) {
 printf ("%7.0f", a[IDX2C(i,j,M)]);
 }
 printf ("\n");
 }
 free(a);
 return EXIT_SUCCESS;
}

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 5

Chapter 2.
USING THE CUBLAS API

2.1. General description
This section describes how to use the cuBLAS library API. It does not contain a detailed
reference for all API datatypes and functions–those are provided in subsequent chapters.
The Legacy cuBLAS API is also not covered in this section–that is handled in an
Appendix.

2.1.1. Error status
All cuBLAS library function calls return the error status cublasStatus_t.

2.1.2. cuBLAS context
The application must initialize the handle to the cuBLAS library context by calling the
cublasCreate() function. Then, the is explicitly passed to every subsequent library
function call. Once the application finishes using the library, it must call the function
cublasDestory() to release the resources associated with the cuBLAS library context.

This approach allows the user to explicitly control the library setup when using
multiple host threads and multiple GPUs. For example, the application can use
cudaSetDevice() to associate different devices with different host threads and in each
of those host threads it can initialize a unique handle to the cuBLAS library context,
which will use the particular device associated with that host thread. Then, the cuBLAS
library function calls made with different handle will automatically dispatch the
computation to different devices.

The device associated with a particular cuBLAS context is assumed to remain
unchanged between the corresponding cublasCreate() and cublasDestory() calls.
In order for the cuBLAS library to use a different device in the same host thread, the
application must set the new device to be used by calling cudaSetDevice() and then
create another cuBLAS context, which will be associated with the new device, by calling
cublasCreate().

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 6

2.1.3. Thread Safety
The library is thread safe and its functions can be called from multiple host threads,
even with the same handle. When multiple threads share the same handle, extreme care
needs to be taken when the handle configuration is changed because that change will
affect potentially subsequent CUBLAS calls in all threads. It is even more true for the
destruction of the handle. So it is not recommended that multiple thread share the same
CUBLAS handle.

2.1.4. Results reproducibility
By design, all CUBLAS API routines from a given toolkit version, generate the same bit-
wise results at every run when executed on GPUs with the same architecture and the
same number of SMs. However, bit-wise reproducibility is not guaranteed across toolkit
version because the implementation might differ due to some implementation changes.

For some routines such as cublas<t>symv and cublas<t>hemv, an
alternate significantly faster routines can be chosen using the routine
cublasSetAtomicsMode(). In that case, the results are not guaranteed to be bit-wise
reproducible because atomics are used for the computation.

2.1.5. Scalar Parameters
There are two categories of the functions that use scalar parameters :

‣ functions that take alpha and/or beta parameters by reference on the host or the
device as scaling factors, such as gemm

‣ functions that return a scalar result on the host or the device such as amax(), amin,
asum(), rotg(), rotmg(), dot() and nrm2().

For the functions of the first category, when the pointer mode is set to
CUBLAS_POINTER_MODE_HOST, the scalar parameters alpha and/or beta can be
on the stack or allocated on the heap. Underneath the CUDA kernels related to
that functions will be launched with the value of alpha and/or beta. Therefore if
they were allocated on the heap, they can be freed just after the return of the call
even though the kernel launch is asynchronous. When the pointer mode is set to
CUBLAS_POINTER_MODE_DEVICE, alpha and/or beta must be accessible on the
device and their values should not be modified until the kernel is done. Note that since
cudaFree() does an implicit cudaDeviceSynchronize(), cudaFree() can still be
called on alpha and/or beta just after the call but it would defeat the purpose of using
this pointer mode in that case.

For the functions of the second category, when the pointer mode is set to
CUBLAS_POINTER_MODE_HOST, these functions blocks the CPU, until the GPU has
completed its computation and the results has been copied back to the Host. When
the pointer mode is set to CUBLAS_POINTER_MODE_DEVICE, these functions return
immediately. In this case, similarly to matrix and vector results, the scalar result is ready
only when execution of the routine on the GPU has completed. This requires proper
synchronization in order to read the result from the host.

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 7

In either case, the pointer mode CUBLAS_POINTER_MODE_DEVICE allows the library
functions to execute completely asynchronously from the Host even when alpha
and/or beta are generated by a previous kernel. For example, this situation can arise
when iterative methods for solution of linear systems and eigenvalue problems are
implemented using the cuBLAS library.

2.1.6. Parallelism with Streams
If the application uses the results computed by multiple independent tasks, CUDA™
streams can be used to overlap the computation performed in these tasks.

The application can conceptually associate each stream with each task. In order to
achieve the overlap of computation between the tasks, the user should create CUDA™
streams using the function cudaStreamCreate() and set the stream to be used by each
individual cuBLAS library routine by calling cublasSetStream() just before calling
the actual cuBLAS routine. Then, the computation performed in separate streams would
be overlapped automatically when possible on the GPU. This approach is especially
useful when the computation performed by a single task is relatively small and is not
enough to fill the GPU with work.

We recommend using the new cuBLAS API with scalar parameters and results passed
by reference in the device memory to achieve maximum overlap of the computation
when using streams.

A particular application of streams, batching of multiple small kernels, is described
below.

2.1.7. Batching Kernels
In this section we will explain how to use streams to batch the execution of small
kernels. For instance, suppose that we have an application where we need to make many
small independent matrix-matrix multiplications with dense matrices.

It is clear that even with millions of small independent matrices we will not be able to
achieve the same GFLOPS rate as with a one large matrix. For example, a single
large matrix-matrix multiplication performs operations for input size, while 1024

 small matrix-matrix multiplications perform operations for
the same input size. However, it is also clear that we can achieve a significantly better
performance with many small independent matrices compared with a single small
matrix.

The architecture family of GPUs allows us to execute multiple kernels simultaneously.
Hence, in order to batch the execution of independent kernels, we can run each of
them in a separate stream. In particular, in the above example we could create 1024
CUDA™ streams using the function cudaStreamCreate(), then preface each call to
cublas<t>gemm() with a call to cublasSetStream() with a different stream for each
of the matrix-matrix multiplications. This will ensure that when possible the different
computations will be executed concurrently. Although the user can create many streams,
in practice it is not possible to have more than 16 concurrent kernels executing at the
same time.

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 8

2.1.8. Cache configuration
On some devices, L1 cache and shared memory use the same hardware resources.
The cache configuration can be set directly with the CUDA Runtime function
cudaDeviceSetCacheConfig. The cache configuration can also be set specifically for
some functions using the routine cudaFuncSetCacheConfig. Please refer to the CUDA
Runtime API documentation for details about the cache configuration settings.

Because switching from one configuration to another can affect kernels concurrency,
the cuBLAS Library does not set any cache configuration preference and relies on the
current setting. However, some cuBLAS routines, especially Level-3 routines, rely
heavily on shared memory. Thus the cache preference setting might affect adversely
their performance.

2.1.9. Device API Library
Starting with release 5.0, the CUDA Toolkit now provides a static cuBLAS Library
cublas_device.a that contains device routines with the same API as the regular cuBLAS
Library. Those routines use internally the Dynamic Parallelism feature to launch kernel
from within and thus is only available for device with compute capability at least equal
to 3.5.

In order to use those library routines from the device the user must include the header
file “cublas_v2.h” corresponding to the new cuBLAS API and link against the static
cuBLAS library cublas_device.a.

Those device cuBLAS library routines are called from the device in exactly the same way
they are called from the host, with the following exceptions:

‣ The legacy cuBLAS API is not supported on the device.

‣ The pointer mode is not supported on the device, in other words, scalar input and
output parameters must be allocated on the device memory.

Furthermore, the input and output scalar parameters must be allocated and released
on the device using the cudaMalloc and cudaFree routines from the Host respectively
or malloc and free routines from the device, in other words, they can not be passed by
reference from the local memory to the routines.

2.1.10. Static Library support
Starting with release 6.5, the cuBLAS Library is also delivered in a static form as
libcublas_static.a on Linux and Mac OSes. The static cuBLAS library and all others static
maths libraries depend on a common thread abstraction layer library called libculibos.a.

For example, on Linux, to compile a small application using cuBLAS, against the
dynamic library, the following command can be used:

 nvcc myCublasApp.c -lcublas -o myCublasApp

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 9

Whereas to compile against the static cuBLAS library, the following command has to be
used:

 nvcc myCublasApp.c -lcublas_static -lculibos -o myCublasApp

It is also possible to use the native Host C++ compiler. Depending on the Host Operating
system, some additional libraries like pthread or dl might be needed on the linking
line. The following command on Linux is suggested :

 g++ myCublasApp.c -lcublas_static -lculibos -lcudart_static -lpthread -
ldl -I <cuda-toolkit-path>/include -L <cuda-toolkit-path>/lib64 -o myCublasApp

Note that in the latter case, the library cuda is not needed. The CUDA Runtime will try
to open explicitly the cuda library if needed. In the case of a system which does not have
the CUDA driver installed, this allows the application to gracefully manage this issue
and potentially run if a CPU-only path is available.

2.2. cuBLAS Datatypes Reference

2.2.1. cublasHandle_t
The cublasHandle_t type is a pointer type to an opaque structure holding the cuBLAS
library context. The cuBLAS library context must be initialized using cublasCreate()
and the returned handle must be passed to all subsequent library function calls. The
context should be destroyed at the end using cublasDestroy().

2.2.2. cublasStatus_t
The type is used for function status returns. All cuBLAS library functions return their
status, which can have the following values.

Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully.

CUBLAS_STATUS_NOT_INITIALIZED The cuBLAS library was not initialized.
This is usually caused by the lack of a prior
cublasCreate() call, an error in the CUDA
Runtime API called by the cuBLAS routine, or an
error in the hardware setup.

To correct: call cublasCreate() prior to the
function call; and check that the hardware, an
appropriate version of the driver, and the cuBLAS
library are correctly installed.

CUBLAS_STATUS_ALLOC_FAILED Resource allocation failed inside the cuBLAS
library. This is usually caused by a cudaMalloc()
failure.

To correct: prior to the function call, deallocate
previously allocated memory as much as possible.

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 10

Value Meaning

CUBLAS_STATUS_INVALID_VALUE An unsupported value or parameter was passed to
the function (a negative vector size, for example).

To correct: ensure that all the parameters being
passed have valid values.

CUBLAS_STATUS_ARCH_MISMATCH The function requires a feature absent from the
device architecture; usually caused by the lack of
support for double precision.

To correct: compile and run the application on a
device with appropriate compute capability, which
is 1.3 for double precision.

CUBLAS_STATUS_MAPPING_ERROR An access to GPU memory space failed, which is
usually caused by a failure to bind a texture.

To correct: prior to the function call, unbind any
previously bound textures.

CUBLAS_STATUS_EXECUTION_FAILED The GPU program failed to execute. This is often
caused by a launch failure of the kernel on the
GPU, which can be caused by multiple reasons.

To correct: check that the hardware, an
appropriate version of the driver, and the cuBLAS
library are correctly installed.

CUBLAS_STATUS_INTERNAL_ERROR An internal cuBLAS operation failed. This error is
usually caused by a cudaMemcpyAsync() failure.

To correct: check that the hardware, an
appropriate version of the driver, and the cuBLAS
library are correctly installed. Also, check that
the memory passed as a parameter to the routine
is not being deallocated prior to the routine’s
completion.

CUBLAS_STATUS_NOT_SUPPORTED The functionnality requested is not supported

CUBLAS_STATUS_LICENSE_ERROR The functionnality requested requires some license
and an error was detected when trying to check
the current licensing. This error can happen if
the license is not present or is expired or if the
environment variable NVIDIA_LICENSE_FILE is not
set properly.

2.2.3. cublasOperation_t
The cublasOperation_t type indicates which operation needs to be performed
with the dense matrix. Its values correspond to Fortran characters ‘N’ or ‘n’ (non-
transpose), ‘T’ or ‘t’ (transpose) and ‘C’ or ‘c’ (conjugate transpose) that are often
used as parameters to legacy BLAS implementations.

Value Meaning

CUBLAS_OP_N the non-transpose operation is selected

CUBLAS_OP_T the transpose operation is selected

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 11

Value Meaning

CUBLAS_OP_C the conjugate transpose operation is selected

2.2.4. cublasFillMode_t
The type indicates which part (lower or upper) of the dense matrix was filled and
consequently should be used by the function. Its values correspond to Fortran characters
‘L’ or ‘l’ (lower) and ‘U’ or ‘u’ (upper) that are often used as parameters to legacy
BLAS implementations.

Value Meaning

CUBLAS_FILL_MODE_LOWER the lower part of the matrix is filled

CUBLAS_FILL_MODE_UPPER the upper part of the matrix is filled

2.2.5. cublasDiagType_t
The type indicates whether the main diagonal of the dense matrix is unity and
consequently should not be touched or modified by the function. Its values correspond
to Fortran characters ‘N’ or ‘n’ (non-unit) and ‘U’ or ‘u’ (unit) that are often used as
parameters to legacy BLAS implementations.

Value Meaning

CUBLAS_DIAG_NON_UNIT the matrix diagonal has non-unit elements

CUBLAS_DIAG_UNIT the matrix diagonal has unit elements

2.2.6. cublasSideMode_t
The type indicates whether the dense matrix is on the left or right side in the matrix
equation solved by a particular function. Its values correspond to Fortran characters ‘L’
or ‘l’ (left) and ‘R’ or ‘r’ (right) that are often used as parameters to legacy BLAS
implementations.

Value Meaning

CUBLAS_SIDE_LEFT the matrix is on the left side in the equation

CUBLAS_SIDE_RIGHT the matrix is on the right side in the equation

2.2.7. cublasPointerMode_t
The cublasPointerMode_t type indicates whether the scalar values are passed by
reference on the host or device. It is important to point out that if several scalar values
are present in the function call, all of them must conform to the same single pointer
mode. The pointer mode can be set and retrieved using cublasSetPointerMode() and
cublasGetPointerMode() routines, respectively.

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 12

Value Meaning

CUBLAS_POINTER_MODE_HOST the scalars are passed by reference on the host

CUBLAS_POINTER_MODE_DEVICE the scalars are passed by reference on the device

2.2.8. cublasAtomicsMode_t
The type indicates whether cuBLAS routines which has an alternate implementation
using atomics can be used. The atomics mode can be set and queried using and routines,
respectively.

Value Meaning

CUBLAS_ATOMICS_NOT_ALLOWED the usage of atomics is not allowed

CUBLAS_ATOMICS_ALLOWED the usage of atomics is allowed

2.3. cuBLAS Helper Function Reference

2.3.1. cublasCreate()
cublasStatus_t
cublasCreate(cublasHandle_t *handle)

This function initializes the CUBLAS library and creates a handle to an opaque structure
holding the CUBLAS library context. It allocates hardware resources on the host and
device and must be called prior to making any other CUBLAS library calls. The CUBLAS
library context is tied to the current CUDA device. To use the library on multiple
devices, one CUBLAS handle needs to be created for each device. Furthermore, for a
given device, multiple CUBLAS handles with different configuration can be created.
Because cublasCreate allocates some internal resources and the release of those
resources by calling cublasDestroy will implicitly call cublasDeviceSynchronize,
it is recommended to minimize the number of cublasCreate/cublasDestroy
occurences. For multi-threaded applications that use the same device from different
threads, the recommended programming model is to create one CUBLAS handle per
thread and use that CUBLAS handle for the entire life of the thread.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the initialization succeeded

CUBLAS_STATUS_NOT_INITIALIZED the CUDA™ Runtime initialization failed

CUBLAS_STATUS_ALLOC_FAILED the resources could not be allocated

2.3.2. cublasDestroy()
cublasStatus_t
cublasDestroy(cublasHandle_t handle)

This function releases hardware resources used by the CUBLAS library. This function
is usually the last call with a particular handle to the CUBLAS library. Because

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 13

cublasCreate allocates some internal resources and the release of those resources
by calling cublasDestroy will implicitly call cublasDeviceSynchronize, it is
recommended to minimize the number of cublasCreate/cublasDestroy occurences.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the shut down succeeded

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

2.3.3. cublasGetVersion()
cublasStatus_t
cublasGetVersion(cublasHandle_t handle, int *version)

This function returns the version number of the cuBLAS library.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

2.3.4. cublasSetStream()
cublasStatus_t
cublasSetStream(cublasHandle_t handle, cudaStream_t streamId)

This function sets the cuBLAS library stream, which will be used to execute all
subsequent calls to the cuBLAS library functions. If the cuBLAS library stream is not set,
all kernels use the default NULL stream. In particular, this routine can be used to change
the stream between kernel launches and then to reset the cuBLAS library stream back to
NULL.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the stream was set successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

2.3.5. cublasGetStream()
cublasStatus_t
cublasGetStream(cublasHandle_t handle, cudaStream_t *streamId)

This function gets the cuBLAS library stream, which is being used to execute all calls to
the cuBLAS library functions. If the cuBLAS library stream is not set, all kernels use the
default NULL stream.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the stream was returned successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 14

2.3.6. cublasGetPointerMode()
cublasStatus_t
cublasGetPointerMode(cublasHandle_t handle, cublasPointerMode_t *mode)

This function obtains the pointer mode used by the cuBLAS library. Please see the
section on the cublasPointerMode_t type for more details.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the pointer mode was obtained successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

2.3.7. cublasSetPointerMode()
cublasStatus_t
cublasSetPointerMode(cublasHandle_t handle, cublasPointerMode_t mode)

This function sets the pointer mode used by the cuBLAS library. The default is
for the values to be passed by reference on the host. Please see the section on the
cublasPointerMode_t type for more details.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the pointer mode was set successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

2.3.8. cublasSetVector()
cublasStatus_t
cublasSetVector(int n, int elemSize,
 const void *x, int incx, void *y, int incy)

This function copies n elements from a vector x in host memory space to a vector y in
GPU memory space. Elements in both vectors are assumed to have a size of elemSize
bytes. The storage spacing between consecutive elements is given by incx for the source
vector x and by incy for the destination vector y.

In general, y points to an object, or part of an object, that was allocated via
cublasAlloc(). Since column-major format for two-dimensional matrices is assumed,
if a vector is part of a matrix, a vector increment equal to 1 accesses a (partial) column of
that matrix. Similarly, using an increment equal to the leading dimension of the matrix
results in accesses to a (partial) row of that matrix.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters incx, incy, elemSize<=0

CUBLAS_STATUS_MAPPING_ERROR there was an error accessing GPU memory

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 15

2.3.9. cublasGetVector()
cublasStatus_t
cublasGetVector(int n, int elemSize,
 const void *x, int incx, void *y, int incy)

This function copies n elements from a vector x in GPU memory space to a vector y in
host memory space. Elements in both vectors are assumed to have a size of elemSize
bytes. The storage spacing between consecutive elements is given by incx for the source
vector and incy for the destination vector y.

In general, x points to an object, or part of an object, that was allocated via
cublasAlloc(). Since column-major format for two-dimensional matrices is assumed,
if a vector is part of a matrix, a vector increment equal to 1 accesses a (partial) column of
that matrix. Similarly, using an increment equal to the leading dimension of the matrix
results in accesses to a (partial) row of that matrix.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters incx, incy, elemSize<=0

CUBLAS_STATUS_MAPPING_ERROR there was an error accessing GPU memory

2.3.10. cublasSetMatrix()
cublasStatus_t
cublasSetMatrix(int rows, int cols, int elemSize,
 const void *A, int lda, void *B, int ldb)

This function copies a tile of rows x cols elements from a matrix A in host memory
space to a matrix B in GPU memory space. It is assumed that each element requires
storage of elemSize bytes and that both matrices are stored in column-major format,
with the leading dimension of the source matrix A and destination matrix B given in
lda and ldb, respectively. The leading dimension indicates the number of rows of the
allocated matrix, even if only a submatrix of it is being used. In general, B is a device
pointer that points to an object, or part of an object, that was allocated in GPU memory
space via cublasAlloc().

Return Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters rows, cols<0 or elemSize,
lda, ldb<=0

CUBLAS_STATUS_MAPPING_ERROR there was an error accessing GPU memory

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 16

2.3.11. cublasGetMatrix()
cublasStatus_t
cublasGetMatrix(int rows, int cols, int elemSize,
 const void *A, int lda, void *B, int ldb)

This function copies a tile of rows x cols elements from a matrix A in GPU memory
space to a matrix B in host memory space. It is assumed that each element requires
storage of elemSize bytes and that both matrices are stored in column-major format,
with the leading dimension of the source matrix A and destination matrix B given in
lda and ldb, respectively. The leading dimension indicates the number of rows of the
allocated matrix, even if only a submatrix of it is being used. In general, A is a device
pointer that points to an object, or part of an object, that was allocated in GPU memory
space via cublasAlloc().

Return Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters rows, cols<0 or elemSize,
lda, ldb<=0

CUBLAS_STATUS_MAPPING_ERROR there was an error accessing GPU memory

2.3.12. cublasSetVectorAsync()
cublasStatus_t
cublasSetVectorAsync(int n, int elemSize, const void *hostPtr, int incx,
 void *devicePtr, int incy, cudaStream_t stream)

This function has the same functionality as cublasSetVector(), with the exception
that the data transfer is done asynchronously (with respect to the host) using the given
CUDA™ stream parameter.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters incx, incy, elemSize<=0

CUBLAS_STATUS_MAPPING_ERROR there was an error accessing GPU memory

2.3.13. cublasGetVectorAsync()
cublasStatus_t
cublasGetVectorAsync(int n, int elemSize, const void *devicePtr, int incx,
 void *hostPtr, int incy, cudaStream_t stream)

This function has the same functionality as cublasGetVector(), with the exception
that the data transfer is done asynchronously (with respect to the host) using the given
CUDA™ stream parameter.

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 17

Return Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters incx, incy, elemSize<=0

CUBLAS_STATUS_MAPPING_ERROR there was an error accessing GPU memory

2.3.14. cublasSetMatrixAsync()
cublasStatus_t
cublasSetMatrixAsync(int rows, int cols, int elemSize, const void *A,
 int lda, void *B, int ldb, cudaStream_t stream)

This function has the same functionality as cublasSetMatrix(), with the exception
that the data transfer is done asynchronously (with respect to the host) using the given
CUDA™ stream parameter.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters rows, cols<0 or elemSize,
lda, ldb<=0

CUBLAS_STATUS_MAPPING_ERROR there was an error accessing GPU memory

2.3.15. cublasGetMatrixAsync()
cublasStatus_t
cublasGetMatrixAsync(int rows, int cols, int elemSize, const void *A,
 int lda, void *B, int ldb, cudaStream_t stream)

This function has the same functionality as cublasGetMatrix(), with the exception
that the data transfer is done asynchronously (with respect to the host) using the given
CUDA™ stream parameter.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters rows, cols<0 or elemSize,
lda, ldb<=0

CUBLAS_STATUS_MAPPING_ERROR there was an error accessing GPU memory

2.3.16. cublasSetAtomicsMode()
cublasStatust cublasSetAtomicsMode(cublasHandlet handle, cublasAtomicsModet
 mode)

Some routines like cublas<t>symv and cublas<t>hemv have an alternate implementation
that use atomics to cumulate results. This implementation is generally significantly

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 18

faster but can generate results that are not strictly identical from one run to the others.
Mathematically, those different results are not significant but when debugging those
differences can be prejudicial.

This function allows or disallows the usage of atomics in the cuBLAS library for all
routines which have an alternate implementation. When not explicitly specified in
the documentation of any cuBLAS routine, it means that this routine does not have
an alternate implementation that use atomics. When atomics mode is disabled, each
cuBLAS routine should produce the same results from one run to the other when called
with identical parameters on the same Hardware.

The value of the atomics mode is CUBLASATOMICSNOTALLOWED. Please see the
section on the type for more details.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the atomics mode was set successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

2.3.17. cublasGetAtomicsMode()
cublasStatust cublasGetAtomicsMode(cublasHandlet handle, cublasAtomicsModet
*mode)

This function queries the atomic mode of a specific cuBLAS context.

The value of the atomics mode is CUBLASATOMICSNOTALLOWED. Please see the
section on the type for more details.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the atomics mode was queried successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

2.4. cuBLAS Level-1 Function Reference
In this chapter we describe the Level-1 Basic Linear Algebra Subprograms (BLAS1)
functions that perform scalar and vector based operations. We will use abbreviations
<type> for type and <t> for the corresponding short type to make a more concise and
clear presentation of the implemented functions. Unless otherwise specified <type> and
<t> have the following meanings:

<type> <t> Meaning

float ‘s’ or ‘S’ real single-precision

double ‘d’ or ‘D’ real double-precision

cuComplex ‘c’ or ‘C’ complex single-precision

cuDoubleComplex ‘z’ or ‘Z’ complex double-precision

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 19

When the parameters and returned values of the function differ, which sometimes
happens for complex input, the <t> can also have the following meanings ‘Sc’, ‘Cs’, ‘Dz’
and ‘Zd’.

The abbreviation Re(.) and Im(.) will stand for the real and imaginary part of a number,
respectively. Since imaginary part of a real number does not exist, we will consider it to
be zero and can usually simply discard it from the equation where it is being used. Also,
the will denote the complex conjugate of .

In general throughout the documentation, the lower case Greek symbols and will
denote scalars, lower case English letters in bold type and will denote vectors and
capital English letters , and will denote matrices.

2.4.1. cublasI<t>amax()
cublasStatus_t cublasIsamax(cublasHandle_t handle, int n,
 const float *x, int incx, int *result)
cublasStatus_t cublasIdamax(cublasHandle_t handle, int n,
 const double *x, int incx, int *result)
cublasStatus_t cublasIcamax(cublasHandle_t handle, int n,
 const cuComplex *x, int incx, int *result)
cublasStatus_t cublasIzamax(cublasHandle_t handle, int n,
 const cuDoubleComplex *x, int incx, int *result)

This function finds the (smallest) index of the element of the maximum magnitude.
Hence, the result is the first such that is maximum for
and . Notice that the last equation reflects 1-based indexing used for
compatibility with Fortran.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

n input number of elements in the vector x.

x device input <type> vector with elements.

incx input stride between consecutive elements of x.

result host or device output the resulting index, which is 0 if n,incx<=0.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_ALLOC_FAILED the reduction buffer could not be allocated

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

isamax, idamax, icamax, izamax

http://www.netlib.org/blas/isamax.f
http://www.netlib.org/blas/idamax.f
http://www.netlib.org/blas/icamax.f
http://www.netlib.org/blas/izamax.f

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 20

2.4.2. cublasI<t>amin()
cublasStatus_t cublasIsamin(cublasHandle_t handle, int n,
 const float *x, int incx, int *result)
cublasStatus_t cublasIdamin(cublasHandle_t handle, int n,
 const double *x, int incx, int *result)
cublasStatus_t cublasIcamin(cublasHandle_t handle, int n,
 const cuComplex *x, int incx, int *result)
cublasStatus_t cublasIzamin(cublasHandle_t handle, int n,
 const cuDoubleComplex *x, int incx, int *result)

This function finds the (smallest) index of the element of the minimum magnitude.
Hence, the result is the first such that is minimum for
and Notice that the last equation reflects 1-based indexing used for
compatibility with Fortran.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

n input number of elements in the vector x.

x device input <type> vector with elements.

incx input stride between consecutive elements of x.

result host or device output the resulting index, which is 0 if n,incx<=0.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_ALLOC_FAILED the reduction buffer could not be allocated

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

isamin

2.4.3. cublas<t>asum()
cublasStatus_t cublasSasum(cublasHandle_t handle, int n,
 const float *x, int incx, float *result)
cublasStatus_t cublasDasum(cublasHandle_t handle, int n,
 const double *x, int incx, double *result)
cublasStatus_t cublasScasum(cublasHandle_t handle, int n,
 const cuComplex *x, int incx, float *result)
cublasStatus_t cublasDzasum(cublasHandle_t handle, int n,
 const cuDoubleComplex *x, int incx, double *result)

http://www.netlib.org/scilib/blass.f

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 21

This function computes the sum of the absolute values of the elements of vector x.

Hence, the result is where . Notice that the last
equation reflects 1-based indexing used for compatibility with Fortran.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

n input number of elements in the vector x.

x device input <type> vector with elements.

incx input stride between consecutive elements of x.

result host or device output the resulting index, which is 0.0 if n,incx<=0.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_ALLOC_FAILED the reduction buffer could not be allocated

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

sasum, dasum, scasum, dzasum

2.4.4. cublas<t>axpy()
cublasStatus_t cublasSaxpy(cublasHandle_t handle, int n,
 const float *alpha,
 const float *x, int incx,
 float *y, int incy)
cublasStatus_t cublasDaxpy(cublasHandle_t handle, int n,
 const double *alpha,
 const double *x, int incx,
 double *y, int incy)
cublasStatus_t cublasCaxpy(cublasHandle_t handle, int n,
 const cuComplex *alpha,
 const cuComplex *x, int incx,
 cuComplex *y, int incy)
cublasStatus_t cublasZaxpy(cublasHandle_t handle, int n,
 const cuDoubleComplex *alpha,
 const cuDoubleComplex *x, int incx,
 cuDoubleComplex *y, int incy)

This function multiplies the vector x by the scalar and adds it to the vector y
overwriting the latest vector with the result. Hence, the performed operation is

 for , and . Notice
that the last two equations reflect 1-based indexing used for compatibility with Fortran.

http://www.netlib.org/blas/sasum.f
http://www.netlib.org/blas/dasum.f
http://www.netlib.org/blas/scasum.f
http://www.netlib.org/blas/dzasum.f

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 22

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

alpha host or device input <type> scalar used for multiplication.

n input number of elements in the vector x and y.

x device input <type> vector with n elements.

incx input stride between consecutive elements of x.

y device in/out <type> vector with n elements.

incy input stride between consecutive elements of y.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

saxpy, daxpy, caxpy, zaxpy

2.4.5. cublas<t>copy()
cublasStatus_t cublasScopy(cublasHandle_t handle, int n,
 const float *x, int incx,
 float *y, int incy)
cublasStatus_t cublasDcopy(cublasHandle_t handle, int n,
 const double *x, int incx,
 double *y, int incy)
cublasStatus_t cublasCcopy(cublasHandle_t handle, int n,
 const cuComplex *x, int incx,
 cuComplex *y, int incy)
cublasStatus_t cublasZcopy(cublasHandle_t handle, int n,
 const cuDoubleComplex *x, int incx,
 cuDoubleComplex *y, int incy)

This function copies the vector x into the vector y. Hence, the performed operation is
 for , and . Notice that the last

two equations reflect 1-based indexing used for compatibility with Fortran.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

n input number of elements in the vector x and y.

x device input <type> vector with n elements.

incx input stride between consecutive elements of x.

http://www.netlib.org/blas/saxpy.f
http://www.netlib.org/blas/daxpy.f
http://www.netlib.org/blas/caxpy.f
http://www.netlib.org/blas/zaxpy.f

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 23

Param. Memory In/out Meaning

y device output <type> vector with n elements.

incy input stride between consecutive elements of y.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

scopy, dcopy, ccopy, zcopy

2.4.6. cublas<t>dot()
cublasStatus_t cublasSdot (cublasHandle_t handle, int n,
 const float *x, int incx,
 const float *y, int incy,
 float *result)
cublasStatus_t cublasDdot (cublasHandle_t handle, int n,
 const double *x, int incx,
 const double *y, int incy,
 double *result)
cublasStatus_t cublasCdotu(cublasHandle_t handle, int n,
 const cuComplex *x, int incx,
 const cuComplex *y, int incy,
 cuComplex *result)
cublasStatus_t cublasCdotc(cublasHandle_t handle, int n,
 const cuComplex *x, int incx,
 const cuComplex *y, int incy,
 cuComplex *result)
cublasStatus_t cublasZdotu(cublasHandle_t handle, int n,
 const cuDoubleComplex *x, int incx,
 const cuDoubleComplex *y, int incy,
 cuDoubleComplex *result)
cublasStatus_t cublasZdotc(cublasHandle_t handle, int n,
 const cuDoubleComplex *x, int incx,
 const cuDoubleComplex *y, int incy,
 cuDoubleComplex *result)

This function computes the dot product of vectors x and y. Hence, the result is

 where and . Notice that in the first
equation the conjugate of the element of vector should be used if the function name
ends in character ‘c’ and that the last two equations reflect 1-based indexing used for
compatibility with Fortran.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

n input number of elements in the vectors x and y.

http://www.netlib.org/blas/scopy.f
http://www.netlib.org/blas/dcopy.f
http://www.netlib.org/blas/ccopy.f
http://www.netlib.org/blas/zcopy.f

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 24

Param. Memory In/out Meaning

x device input <type> vector with n elements.

incx input stride between consecutive elements of x.

y device input <type> vector with n elements.

incy input stride between consecutive elements of y.

result host or device output the resulting dot product, which is 0.0 if n<=0.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_ALLOC_FAILED the reduction buffer could not be allocated

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

sdot, ddot, cdotu, cdotc, zdotu, zdotc

2.4.7. cublas<t>nrm2()
cublasStatus_t cublasSnrm2(cublasHandle_t handle, int n,
 const float *x, int incx, float *result)
cublasStatus_t cublasDnrm2(cublasHandle_t handle, int n,
 const double *x, int incx, double *result)
cublasStatus_t cublasScnrm2(cublasHandle_t handle, int n,
 const cuComplex *x, int incx, float *result)
cublasStatus_t cublasDznrm2(cublasHandle_t handle, int n,
 const cuDoubleComplex *x, int incx, double *result)

This function computes the Euclidean norm of the vector x. The code uses a multiphase
model of accumulation to avoid intermediate underflow and overflow, with the result

being equivalent to where in exact arithmetic. Notice
that the last equation reflects 1-based indexing used for compatibility with Fortran.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

n input number of elements in the vector x.

x device input <type> vector with n elements.

incx input stride between consecutive elements of x.

result host or device output the resulting norm, which is 0.0 if n,incx<=0.

The possible error values returned by this function and their meanings are listed below.

http://www.netlib.org/blas/sdot.f
http://www.netlib.org/blas/ddot.f
http://www.netlib.org/blas/cdotu.f
http://www.netlib.org/blas/cdotc.f
http://www.netlib.org/blas/zdotu.f
http://www.netlib.org/blas/zdotc.f

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 25

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_ALLOC_FAILED the reduction buffer could not be allocated

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

snrm2, snrm2, dnrm2, dnrm2, scnrm2, scnrm2, dznrm2

2.4.8. cublas<t>rot()
cublasStatus_t cublasSrot(cublasHandle_t handle, int n,
 float *x, int incx,
 float *y, int incy,
 const float *c, const float *s)
cublasStatus_t cublasDrot(cublasHandle_t handle, int n,
 double *x, int incx,
 double *y, int incy,
 const double *c, const double *s)
cublasStatus_t cublasCrot(cublasHandle_t handle, int n,
 cuComplex *x, int incx,
 cuComplex *y, int incy,
 const float *c, const cuComplex *s)
cublasStatus_t cublasCsrot(cublasHandle_t handle, int n,
 cuComplex *x, int incx,
 cuComplex *y, int incy,
 const float *c, const float *s)
cublasStatus_t cublasZrot(cublasHandle_t handle, int n,
 cuDoubleComplex *x, int incx,
 cuDoubleComplex *y, int incy,
 const double *c, const cuDoubleComplex *s)
cublasStatus_t cublasZdrot(cublasHandle_t handle, int n,
 cuDoubleComplex *x, int incx,
 cuDoubleComplex *y, int incy,
 const double *c, const double *s)

This function applies Givens rotation matrix

to vectors x and y.

Hence, the result is and where
 and . Notice that the last two equations reflect 1-

based indexing used for compatibility with Fortran.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

n input number of elements in the vectors x and y.

x device in/out <type> vector with n elements.

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 26

Param. Memory In/out Meaning

incx input stride between consecutive elements of x.

y device in/out <type> vector with n elements.

incy input stride between consecutive elements of y.

c host or device input cosine element of the rotation matrix.

s host or device input sine element of the rotation matrix.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

srot, drot, crot, csrot, zrot, zdrot

2.4.9. cublas<t>rotg()
cublasStatus_t cublasSrotg(cublasHandle_t handle,
 float *a, float *b,
 float *c, float *s)
cublasStatus_t cublasDrotg(cublasHandle_t handle,
 double *a, double *b,
 double *c, double *s)
cublasStatus_t cublasCrotg(cublasHandle_t handle,
 cuComplex *a, cuComplex *b,
 float *c, cuComplex *s)
cublasStatus_t cublasZrotg(cublasHandle_t handle,
 cuDoubleComplex *a, cuDoubleComplex *b,
 double *c, cuDoubleComplex *s)

This function constructs the Givens rotation matrix

that zeros out the second entry of a vector .

Then, for real numbers we can write

where and . The parameters and are overwritten with and
, respectively. The value of is such that and may be recovered using the following
rules:

http://www.netlib.org/blas/srot.f
http://www.netlib.org/blas/drot.f
http://www.netlib.org/lapack/lapack_routine/crot.f
http://www.netlib.org/blas/csrot.f
http://www.netlib.org/lapack/lapack_routine/zrot.f
http://www.netlib.org/blas/zdrot.f

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 27

For complex numbers we can write

where and with for and

 for . Finally, the parameter is overwritten with on exit.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

a host or device in/out <type> scalar that is overwritten with .

b host or device in/out <type> scalar that is overwritten with .

c host or device output cosine element of the rotation matrix.

s host or device output sine element of the rotation matrix.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

srotg, drotg, crotg, zrotg

2.4.10. cublas<t>rotm()
cublasStatus_t cublasSrotm(cublasHandle_t handle, int n, float *x, int incx,
 float *y, int incy, const float* param)
cublasStatus_t cublasDrotm(cublasHandle_t handle, int n, double *x, int incx,
 double *y, int incy, const double* param)

This function applies the modified Givens transformation

to vectors x and y.

http://www.netlib.org/blas/srotg.f
http://www.netlib.org/blas/drotg.f
http://www.netlib.org/blas/crotg.f
http://www.netlib.org/blas/zrotg.f

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 28

Hence, the result is and where
 and . Notice that the last two equations reflect 1-

based indexing used for compatibility with Fortran.

The elements , , and of matrix are stored in param[1], param[2], param[3] and
param[4], respectively. The flag=param[0] defines the following predefined values
for the matrix entries

flag=-1.0 flag= 0.0 flag= 1.0 flag=-2.0

Notice that the values -1.0, 0.0 and 1.0 implied by the flag are not stored in param.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

n input number of elements in the vectors x and y.

x device in/out <type> vector with n elements.

incx input stride between consecutive elements of x.

y device in/out <type> vector with n elements.

incy input stride between consecutive elements of y.

param host or device input <type> vector of 5 elements, where param[0] and
param[1-4] contain the flag and matrix .

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

srotm, drotm

2.4.11. cublas<t>rotmg()
cublasStatus_t cublasSrotmg(cublasHandle_t handle, float *d1, float *d2,
 float *x1, const float *y1, float *param)
cublasStatus_t cublasDrotmg(cublasHandle_t handle, double *d1, double *d2,
 double *x1, const double *y1, double *param)

This function constructs the modified Givens transformation

http://www.netlib.org/blas/srotm.f
http://www.netlib.org/blas/drotm.f

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 29

that zeros out the second entry of a vector .

The flag=param[0] defines the following predefined values for the matrix entries

flag=-1.0 flag= 0.0 flag= 1.0 flag=-2.0

Notice that the values -1.0, 0.0 and 1.0 implied by the flag are not stored in param.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

d1 host or device in/out <type> scalar that is overwritten on exit.

d2 host or device in/out <type> scalar that is overwritten on exit.

x1 host or device in/out <type> scalar that is overwritten on exit.

y1 host or device input <type> scalar.

param host or device output <type> vector of 5 elements, where param[0] and
param[1-4] contain the flag and matrix .

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

srotmg, drotmg

http://www.netlib.org/blas/srotmg.f
http://www.netlib.org/blas/drotmg.f

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 30

2.4.12. cublas<t>scal()
cublasStatus_t cublasSscal(cublasHandle_t handle, int n,
 const float *alpha,
 float *x, int incx)
cublasStatus_t cublasDscal(cublasHandle_t handle, int n,
 const double *alpha,
 double *x, int incx)
cublasStatus_t cublasCscal(cublasHandle_t handle, int n,
 const cuComplex *alpha,
 cuComplex *x, int incx)
cublasStatus_t cublasCsscal(cublasHandle_t handle, int n,
 const float *alpha,
 cuComplex *x, int incx)
cublasStatus_t cublasZscal(cublasHandle_t handle, int n,
 const cuDoubleComplex *alpha,
 cuDoubleComplex *x, int incx)
cublasStatus_t cublasZdscal(cublasHandle_t handle, int n,
 const double *alpha,
 cuDoubleComplex *x, int incx)

This function scales the vector x by the scalar and overwrites it with the result. Hence,
the performed operation is for and . Notice
that the last two equations reflect 1-based indexing used for compatibility with Fortran.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

alpha host or device input <type> scalar used for multiplication.

n input number of elements in the vector x.

x device in/out <type> vector with n elements.

incx input stride between consecutive elements of x.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

sscal, dscal, csscal, cscal, zdscal, zscal

http://www.netlib.org/blas/sscal.f
http://www.netlib.org/blas/dscal.f
http://www.netlib.org/blas/csscal.f
http://www.netlib.org/blas/cscal.f
http://www.netlib.org/blas/zdscal.f
http://www.netlib.org/blas/zscal.f

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 31

2.4.13. cublas<t>swap()
cublasStatus_t cublasSswap(cublasHandle_t handle, int n, float *x,
 int incx, float *y, int incy)
cublasStatus_t cublasDswap(cublasHandle_t handle, int n, double *x,
 int incx, double *y, int incy)
cublasStatus_t cublasCswap(cublasHandle_t handle, int n, cuComplex *x,
 int incx, cuComplex *y, int incy)
cublasStatus_t cublasZswap(cublasHandle_t handle, int n, cuDoubleComplex *x,
 int incx, cuDoubleComplex *y, int incy)

This function interchanges the elements of vector x and y. Hence, the performed
operation is for , and . Notice
that the last two equations reflect 1-based indexing used for compatibility with Fortran.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

n input number of elements in the vector x and y.

x device in/out <type> vector with n elements.

incx input stride between consecutive elements of x.

y device in/out <type> vector with n elements.

incy input stride between consecutive elements of y.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

sswap, dswap, cswap, zswap

2.5. cuBLAS Level-2 Function Reference
In this chapter we describe the Level-2 Basic Linear Algebra Subprograms (BLAS2)
functions that perform matrix-vector operations.

http://www.netlib.org/blas/sswap.f
http://www.netlib.org/blas/dswap.f
http://www.netlib.org/blas/cswap.f
http://www.netlib.org/blas/zswap.f

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 32

2.5.1. cublas<t>gbmv()
cublasStatus_t cublasSgbmv(cublasHandle_t handle, cublasOperation_t trans,
 int m, int n, int kl, int ku,
 const float *alpha,
 const float *A, int lda,
 const float *x, int incx,
 const float *beta,
 float *y, int incy)
cublasStatus_t cublasDgbmv(cublasHandle_t handle, cublasOperation_t trans,
 int m, int n, int kl, int ku,
 const double *alpha,
 const double *A, int lda,
 const double *x, int incx,
 const double *beta,
 double *y, int incy)
cublasStatus_t cublasCgbmv(cublasHandle_t handle, cublasOperation_t trans,
 int m, int n, int kl, int ku,
 const cuComplex *alpha,
 const cuComplex *A, int lda,
 const cuComplex *x, int incx,
 const cuComplex *beta,
 cuComplex *y, int incy)
cublasStatus_t cublasZgbmv(cublasHandle_t handle, cublasOperation_t trans,
 int m, int n, int kl, int ku,
 const cuDoubleComplex *alpha,
 const cuDoubleComplex *A, int lda,
 const cuDoubleComplex *x, int incx,
 const cuDoubleComplex *beta,
 cuDoubleComplex *y, int incy)

This function performs the banded matrix-vector multiplication

where is a banded matrix with subdiagonals and superdiagonals, and are
vectors, and and are scalars. Also, for matrix

The banded matrix is stored column by column, with the main diagonal stored in row
 (starting in first position), the first superdiagonal stored in row (starting in

second position), the first subdiagonal stored in row (starting in first position),
etc. So that in general, the element is stored in the memory location A(ku+1+i-
j,j) for and . Also, the elements in the
array that do not conceptually correspond to the elements in the banded matrix (the
top left and bottom right triangles) are not referenced.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

trans input operation op(A) that is non- or (conj.) transpose.

m input number of rows of matrix A.

n input number of columns of matrix A.

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 33

Param. Memory In/out Meaning

kl input number of subdiagonals of matrix A.

ku input number of superdiagonals of matrix A.

alpha host or device input <type> scalar used for multiplication.

A device input <type> array of dimension lda x n with lda>=kl+ku+1.

lda input leading dimension of two-dimensional array used to store
matrix A.

x device input <type> vector with n elements if transa == CUBLAS_OP_N
and m elements otherwise.

incx input stride between consecutive elements of x.

beta host or device input <type> scalar used for multiplication, if beta == 0 then y
does not have to be a valid input.

y device in/out <type> vector with m elements if transa == CUBLAS_OP_N
and n elements otherwise.

incy input stride between consecutive elements of y.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters or

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

sgbmv, dgbmv, cgbmv, zgbmv

http://www.netlib.org/blas/sgbmv.f
http://www.netlib.org/blas/dgbmv.f
http://www.netlib.org/blas/cgbmv.f
http://www.netlib.org/blas/zgbmv.f

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 34

2.5.2. cublas<t>gemv()
cublasStatus_t cublasSgemv(cublasHandle_t handle, cublasOperation_t trans,
 int m, int n,
 const float *alpha,
 const float *A, int lda,
 const float *x, int incx,
 const float *beta,
 float *y, int incy)
cublasStatus_t cublasDgemv(cublasHandle_t handle, cublasOperation_t trans,
 int m, int n,
 const double *alpha,
 const double *A, int lda,
 const double *x, int incx,
 const double *beta,
 double *y, int incy)
cublasStatus_t cublasCgemv(cublasHandle_t handle, cublasOperation_t trans,
 int m, int n,
 const cuComplex *alpha,
 const cuComplex *A, int lda,
 const cuComplex *x, int incx,
 const cuComplex *beta,
 cuComplex *y, int incy)
cublasStatus_t cublasZgemv(cublasHandle_t handle, cublasOperation_t trans,
 int m, int n,
 const cuDoubleComplex *alpha,
 const cuDoubleComplex *A, int lda,
 const cuDoubleComplex *x, int incx,
 const cuDoubleComplex *beta,
 cuDoubleComplex *y, int incy)

This function performs the matrix-vector multiplication

where is a matrix stored in column-major format, and are vectors, and
and are scalars. Also, for matrix

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

trans input operation op(A) that is non- or (conj.) transpose.

m input number of rows of matrix A.

n input number of columns of matrix A.

alpha host or device input <type> scalar used for multiplication.

A device input <type> array of dimension lda x n with lda >= max(1,m)
if transa==CUBLAS_OP_N and lda x m with lda >=
max(1,n) otherwise.

lda input leading dimension of two-dimensional array used to store
matrix A.

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 35

Param. Memory In/out Meaning

x device input <type> vector with n elements if transa==CUBLAS_OP_N
and m elements otherwise.

incx input stride between consecutive elements of x.

beta host or device input <type> scalar used for multiplication, if beta==0 then y
does not have to be a valid input.

y device in/out <type> vector with m elements if transa==CUBLAS_OP_N
and n elements otherwise.

incy input stride between consecutive elements of .y

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters m,n<0 or incx,incy=0

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

sgemv, dgemv, cgemv, zgemv

http://www.netlib.org/blas/sgemv.f
http://www.netlib.org/blas/dgemv.f
http://www.netlib.org/blas/cgemv.f
http://www.netlib.org/blas/zgemv.f

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 36

2.5.3. cublas<t>ger()
cublasStatus_t cublasSger(cublasHandle_t handle, int m, int n,
 const float *alpha,
 const float *x, int incx,
 const float *y, int incy,
 float *A, int lda)
cublasStatus_t cublasDger(cublasHandle_t handle, int m, int n,
 const double *alpha,
 const double *x, int incx,
 const double *y, int incy,
 double *A, int lda)
cublasStatus_t cublasCgeru(cublasHandle_t handle, int m, int n,
 const cuComplex *alpha,
 const cuComplex *x, int incx,
 const cuComplex *y, int incy,
 cuComplex *A, int lda)
cublasStatus_t cublasCgerc(cublasHandle_t handle, int m, int n,
 const cuComplex *alpha,
 const cuComplex *x, int incx,
 const cuComplex *y, int incy,
 cuComplex *A, int lda)
cublasStatus_t cublasZgeru(cublasHandle_t handle, int m, int n,
 const cuDoubleComplex *alpha,
 const cuDoubleComplex *x, int incx,
 const cuDoubleComplex *y, int incy,
 cuDoubleComplex *A, int lda)
cublasStatus_t cublasZgerc(cublasHandle_t handle, int m, int n,
 const cuDoubleComplex *alpha,
 const cuDoubleComplex *x, int incx,
 const cuDoubleComplex *y, int incy,
 cuDoubleComplex *A, int lda)

This function performs the rank-1 update

where is a matrix stored in column-major format, and are vectors, and is a
scalar.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

m input number of rows of matrix A.

n input number of columns of matrix A.

alpha host or device input <type> scalar used for multiplication.

x device input <type> vector with m elements.

incx input stride between consecutive elements of x.

y device input <type> vector with n elements.

incy input stride between consecutive elements of y.

A device in/out <type> array of dimension lda x n with lda >= max(1,m).

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 37

Param. Memory In/out Meaning

lda input leading dimension of two-dimensional array used to store
matrix A.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters m,n<0 or incx,incy=0

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

sger, dger, cgeru, cgerc, zgeru, zgerc

2.5.4. cublas<t>sbmv()
cublasStatus_t cublasSsbmv(cublasHandle_t handle, cublasFillMode_t uplo,
 int n, int k, const float *alpha,
 const float *A, int lda,
 const float *x, int incx,
 const float *beta, float *y, int incy)
cublasStatus_t cublasDsbmv(cublasHandle_t handle, cublasFillMode_t uplo,
 int n, int k, const double *alpha,
 const double *A, int lda,
 const double *x, int incx,
 const double *beta, double *y, int incy)

This function performs the symmetric banded matrix-vector multiplication

where is a symmetric banded matrix with subdiagonals and superdiagonals,
and are vectors, and and are scalars.

If uplo == CUBLAS_FILL_MODE_LOWER then the symmetric banded matrix is
stored column by column, with the main diagonal of the matrix stored in row 1, the
first subdiagonal in row 2 (starting at first position), the second subdiagonal in row
3 (starting at first position), etc. So that in general, the element is stored in the
memory location A(1+i-j,j) for and . Also, the
elements in the array A that do not conceptually correspond to the elements in the
banded matrix (the bottom right triangle) are not referenced.

If uplo == CUBLAS_FILL_MODE_UPPER then the symmetric banded matrix is stored
column by column, with the main diagonal of the matrix stored in row k+1, the first
superdiagonal in row k (starting at second position), the second superdiagonal in row
k-1 (starting at third position), etc. So that in general, the element is stored in
the memory location A(1+k+i-j,j) for and . Also,

http://www.netlib.org/blas/sger.f
http://www.netlib.org/blas/dger.f
http://www.netlib.org/blas/cgeru.f
http://www.netlib.org/blas/cgerc.f
http://www.netlib.org/blas/zgeru.f
http://www.netlib.org/blas/zgerc.f

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 38

the elements in the array A that do not conceptually correspond to the elements in the
banded matrix (the top left triangle) are not referenced.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

uplo input indicates if matrix A lower or upper part is stored, the other
symmetric part is not referenced and is inferred from the
stored elements.

n input number of rows and columns of matrix A.

k input number of sub- and super-diagonals of matrix A.

alpha host or device input <type> scalar used for multiplication.

A device input <type> array of dimension lda x n with \lda >= k+1.

lda input leading dimension of two-dimensional array used to store
matrix A.

x device input <type> vector with n elements.

incx input stride between consecutive elements of x.

beta host or device input <type> scalar used for multiplication, if beta==0 then y does
not have to be a valid input.

y device in/out <type> vector with n elements.

incy input stride between consecutive elements of y.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters n,k<0 or incx,incy=0

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

ssbmv, dsbmv

2.5.5. cublas<t>spmv()
cublasStatus_t cublasSspmv(cublasHandle_t handle, cublasFillMode_t uplo,
 int n, const float *alpha, const float *AP,
 const float *x, int incx, const float *beta,
 float *y, int incy)
cublasStatus_t cublasDspmv(cublasHandle_t handle, cublasFillMode_t uplo,
 int n, const double *alpha, const double *AP,
 const double *x, int incx, const double *beta,
 double *y, int incy)

http://www.netlib.org/blas/ssbmv.f
http://www.netlib.org/blas/dsbmv.f

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 39

This function performs the symmetric packed matrix-vector multiplication

where is a symmetric matrix stored in packed format, and are vectors, and
and are scalars.

If uplo == CUBLAS_FILL_MODE_LOWER then the elements in the lower triangular part
of the symmetric matrix are packed together column by column without gaps, so
that the element is stored in the memory location AP[i+((2*n-j+1)*j)/2] for

 and . Consequently, the packed format requires only elements
for storage.

If uplo == CUBLAS_FILL_MODE_UPPER then the elements in the upper triangular part
of the symmetric matrix are packed together column by column without gaps, so that
the element is stored in the memory location AP[i+(j*(j+1))/2] for

and . Consequently, the packed format requires only elements for storage.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

uplo input indicates if matrix lower or upper part is stored, the other
symmetric part is not referenced and is inferred from the
stored elements.

n input number of rows and columns of matrix .

alpha host or device input <type> scalar used for multiplication.

AP device input <type> array with stored in packed format.

x device input <type> vector with n elements.

incx input stride between consecutive elements of x.

beta host or device input <type> scalar used for multiplication, if beta==0 then y does
not have to be a valid input.

y device input <type> vector with n elements.

incy input stride between consecutive elements of y.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters n<0 or incx,incy=0

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 40

For references please refer to:

sspmv, dspmv

2.5.6. cublas<t>spr()
cublasStatus_t cublasSspr(cublasHandle_t handle, cublasFillMode_t uplo,
 int n, const float *alpha,
 const float *x, int incx, float *AP)
cublasStatus_t cublasDspr(cublasHandle_t handle, cublasFillMode_t uplo,
 int n, const double *alpha,
 const double *x, int incx, double *AP)

This function performs the packed symmetric rank-1 update

where is a symmetric matrix stored in packed format, is a vector, and is a
scalar.

If uplo == CUBLAS_FILL_MODE_LOWER then the elements in the lower triangular part
of the symmetric matrix are packed together column by column without gaps, so
that the element is stored in the memory location AP[i+((2*n-j+1)*j)/2] for

 and . Consequently, the packed format requires only elements
for storage.

If uplo == CUBLAS_FILL_MODE_UPPER then the elements in the upper triangular part
of the symmetric matrix are packed together column by column without gaps, so that
the element is stored in the memory location AP[i+(j*(j+1))/2] for

and . Consequently, the packed format requires only elements for storage.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

uplo input indicates if matrix lower or upper part is stored, the other
symmetric part is not referenced and is inferred from the
stored elements.

n input number of rows and columns of matrix .

alpha host or device input <type> scalar used for multiplication.

x device input <type> vector with n elements.

incx input stride between consecutive elements of x.

AP device in/out <type> array with stored in packed format.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

http://www.netlib.org/blas/sspmv.f
http://www.netlib.org/blas/dspmv.f

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 41

Error Value Meaning

CUBLAS_STATUS_INVALID_VALUE the parameters n<0 or incx,incy=0

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

sspr, dspr

2.5.7. cublas<t>spr2()
cublasStatus_t cublasSspr2(cublasHandle_t handle, cublasFillMode_t uplo,
 int n, const float *alpha,
 const float *x, int incx,
 const float *y, int incy, float *AP)
cublasStatus_t cublasDspr2(cublasHandle_t handle, cublasFillMode_t uplo,
 int n, const double *alpha,
 const double *x, int incx,
 const double *y, int incy, double *AP)

This function performs the packed symmetric rank-2 update

where is a symmetric matrix stored in packed format, is a vector, and is a
scalar.

If uplo == CUBLAS_FILL_MODE_LOWER then the elements in the lower triangular part
of the symmetric matrix are packed together column by column without gaps, so
that the element is stored in the memory location AP[i+((2*n-j+1)*j)/2] for

 and . Consequently, the packed format requires only elements
for storage.

If uplo == CUBLAS_FILL_MODE_UPPER then the elements in the upper triangular part
of the symmetric matrix are packed together column by column without gaps, so that
the element is stored in the memory location AP[i+(j*(j+1))/2] for

and . Consequently, the packed format requires only elements for storage.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

uplo input indicates if matrix lower or upper part is stored, the other
symmetric part is not referenced and is inferred from the
stored elements.

n input number of rows and columns of matrix .

alpha host or device input <type> scalar used for multiplication.

x device input <type> vector with n elements.

incx input stride between consecutive elements of x.

http://www.netlib.org/blas/sspr.f
http://www.netlib.org/blas/dspr.f

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 42

Param. Memory In/out Meaning

y device input <type> vector with n elements.

incy input stride between consecutive elements of y.

AP device in/out <type> array with stored in packed format.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters n<0 or incx,incy=0

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

sspr2, dspr2

2.5.8. cublas<t>symv()
cublasStatus_t cublasSsymv(cublasHandle_t handle, cublasFillMode_t uplo,
 int n, const float *alpha,
 const float *A, int lda,
 const float *x, int incx, const float
 *beta,
 float *y, int incy)
cublasStatus_t cublasDsymv(cublasHandle_t handle, cublasFillMode_t uplo,
 int n, const double *alpha,
 const double *A, int lda,
 const double *x, int incx, const double
 *beta,
 double *y, int incy)
cublasStatus_t cublasCsymv(cublasHandle_t handle, cublasFillMode_t uplo,
 int n, const cuComplex *alpha, /* host or
 device pointer */
 const cuComplex *A, int lda,
 const cuComplex *x, int incx, const cuComplex
 *beta,
 cuComplex *y, int incy)
cublasStatus_t cublasZsymv(cublasHandle_t handle, cublasFillMode_t uplo,
 int n, const cuDoubleComplex *alpha,
 const cuDoubleComplex *A, int lda,
 const cuDoubleComplex *x, int incx, const
 cuDoubleComplex *beta,
 cuDoubleComplex *y, int incy)

This function performs the symmetric matrix-vector multiplication.

where is a symmetric matrix stored in lower or upper mode, and are vectors,
and and are scalars.

http://www.netlib.org/blas/sspr2.f
http://www.netlib.org/blas/dspr2.f

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 43

This function has an alternate faster implementation using atomics that can be enabled
with cublasSetAtomicsMode().

Please see the section on the function cublasSetAtomicsMode() for more details about
the usage of atomics.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

uplo input indicates if matrix lower or upper part is stored, the other
symmetric part is not referenced and is inferred from the
stored elements.

n input number of rows and columns of matrix A.

alpha host or device input <type> scalar used for multiplication.

A device input <type> array of dimension lda x n with lda>=max(1,n).

lda input leading dimension of two-dimensional array used to store
matrix A.

x device input <type> vector with n elements.

incx input stride between consecutive elements of x.

beta host or device input <type> scalar used for multiplication, if beta==0 then y does
not have to be a valid input.

y device in/out <type> vector with n elements.

incy input stride between consecutive elements of y.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters n<0 or incx,incy=0

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

ssymv, dsymv

http://www.netlib.org/blas/ssymv.f
http://www.netlib.org/blas/dsymv.f

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 44

2.5.9. cublas<t>syr()
cublasStatus_t cublasSsyr(cublasHandle_t handle, cublasFillMode_t uplo,
 int n, const float *alpha,
 const float *x, int incx, float
 *A, int lda)
cublasStatus_t cublasDsyr(cublasHandle_t handle, cublasFillMode_t uplo,
 int n, const double *alpha,
 const double *x, int incx, double
 *A, int lda)
cublasStatus_t cublasCsyr(cublasHandle_t handle, cublasFillMode_t uplo,
 int n, const cuComplex *alpha,
 const cuComplex *x, int incx, cuComplex
 *A, int lda)
cublasStatus_t cublasZsyr(cublasHandle_t handle, cublasFillMode_t uplo,
 int n, const cuDoubleComplex *alpha,
 const cuDoubleComplex *x, int incx, cuDoubleComplex
 *A, int lda)

This function performs the symmetric rank-1 update

where is a symmetric matrix stored in column-major format, is a vector, and
is a scalar.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

uplo input indicates if matrix A lower or upper part is stored, the other
symmetric part is not referenced and is inferred from the
stored elements.

n input number of rows and columns of matrix A.

alpha host or device input <type> scalar used for multiplication.

x device input <type> vector with n elements.

incx input stride between consecutive elements of x.

A device in/out <type> array of dimensions lda x n, with lda>=max(1,n).

lda input leading dimension of two-dimensional array used to store
matrix A.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters n<0 or incx=0

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 45

For references please refer to:

ssyr, dsyr

2.5.10. cublas<t>syr2()
cublasStatus_t cublasSsyr2(cublasHandle_t handle, cublasFillMode_t uplo, int n,
 const float *alpha, const float
 *x, int incx,
 const float *y, int incy, float
 *A, int lda
cublasStatus_t cublasDsyr2(cublasHandle_t handle, cublasFillMode_t uplo, int n,
 const double *alpha, const double
 *x, int incx,
 const double *y, int incy, double
 *A, int lda
cublasStatus_t cublasCsyr2(cublasHandle_t handle, cublasFillMode_t uplo, int n,
 const cuComplex *alpha, const cuComplex
 *x, int incx,
 const cuComplex *y, int incy, cuComplex
 *A, int lda
cublasStatus_t cublasZsyr2(cublasHandle_t handle, cublasFillMode_t uplo, int n,
 const cuDoubleComplex *alpha, const cuDoubleComplex
 *x, int incx,
 const cuDoubleComplex *y, int incy, cuDoubleComplex
 *A, int lda

This function performs the symmetric rank-2 update

where is a symmetric matrix stored in column-major format, and are vectors,
and is a scalar.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

uplo input indicates if matrix A lower or upper part is stored, the other
symmetric part is not referenced and is inferred from the
stored elements.

n input number of rows and columns of matrix A.

alpha host or device input <type> scalar used for multiplication.

x device input <type> vector with n elements.

incx input stride between consecutive elements of x.

y device input <type> vector with n elements.

incy input stride between consecutive elements of y.

A device in/out <type> array of dimensions lda x n, with lda>=max(1,n).

lda input leading dimension of two-dimensional array used to store
matrix A.

The possible error values returned by this function and their meanings are listed below.

http://www.netlib.org/blas/ssyr.f
http://www.netlib.org/blas/dsyr.f

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 46

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters n<0 or incx,incy=0

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

ssyr2, dsyr2

2.5.11. cublas<t>tbmv()
cublasStatus_t cublasStbmv(cublasHandle_t handle, cublasFillMode_t uplo,
 cublasOperation_t trans, cublasDiagType_t diag,
 int n, int k, const float *A, int lda,
 float *x, int incx)
cublasStatus_t cublasDtbmv(cublasHandle_t handle, cublasFillMode_t uplo,
 cublasOperation_t trans, cublasDiagType_t diag,
 int n, int k, const double *A, int lda,
 double *x, int incx)
cublasStatus_t cublasCtbmv(cublasHandle_t handle, cublasFillMode_t uplo,
 cublasOperation_t trans, cublasDiagType_t diag,
 int n, int k, const cuComplex *A, int lda,
 cuComplex *x, int incx)
cublasStatus_t cublasZtbmv(cublasHandle_t handle, cublasFillMode_t uplo,
 cublasOperation_t trans, cublasDiagType_t diag,
 int n, int k, const cuDoubleComplex *A, int lda,
 cuDoubleComplex *x, int incx)

This function performs the triangular banded matrix-vector multiplication

where is a triangular banded matrix, and is a vector. Also, for matrix

If uplo == CUBLAS_FILL_MODE_LOWER then the triangular banded matrix is
stored column by column, with the main diagonal of the matrix stored in row 1,
the first subdiagonal in row 2 (starting at first position), the second subdiagonal in
row 3 (starting at first position), etc. So that in general, the element is stored in
the memory location A(1+i-j,j) for and . Also, the
elements in the array A that do not conceptually correspond to the elements in the
banded matrix (the bottom right triangle) are not referenced.

If uplo == CUBLAS_FILL_MODE_UPPER then the triangular banded matrix is stored
column by column, with the main diagonal of the matrix stored in row k+1, the first
superdiagonal in row k (starting at second position), the second superdiagonal in row
k-1 (starting at third position), etc. So that in general, the element is stored in
the memory location A(1+k+i-j,j) for and . Also, the

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 47

elements in the array A that do not conceptually correspond to the elements in the
banded matrix (the top left triangle) are not referenced.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

uplo input indicates if matrix A lower or upper part is stored, the other part
is not referenced and is inferred from the stored elements.

trans input operation op(A) that is non- or (conj.) transpose.

diag input indicates if the elements on the main diagonal of matrix A are
unity and should not be accessed.

n input number of rows and columns of matrix A.

k input number of sub- and super-diagonals of matrix .

A device input <type> array of dimension lda x n, with lda>=k+1.

lda input leading dimension of two-dimensional array used to store matrix
A.

x device in/out <type> vector with n elements.

incx input stride between consecutive elements of x.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters n,k<0 or incx=0

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_ALLOC_FAILED the allocation of internal scratch memory failed

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

stbmv, dtbmv, ctbmv, ztbmv

http://www.netlib.org/blas/stbmv.f
http://www.netlib.org/blas/dtbmv.f
http://www.netlib.org/blas/ctbmv.f
http://www.netlib.org/blas/ztbmv.f

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 48

2.5.12. cublas<t>tbsv()
cublasStatus_t cublasStbsv(cublasHandle_t handle, cublasFillMode_t uplo,
 cublasOperation_t trans, cublasDiagType_t diag,
 int n, int k, const float *A, int lda,
 float *x, int incx)
cublasStatus_t cublasDtbsv(cublasHandle_t handle, cublasFillMode_t uplo,
 cublasOperation_t trans, cublasDiagType_t diag,
 int n, int k, const double *A, int lda,
 double *x, int incx)
cublasStatus_t cublasCtbsv(cublasHandle_t handle, cublasFillMode_t uplo,
 cublasOperation_t trans, cublasDiagType_t diag,
 int n, int k, const cuComplex *A, int lda,
 cuComplex *x, int incx)
cublasStatus_t cublasZtbsv(cublasHandle_t handle, cublasFillMode_t uplo,
 cublasOperation_t trans, cublasDiagType_t diag,
 int n, int k, const cuDoubleComplex *A, int lda,
 cuDoubleComplex *x, int incx)

This function solves the triangular banded linear system with a single right-hand-side

where is a triangular banded matrix, and and are vectors. Also, for matrix

The solution overwrites the right-hand-sides on exit.

No test for singularity or near-singularity is included in this function.

If uplo == CUBLAS_FILL_MODE_LOWER then the triangular banded matrix is
stored column by column, with the main diagonal of the matrix stored in row 1,
the first subdiagonal in row 2 (starting at first position), the second subdiagonal in
row 3 (starting at first position), etc. So that in general, the element is stored in
the memory location A(1+i-j,j) for and . Also, the
elements in the array A that do not conceptually correspond to the elements in the
banded matrix (the bottom right triangle) are not referenced.

If uplo == CUBLAS_FILL_MODE_UPPER then the triangular banded matrix is stored
column by column, with the main diagonal of the matrix stored in row k+1, the first
superdiagonal in row k (starting at second position), the second superdiagonal in row
k-1 (starting at third position), etc. So that in general, the element is stored in
the memory location A(1+k+i-j,j) for and . Also, the
elements in the array A that do not conceptually correspond to the elements in the
banded matrix (the top left triangle) are not referenced.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

uplo input indicates if matrix A lower or upper part is stored, the other part
is not referenced and is inferred from the stored elements.

trans input operation op(A) that is non- or (conj.) transpose.

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 49

Param. Memory In/out Meaning

diag input indicates if the elements on the main diagonal of matrix A are
unity and should not be accessed.

n input number of rows and columns of matrix A.

k input number of sub- and super-diagonals of matrix A.

A device input <type> array of dimension lda x n, with lda >= k+1.

lda input leading dimension of two-dimensional array used to store matrix
A.

x device in/out <type> vector with n elements.

incx input stride between consecutive elements of x.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters n,k<0 or incx=0

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

stbsv, dtbsv, ctbsv, ztbsv

2.5.13. cublas<t>tpmv()
cublasStatus_t cublasStpmv(cublasHandle_t handle, cublasFillMode_t uplo,
 cublasOperation_t trans, cublasDiagType_t diag,
 int n, const float *AP,
 float *x, int incx)
cublasStatus_t cublasDtpmv(cublasHandle_t handle, cublasFillMode_t uplo,
 cublasOperation_t trans, cublasDiagType_t diag,
 int n, const double *AP,
 double *x, int incx)
cublasStatus_t cublasCtpmv(cublasHandle_t handle, cublasFillMode_t uplo,
 cublasOperation_t trans, cublasDiagType_t diag,
 int n, const cuComplex *AP,
 cuComplex *x, int incx)
cublasStatus_t cublasZtpmv(cublasHandle_t handle, cublasFillMode_t uplo,
 cublasOperation_t trans, cublasDiagType_t diag,
 int n, const cuDoubleComplex *AP,
 cuDoubleComplex *x, int incx)

This function performs the triangular packed matrix-vector multiplication

where is a triangular matrix stored in packed format, and is a vector. Also, for
matrix

http://www.netlib.org/blas/stbsv.f
http://www.netlib.org/blas/dtbsv.f
http://www.netlib.org/blas/ctbsv.f
http://www.netlib.org/blas/ztbsv.f

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 50

If uplo == CUBLAS_FILL_MODE_LOWER then the elements in the lower triangular part
of the triangular matrix are packed together column by column without gaps, so
that the element is stored in the memory location AP[i+((2*n-j+1)*j)/2] for

 and . Consequently, the packed format requires only elements
for storage.

If uplo == CUBLAS_FILL_MODE_UPPER then the elements in the upper triangular part
of the triangular matrix are packed together column by column without gaps, so that
the element is stored in the memory location AP[i+(j*(j+1))/2] for and

 . Consequently, the packed format requires only elements for storage.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

uplo input indicates if matrix A lower or upper part is stored, the other part
is not referenced and is inferred from the stored elements.

trans input operation op(A) that is non- or (conj.) transpose.

diag input indicates if the elements on the main diagonal of matrix A are
unity and should not be accessed.

n input number of rows and columns of matrix A.

AP device input <type> array with stored in packed format.

x device in/out <type> vector with n elements.

incx input stride between consecutive elements of x.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters $n<0 or incx=0

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_ALLOC_FAILED the allocation of internal scratch memory failed

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

stpmv, dtpmv, ctpmv, ztpmv

http://www.netlib.org/blas/stpmv.f
http://www.netlib.org/blas/dtpmv.f
http://www.netlib.org/blas/ctpmv.f
http://www.netlib.org/blas/ztpmv.f

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 51

2.5.14. cublas<t>tpsv()
cublasStatus_t cublasStpsv(cublasHandle_t handle, cublasFillMode_t uplo,
 cublasOperation_t trans, cublasDiagType_t diag,
 int n, const float *AP,
 float *x, int incx)
cublasStatus_t cublasDtpsv(cublasHandle_t handle, cublasFillMode_t uplo,
 cublasOperation_t trans, cublasDiagType_t diag,
 int n, const double *AP,
 double *x, int incx)
cublasStatus_t cublasCtpsv(cublasHandle_t handle, cublasFillMode_t uplo,
 cublasOperation_t trans, cublasDiagType_t diag,
 int n, const cuComplex *AP,
 cuComplex *x, int incx)
cublasStatus_t cublasZtpsv(cublasHandle_t handle, cublasFillMode_t uplo,
 cublasOperation_t trans, cublasDiagType_t diag,
 int n, const cuDoubleComplex *AP,
 cuDoubleComplex *x, int incx)

This function solves the packed triangular linear system with a single right-hand-side

where is a triangular matrix stored in packed format, and and are vectors. Also,
for matrix

The solution overwrites the right-hand-sides on exit.

No test for singularity or near-singularity is included in this function.

If uplo == CUBLAS_FILL_MODE_LOWER then the elements in the lower triangular part
of the triangular matrix are packed together column by column without gaps, so
that the element is stored in the memory location AP[i+((2*n-j+1)*j)/2] for

 and . Consequently, the packed format requires only elements
for storage.

If uplo == CUBLAS_FILL_MODE_UPPER then the elements in the upper triangular part
of the triangular matrix are packed together column by column without gaps, so that
the element is stored in the memory location AP[i+(j*(j+1))/2] for

and . Consequently, the packed format requires only elements for storage.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

uplo input indicates if matrix A lower or upper part is stored, the other part
is not referenced and is inferred from the stored elements.

trans input operation op(A) that is non- or (conj.) transpose.

diag input indicates if the elements on the main diagonal of matrix are
unity and should not be accessed.

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 52

Param. Memory In/out Meaning

n input number of rows and columns of matrix A.

AP device input <type> array with A stored in packed format.

x device in/out <type> vector with n elements.

incx input stride between consecutive elements of x.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters n<0 or incx=0

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

stpsv, dtpsv, ctpsv, ztpsv

2.5.15. cublas<t>trmv()
cublasStatus_t cublasStrmv(cublasHandle_t handle, cublasFillMode_t uplo,
 cublasOperation_t trans, cublasDiagType_t diag,
 int n, const float *A, int lda,
 float *x, int incx)
cublasStatus_t cublasDtrmv(cublasHandle_t handle, cublasFillMode_t uplo,
 cublasOperation_t trans, cublasDiagType_t diag,
 int n, const double *A, int lda,
 double *x, int incx)
cublasStatus_t cublasCtrmv(cublasHandle_t handle, cublasFillMode_t uplo,
 cublasOperation_t trans, cublasDiagType_t diag,
 int n, const cuComplex *A, int lda,
 cuComplex *x, int incx)
cublasStatus_t cublasZtrmv(cublasHandle_t handle, cublasFillMode_t uplo,
 cublasOperation_t trans, cublasDiagType_t diag,
 int n, const cuDoubleComplex *A, int lda,
 cuDoubleComplex *x, int incx)

This function performs the triangular matrix-vector multiplication

where is a triangular matrix stored in lower or upper mode with or without the main
diagonal, and is a vector. Also, for matrix

http://www.netlib.org/blas/stpsv.f
http://www.netlib.org/blas/dtpsv.f
http://www.netlib.org/blas/ctpsv.f
http://www.netlib.org/blas/ztpsv.f

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 53

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

uplo input indicates if matrix A lower or upper part is stored, the other part
is not referenced and is inferred from the stored elements.

trans input operation op(A) that is non- or (conj.) transpose.

diag input indicates if the elements on the main diagonal of matrix A are
unity and should not be accessed.

n input number of rows and columns of matrix A.

A device input <type> array of dimensions lda x n , with lda>=max(1,n).

lda input leading dimension of two-dimensional array used to store matrix
A.

x device in/out <type> vector with n elements.

incx input stride between consecutive elements of x.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters n<0 or incx=0

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_ALLOC_FAILED the allocation of internal scratch memory failed

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

strmv, dtrmv, ctrmv, ztrmv

2.5.16. cublas<t>trsv()
cublasStatus_t cublasStrsv(cublasHandle_t handle, cublasFillMode_t uplo,
 cublasOperation_t trans, cublasDiagType_t diag,
 int n, const float *A, int lda,
 float *x, int incx)
cublasStatus_t cublasDtrsv(cublasHandle_t handle, cublasFillMode_t uplo,
 cublasOperation_t trans, cublasDiagType_t diag,
 int n, const double *A, int lda,
 double *x, int incx)
cublasStatus_t cublasCtrsv(cublasHandle_t handle, cublasFillMode_t uplo,
 cublasOperation_t trans, cublasDiagType_t diag,
 int n, const cuComplex *A, int lda,
 cuComplex *x, int incx)
cublasStatus_t cublasZtrsv(cublasHandle_t handle, cublasFillMode_t uplo,
 cublasOperation_t trans, cublasDiagType_t diag,
 int n, const cuDoubleComplex *A, int lda,
 cuDoubleComplex *x, int incx)

http://www.netlib.org/blas/strmv.f
http://www.netlib.org/blas/dtrmv.f
http://www.netlib.org/blas/ctrmv.f
http://www.netlib.org/blas/ztrmv.f

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 54

This function solves the triangular linear system with a single right-hand-side

where is a triangular matrix stored in lower or upper mode with or without the main
diagonal, and and are vectors. Also, for matrix

The solution overwrites the right-hand-sides on exit.

No test for singularity or near-singularity is included in this function.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

uplo input indicates if matrix A lower or upper part is stored, the other part
is not referenced and is inferred from the stored elements.

trans input operation op(A) that is non- or (conj.) transpose.

diag input indicates if the elements on the main diagonal of matrix A are
unity and should not be accessed.

n input number of rows and columns of matrix A.

A device input <type> array of dimension lda x n, with lda>=max(1,n).

lda input leading dimension of two-dimensional array used to store matrix
A.

x device in/out <type> vector with n elements.

incx input stride between consecutive elements of x.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters n<0 or incx=0

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

strsv, dtrsv, ctrsv, ztrsv

http://www.netlib.org/blas/strsv.f
http://www.netlib.org/blas/dtrsv.f
http://www.netlib.org/blas/ctrsv.f
http://www.netlib.org/blas/ztrsv.f

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 55

2.5.17. cublas<t>hemv()
cublasStatus_t cublasChemv(cublasHandle_t handle, cublasFillMode_t uplo,
 int n, const cuComplex *alpha,
 const cuComplex *A, int lda,
 const cuComplex *x, int incx,
 const cuComplex *beta,
 cuComplex *y, int incy)
cublasStatus_t cublasZhemv(cublasHandle_t handle, cublasFillMode_t uplo,
 int n, const cuDoubleComplex *alpha,
 const cuDoubleComplex *A, int lda,
 const cuDoubleComplex *x, int incx,
 const cuDoubleComplex *beta,
 cuDoubleComplex *y, int incy)

This function performs the Hermitian matrix-vector multiplication

where is a Hermitian matrix stored in lower or upper mode, and are vectors,
and and are scalars.

This function has an alternate faster implementation using atomics that can be enabled
with

Please see the section on the for more details about the usage of atomics

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

uplo input indicates if matrix A lower or upper part is stored, the other
Hermitian part is not referenced and is inferred from the
stored elements.

n input number of rows and columns of matrix A.

alpha host or device input <type> scalar used for multiplication.

A device input <type> array of dimension lda x n, with lda>=max(1,n).
The imaginary parts of the diagonal elements are assumed to
be zero.

lda input leading dimension of two-dimensional array used to store
matrix A.

x device input <type> vector with n elements.

incx input stride between consecutive elements of x.

beta host or device input <type> scalar used for multiplication, if beta==0 then y does
not have to be a valid input.

y device in/out <type> vector with n elements.

incy input stride between consecutive elements of y.

The possible error values returned by this function and their meanings are listed below.

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 56

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters n<0 or incx,incy=0

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

chemv, zhemv

2.5.18. cublas<t>hbmv()
cublasStatus_t cublasChbmv(cublasHandle_t handle, cublasFillMode_t uplo,
 int n, int k, const cuComplex *alpha,
 const cuComplex *A, int lda,
 const cuComplex *x, int incx,
 const cuComplex *beta,
 cuComplex *y, int incy)
cublasStatus_t cublasZhbmv(cublasHandle_t handle, cublasFillMode_t uplo,
 int n, int k, const cuDoubleComplex *alpha,
 const cuDoubleComplex *A, int lda,
 const cuDoubleComplex *x, int incx,
 const cuDoubleComplex *beta,
 cuDoubleComplex *y, int incy)

This function performs the Hermitian banded matrix-vector multiplication

where is a Hermitian banded matrix with subdiagonals and superdiagonals,
and are vectors, and and are scalars.

If uplo == CUBLAS_FILL_MODE_LOWER then the Hermitian banded matrix is
stored column by column, with the main diagonal of the matrix stored in row 1,
the first subdiagonal in row 2 (starting at first position), the second subdiagonal in
row 3 (starting at first position), etc. So that in general, the element is stored in
the memory location A(1+i-j,j) for and . Also, the
elements in the array A that do not conceptually correspond to the elements in the
banded matrix (the bottom right triangle) are not referenced.

If uplo == CUBLAS_FILL_MODE_UPPER then the Hermitian banded matrix is stored
column by column, with the main diagonal of the matrix stored in row k+1, the first
superdiagonal in row k (starting at second position), the second superdiagonal in row
k-1 (starting at third position), etc. So that in general, the element is stored in
the memory location A(1+k+i-j,j) for and . Also,
the elements in the array A that do not conceptually correspond to the elements in the
banded matrix (the top left triangle) are not referenced.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

http://www.netlib.org/blas/chemv.f
http://www.netlib.org/blas/zhemv.f

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 57

Param. Memory In/out Meaning

uplo input indicates if matrix A lower or upper part is stored, the other
Hermitian part is not referenced and is inferred from the
stored elements.

n input number of rows and columns of matrix A.

k input number of sub- and super-diagonals of matrix A.

alpha host or device input <type> scalar used for multiplication.

A device input <type> array of dimensions lda x n, with lda>=k+1. The
imaginary parts of the diagonal elements are assumed to be
zero.

lda input leading dimension of two-dimensional array used to store
matrix A.

x device input <type> vector with n elements.

incx input stride between consecutive elements of x.

beta host or device input <type> scalar used for multiplication, if beta==0 then does
not have to be a valid input.

y device in/out <type> vector with n elements.

incy input stride between consecutive elements of y.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters n,k<0 or incx,incy=0

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

chbmv, zhbmv

http://www.netlib.org/blas/chbmv.f
http://www.netlib.org/blas/zhbmv.f

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 58

2.5.19. cublas<t>hpmv()
cublasStatus_t cublasChpmv(cublasHandle_t handle, cublasFillMode_t uplo,
 int n, const cuComplex *alpha,
 const cuComplex *AP,
 const cuComplex *x, int incx,
 const cuComplex *beta,
 cuComplex *y, int incy)
cublasStatus_t cublasZhpmv(cublasHandle_t handle, cublasFillMode_t uplo,
 int n, const cuDoubleComplex *alpha,
 const cuDoubleComplex *AP,
 const cuDoubleComplex *x, int incx,
 const cuDoubleComplex *beta,
 cuDoubleComplex *y, int incy)

This function performs the Hermitian packed matrix-vector multiplication

where is a Hermitian matrix stored in packed format, and are vectors, and
and are scalars.

If uplo == CUBLAS_FILL_MODE_LOWER then the elements in the lower triangular part
of the Hermitian matrix are packed together column by column without gaps, so
that the element is stored in the memory location AP[i+((2*n-j+1)*j)/2] for

 and . Consequently, the packed format requires only elements
for storage.

If uplo == CUBLAS_FILL_MODE_UPPER then the elements in the upper triangular part
of the Hermitian matrix are packed together column by column without gaps, so that
the element is stored in the memory location AP[i+(j*(j+1))/2] for

and . Consequently, the packed format requires only elements for storage.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

uplo input indicates if matrix A lower or upper part is stored, the other
Hermitian part is not referenced and is inferred from the
stored elements.

n input number of rows and columns of matrix A.

alpha host or device input <type> scalar used for multiplication.

AP device input <type> array with A stored in packed format. The imaginary
parts of the diagonal elements are assumed to be zero.

x device input <type> vector with n elements.

incx input stride between consecutive elements of x.

beta host or device input <type> scalar used for multiplication, if beta==0 then y
does not have to be a valid input.

y device in/out <type> vector with n elements.

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 59

Param. Memory In/out Meaning

incy input stride between consecutive elements of y.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters n<0 or incx,incy=0

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

chpmv, zhpmv

2.5.20. cublas<t>her()
cublasStatus_t cublasCher(cublasHandle_t handle, cublasFillMode_t uplo,
 int n, const float *alpha,
 const cuComplex *x, int incx,
 cuComplex *A, int lda)
cublasStatus_t cublasZher(cublasHandle_t handle, cublasFillMode_t uplo,
 int n, const double *alpha,
 const cuDoubleComplex *x, int incx,
 cuDoubleComplex *A, int lda)

This function performs the Hermitian rank-1 update

where is a Hermitian matrix stored in column-major format, is a vector, and
is a scalar.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

uplo input indicates if matrix A lower or upper part is stored, the other
Hermitian part is not referenced and is inferred from the
stored elements.

n input number of rows and columns of matrix A.

alpha host or device input <type> scalar used for multiplication.

x device input <type> vector with n elements.

incx input stride between consecutive elements of x.

A device in/out <type> array of dimensions lda x n, with lda>=max(1,n).
The imaginary parts of the diagonal elements are assumed
and set to zero.

http://www.netlib.org/blas/chpmv.f
http://www.netlib.org/blas/zhpmv.f

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 60

Param. Memory In/out Meaning

lda input leading dimension of two-dimensional array used to store
matrix A.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters n<0 or incx=0

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

cher, zher

2.5.21. cublas<t>her2()
cublasStatus_t cublasCher2(cublasHandle_t handle, cublasFillMode_t uplo,
 int n, const cuComplex *alpha,
 const cuComplex *x, int incx,
 const cuComplex *y, int incy,
 cuComplex *A, int lda)
cublasStatus_t cublasZher2(cublasHandle_t handle, cublasFillMode_t uplo,
 int n, const cuDoubleComplex *alpha,
 const cuDoubleComplex *x, int incx,
 const cuDoubleComplex *y, int incy,
 cuDoubleComplex *A, int lda)

This function performs the Hermitian rank-2 update

where is a Hermitian matrix stored in column-major format, and are vectors,
and is a scalar.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

uplo input indicates if matrix A lower or upper part is stored, the other
Hermitian part is not referenced and is inferred from the
stored elements.

n input number of rows and columns of matrix A.

alpha host or device input <type> scalar used for multiplication.

x device input <type> vector with n elements.

incx input stride between consecutive elements of x.

y device input <type> vector with n elements.

http://www.netlib.org/blas/cher.f
http://www.netlib.org/blas/zher.f

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 61

Param. Memory In/out Meaning

incy input stride between consecutive elements of y.

A device in/out <type> array of dimension lda x n with lda>=max(1,n).
The imaginary parts of the diagonal elements are assumed
and set to zero.

lda input leading dimension of two-dimensional array used to store
matrix A.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters n<0 or incx,incy=0

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

cher2, zher2

2.5.22. cublas<t>hpr()
cublasStatus_t cublasChpr(cublasHandle_t handle, cublasFillMode_t uplo,
 int n, const float *alpha,
 const cuComplex *x, int incx,
 cuComplex *AP)
cublasStatus_t cublasZhpr(cublasHandle_t handle, cublasFillMode_t uplo,
 int n, const double *alpha,
 const cuDoubleComplex *x, int incx,
 cuDoubleComplex *AP)

This function performs the packed Hermitian rank-1 update

where is a Hermitian matrix stored in packed format, is a vector, and is a
scalar.

If uplo == CULBAS_FILL_MODE_LOWER then the elements in the lower triangular part
of the Hermitian matrix are packed together column by column without gaps, so
that the element is stored in the memory location AP[i+((2*n-j+1)*j)/2] for

 and . Consequently, the packed format requires only elements
for storage.

If uplo == CULBAS_FILL_MODE_UPPER then the elements in the upper triangular part
of the Hermitian matrix are packed together column by column without gaps, so that

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 62

the element is stored in the memory location AP[i+(j*(j+1))/2] for

and . Consequently, the packed format requires only elements for storage.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

uplo input indicates if matrix A lower or upper part is stored, the other
Hermitian part is not referenced and is inferred from the
stored elements.

n input number of rows and columns of matrix A.

alpha host or device input <type> scalar used for multiplication.

x device input <type> vector with n elements.

incx input stride between consecutive elements of x.

AP device in/out <type> array with A stored in packed format. The imaginary
parts of the diagonal elements are assumed and set to zero.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters n<0 or incx=0

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

chpr, zhpr

2.5.23. cublas<t>hpr2()
cublasStatus_t cublasChpr2(cublasHandle_t handle, cublasFillMode_t uplo,
 int n, const cuComplex *alpha,
 const cuComplex *x, int incx,
 const cuComplex *y, int incy,
 cuComplex *AP)
cublasStatus_t cublasZhpr2(cublasHandle_t handle, cublasFillMode_t uplo,
 int n, const cuDoubleComplex *alpha,
 const cuDoubleComplex *x, int incx,
 const cuDoubleComplex *y, int incy,
 cuDoubleComplex *AP)

This function performs the packed Hermitian rank-2 update

where is a Hermitian matrix stored in packed format, and are vectors, and
is a scalar.

http://www.netlib.org/blas/chpr.f
http://www.netlib.org/blas/zhpr.f

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 63

If uplo == CULBAS_FILL_MODE_LOWER then the elements in the lower triangular part
of the Hermitian matrix are packed together column by column without gaps, so
that the element is stored in the memory location AP[i+((2*n-j+1)*j)/2] for

 and . Consequently, the packed format requires only elements
for storage.

If uplo == CULBAS_FILL_MODE_UPPER then the elements in the upper triangular part
of the Hermitian matrix are packed together column by column without gaps, so that
the element is stored in the memory location AP[i+(j*(j+1))/2] for

and . Consequently, the packed format requires only elements for storage.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

uplo input indicates if matrix A lower or upper part is stored, the other
Hermitian part is not referenced and is inferred from the
stored elements.

n input number of rows and columns of matrix A.

alpha host or device input <type> scalar used for multiplication.

x device input <type> vector with n elements.

incx input stride between consecutive elements of x.

y device input <type> vector with n elements.

incy input stride between consecutive elements of y.

AP device in/out <type> array with A stored in packed format. The imaginary
parts of the diagonal elements are assumed and set to zero.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters n<0 or incx,incy=0

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

chpr2, zhpr2

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 64

2.6. cuBLAS Level-3 Function Reference
In this chapter we describe the Level-3 Basic Linear Algebra Subprograms (BLAS3)
functions that perform matrix-matrix operations.

2.6.1. cublas<t>gemm()
cublasStatus_t cublasSgemm(cublasHandle_t handle,
 cublasOperation_t transa, cublasOperation_t transb,
 int m, int n, int k,
 const float *alpha,
 const float *A, int lda,
 const float *B, int ldb,
 const float *beta,
 float *C, int ldc)
cublasStatus_t cublasDgemm(cublasHandle_t handle,
 cublasOperation_t transa, cublasOperation_t transb,
 int m, int n, int k,
 const double *alpha,
 const double *A, int lda,
 const double *B, int ldb,
 const double *beta,
 double *C, int ldc)
cublasStatus_t cublasCgemm(cublasHandle_t handle,
 cublasOperation_t transa, cublasOperation_t transb,
 int m, int n, int k,
 const cuComplex *alpha,
 const cuComplex *A, int lda,
 const cuComplex *B, int ldb,
 const cuComplex *beta,
 cuComplex *C, int ldc)
cublasStatus_t cublasZgemm(cublasHandle_t handle,
 cublasOperation_t transa, cublasOperation_t transb,
 int m, int n, int k,
 const cuDoubleComplex *alpha,
 const cuDoubleComplex *A, int lda,
 const cuDoubleComplex *B, int ldb,
 const cuDoubleComplex *beta,
 cuDoubleComplex *C, int ldc)

This function performs the matrix-matrix multiplication

where and are scalars, and , and are matrices stored in column-major format
with dimensions , and , respectively. Also, for matrix

and is defined similarly for matrix .

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

transa input operation op(A) that is non- or (conj.) transpose.

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 65

Param. Memory In/out Meaning

transb input operation op(B) that is non- or (conj.) transpose.

m input number of rows of matrix op(A) and C.

n input number of columns of matrix op(B) and C.

k input number of columns of op(A) and rows of op(B).

alpha host or device input <type> scalar used for multiplication.

A device input <type> array of dimensions lda x k with lda>=max(1,m) if
transa == CUBLAS_OP_N and lda x m with lda>=max(1,k)
otherwise.

lda input leading dimension of two-dimensional array used to store the
matrix A.

B device input <type> array of dimension ldb x n with ldb>=max(1,k) if
transa == CUBLAS_OP_N and ldb x k with ldb>=max(1,n)
otherwise.

ldb input leading dimension of two-dimensional array used to store
matrix B.

beta host or device input <type> scalar used for multiplication. If beta==0, C does not
have to be a valid input.

C device in/out <type> array of dimensions ldc x n with ldc>=max(1,m).

ldc input leading dimension of a two-dimensional array used to store
the matrix C.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters m,n,k<0

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

sgemm, dgemm, cgemm, zgemm

http://www.netlib.org/blas/sgemm.f
http://www.netlib.org/blas/dgemm.f
http://www.netlib.org/blas/cgemm.f
http://www.netlib.org/blas/zgemm.f

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 66

2.6.2. cublas<t>gemmBatched()
cublasStatus_t cublasSgemmBatched(cublasHandle_t handle,
 cublasOperation_t transa, cublasOperation_t
 transb,
 int m, int n, int k,
 const float *alpha,
 const float *Aarray[], int lda,
 const float *Barray[], int ldb,
 const float *beta,
 float *Carray[], int ldc, int
 batchCount)
cublasStatus_t cublasDgemmBatched(cublasHandle_t handle,
 cublasOperation_t transa, cublasOperation_t
 transb,
 int m, int n, int k,
 const double *alpha,
 const double *Aarray[], int lda,
 const double *Barray[], int ldb,
 const double *beta,
 double *Carray[], int ldc, int
 batchCount)
cublasStatus_t cublasCgemmBatched(cublasHandle_t handle,
 cublasOperation_t transa, cublasOperation_t
 transb,
 int m, int n, int k,
 const cuComplex *alpha,
 const cuComplex *Aarray[], int lda,
 const cuComplex *Barray[], int ldb,
 const cuComplex *beta,
 cuComplex *Carray[], int ldc, int
 batchCount)
cublasStatus_t cublasZgemmBatched(cublasHandle_t handle,
 cublasOperation_t transa, cublasOperation_t
 transb,
 int m, int n, int k,
 const cuDoubleComplex *alpha,
 const cuDoubleComplex *Aarray[], int lda,
 const cuDoubleComplex *Barray[], int ldb,
 const cuDoubleComplex *beta,
 cuDoubleComplex *Carray[], int ldc, int
 batchCount)

This function performs the matrix-matrix multiplications of an array of matrices.

where and are scalars, and , and are arrays of pointers to matrices stored
in column-major format with dimensions , and ,
respectively. Also, for matrix

and is defined similarly for matrix .

This function is intended to be used for matrices of small sizes where the launch
overhead is a significant factor. For small sizes, typically smaller than 100x100,
this function improves significantly performance compared to making calls to its
corresponding cublas<t>gemm routine. However, on GPU architectures that support

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 67

concurrent kernels, it might be advantageous to make multiple calls to cublas<t>gemm
into different streams as the matrix sizes increase.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

transa input operation op(A[i]) that is non- or (conj.) transpose.

transb input operation op(B[i]) that is non- or (conj.) transpose.

m input number of rows of matrix op(A[i]) and C[i].

n input number of columns of op(B[i]) and C[i].

k input number of columns of op(A[i]) and rows of op(B[i]).

alpha host or device input <type> scalar used for multiplication.

Aarray device input array of pointers to <type> array, with each array of dim.
lda x k with lda>=max(1,m) if transa==CUBLAS_OP_N
and lda x m with lda>=max(1,k) otherwise.

lda input leading dimension of two-dimensional array used to store
each matrix A[i].

Barray device input array of pointers to <type> array, with each array of dim.
ldb x n with ldb>=max(1,k) if transa==CUBLAS_OP_N
and ldb x k with ldb>=max(1,n) max(1,) otherwise.

ldb input leading dimension of two-dimensional array used to store
each matrix B[i].

beta host or device input <type> scalar used for multiplication. If beta == 0, C
does not have to be a valid input.

Carray device in/out array of pointers to <type> array. It has dimensions ldc x
n with ldc>=max(1,m).

ldc input leading dimension of two-dimensional array used to store
each matrix C[i].

batchCount input number of pointers contained in Aarray, Barray and Carray.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters m,n,k,batchCount<0

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 68

2.6.3. cublas<t>symm()
cublasStatus_t cublasSsymm(cublasHandle_t handle,
 cublasSideMode_t side, cublasFillMode_t uplo,
 int m, int n,
 const float *alpha,
 const float *A, int lda,
 const float *B, int ldb,
 const float *beta,
 float *C, int ldc)
cublasStatus_t cublasDsymm(cublasHandle_t handle,
 cublasSideMode_t side, cublasFillMode_t uplo,
 int m, int n,
 const double *alpha,
 const double *A, int lda,
 const double *B, int ldb,
 const double *beta,
 double *C, int ldc)
cublasStatus_t cublasCsymm(cublasHandle_t handle,
 cublasSideMode_t side, cublasFillMode_t uplo,
 int m, int n,
 const cuComplex *alpha,
 const cuComplex *A, int lda,
 const cuComplex *B, int ldb,
 const cuComplex *beta,
 cuComplex *C, int ldc)
cublasStatus_t cublasZsymm(cublasHandle_t handle,
 cublasSideMode_t side, cublasFillMode_t uplo,
 int m, int n,
 const cuDoubleComplex *alpha,
 const cuDoubleComplex *A, int lda,
 const cuDoubleComplex *B, int ldb,
 const cuDoubleComplex *beta,
 cuDoubleComplex *C, int ldc)

This function performs the symmetric matrix-matrix multiplication

where is a symmetric matrix stored in lower or upper mode, and are
matrices, and and are scalars.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

side input indicates if matrix A is on the left or right of B.

uplo input indicates if matrix A lower or upper part is stored, the other
symmetric part is not referenced and is inferred from the
stored elements.

m input number of rows of matrix C and B, with matrix A sized
accordingly.

n input number of columns of matrix C and B, with matrix A sized
accordingly.

alpha host or device input <type> scalar used for multiplication.

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 69

Param. Memory In/out Meaning

A device input <type> array of dimension lda x m with lda>=max(1,m)
if side == CUBLAS_SIDE_LEFT and lda x n with
lda>=max(1,n) otherwise.

lda input leading dimension of two-dimensional array used to store
matrix A.

B device input <type> array of dimension ldb x n with ldb>=max(1,m).

ldb input leading dimension of two-dimensional array used to store
matrix B.

beta host or device input <type> scalar used for multiplication, if beta == 0 then C
does not have to be a valid input.

C device in/out <type> array of dimension ldc x n with ldc>=max(1,m).

ldc input leading dimension of two-dimensional array used to store
matrix C.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters m,n<0

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

ssymm, dsymm, csymm, zsymm

http://www.netlib.org/blas/ssymm.f
http://www.netlib.org/blas/dsymm.f
http://www.netlib.org/blas/csymm.f
http://www.netlib.org/blas/zsymm.f

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 70

2.6.4. cublas<t>syrk()
cublasStatus_t cublasSsyrk(cublasHandle_t handle,
 cublasFillMode_t uplo, cublasOperation_t trans,
 int n, int k,
 const float *alpha,
 const float *A, int lda,
 const float *beta,
 float *C, int ldc)
cublasStatus_t cublasDsyrk(cublasHandle_t handle,
 cublasFillMode_t uplo, cublasOperation_t trans,
 int n, int k,
 const double *alpha,
 const double *A, int lda,
 const double *beta,
 double *C, int ldc)
cublasStatus_t cublasCsyrk(cublasHandle_t handle,
 cublasFillMode_t uplo, cublasOperation_t trans,
 int n, int k,
 const cuComplex *alpha,
 const cuComplex *A, int lda,
 const cuComplex *beta,
 cuComplex *C, int ldc)
cublasStatus_t cublasZsyrk(cublasHandle_t handle,
 cublasFillMode_t uplo, cublasOperation_t trans,
 int n, int k,
 const cuDoubleComplex *alpha,
 const cuDoubleComplex *A, int lda,
 const cuDoubleComplex *beta,
 cuDoubleComplex *C, int ldc)

This function performs the symmetric rank- update

where and are scalars, is a symmetric matrix stored in lower or upper mode, and
 is a matrix with dimensions . Also, for matrix

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

uplo input indicates if matrix C lower or upper part is stored, the other
symmetric part is not referenced and is inferred from the
stored elements.

trans input operation op(A) that is non- or transpose.

n input number of rows of matrix op(A) and C.

k input number of columns of matrix op(A).

alpha host or device input <type> scalar used for multiplication.

A device input <type> array of dimension lda x k with lda>=max(1,n) if
trans == CUBLAS_OP_N and lda x n with lda>=max(1,k)
otherwise.

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 71

Param. Memory In/out Meaning

lda input leading dimension of two-dimensional array used to store
matrix A.

beta host or device input <type> scalar used for multiplication, if beta==0 then C does
not have to be a valid input.

C device in/out <type> array of dimension ldc x n, with ldc>=max(1,n).

ldc input leading dimension of two-dimensional array used to store
matrix C.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters n,k<0

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

ssyrk, dsyrk, csyrk, zsyrk

http://www.netlib.org/blas/ssyrk.f
http://www.netlib.org/blas/dsyrk.f
http://www.netlib.org/blas/csyrk.f
http://www.netlib.org/blas/zsyrk.f

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 72

2.6.5. cublas<t>syr2k()
cublasStatus_t cublasSsyr2k(cublasHandle_t handle,
 cublasFillMode_t uplo, cublasOperation_t trans,
 int n, int k,
 const float *alpha,
 const float *A, int lda,
 const float *B, int ldb,
 const float *beta,
 float *C, int ldc)
cublasStatus_t cublasDsyr2k(cublasHandle_t handle,
 cublasFillMode_t uplo, cublasOperation_t trans,
 int n, int k,
 const double *alpha,
 const double *A, int lda,
 const double *B, int ldb,
 const double *beta,
 double *C, int ldc)
cublasStatus_t cublasCsyr2k(cublasHandle_t handle,
 cublasFillMode_t uplo, cublasOperation_t trans,
 int n, int k,
 const cuComplex *alpha,
 const cuComplex *A, int lda,
 const cuComplex *B, int ldb,
 const cuComplex *beta,
 cuComplex *C, int ldc)
cublasStatus_t cublasZsyr2k(cublasHandle_t handle,
 cublasFillMode_t uplo, cublasOperation_t trans,
 int n, int k,
 const cuDoubleComplex *alpha,
 const cuDoubleComplex *A, int lda,
 const cuDoubleComplex *B, int ldb,
 const cuDoubleComplex *beta,
 cuDoubleComplex *C, int ldc)

This function performs the symmetric rank- update

where and are scalars, is a symmetric matrix stored in lower or upper mode, and
 and are matrices with dimensions and , respectively. Also,

for matrix and

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

uplo input indicates if matrix C lower or upper part, is stored, the other
symmetric part is not referenced and is inferred from the
stored elements.

trans input operation op(A) that is non- or transpose.

n input number of rows of matrix op(A), op(B) and C.

k input number of columns of matrix op(A) and op(B).

alpha host or device input <type> scalar used for multiplication.

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 73

Param. Memory In/out Meaning

A device input <type> array of dimension lda x k with lda>=max(1,n)
if transa == CUBLAS_OP_N and lda x n with
lda>=max(1,k) otherwise.

lda input leading dimension of two-dimensional array used to store
matrix A.

B device input <type> array of dimensions ldb x k with ldb>=max(1,n)
if transa == CUBLAS_OP_N and ldb x n with
ldb>=max(1,k) otherwise.

ldb input leading dimension of two-dimensional array used to store
matrix B.

beta host or device input <type> scalar used for multiplication, if beta==0, then C
does not have to be a valid input.

C device in/out <type> array of dimensions ldc x n with ldc>=max(1,n).

ldc input leading dimension of two-dimensional array used to store
matrix C.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters n,k<0

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

ssyr2k, dsyr2k, csyr2k, zsyr2k

http://www.netlib.org/blas/ssyr2k.f
http://www.netlib.org/blas/dsyr2k.f
http://www.netlib.org/blas/csyr2k.f
http://www.netlib.org/blas/zsyr2k.f

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 74

2.6.6. cublas<t>syrkx()

cublasStatus_t cublasSsyrkx(cublasHandle_t handle,
 cublasFillMode_t uplo, cublasOperation_t trans,
 int n, int k,
 const float *alpha,
 const float *A, int lda,
 const float *B, int ldb,
 const float *beta,
 float *C, int ldc)
cublasStatus_t cublasDsyrkx(cublasHandle_t handle,
 cublasFillMode_t uplo, cublasOperation_t trans,
 int n, int k,
 const double *alpha,
 const double *A, int lda,
 const double *B, int ldb,
 const double *beta,
 double *C, int ldc)
cublasStatus_t cublasCsyrkx(cublasHandle_t handle,
 cublasFillMode_t uplo, cublasOperation_t trans,
 int n, int k,
 const cuComplex *alpha,
 const cuComplex *A, int lda,
 const cuComplex *B, int ldb,
 const cuComplex *beta,
 cuComplex *C, int ldc)
cublasStatus_t cublasZsyrkx(cublasHandle_t handle,
 cublasFillMode_t uplo, cublasOperation_t trans,
 int n, int k,
 const cuDoubleComplex *alpha,
 const cuDoubleComplex *A, int lda,
 const cuDoubleComplex *B, int ldb,
 const cuDoubleComplex *beta,
 cuDoubleComplex *C, int ldc)

This function performs a variation of the symmetric rank- update

where and are scalars, is a symmetric matrix stored in lower or upper mode, and
 and are matrices with dimensions and , respectively. Also,

for matrix and

This routine can be used when B is in such way that the result is garanteed to be
symmetric. An usual example is when the matrix B is a scaled form of the matrix A :
this is equivalent to B being the product of the matrix A and a diagonal matrix. For an
efficient computation of the product of a regular matrix with a diagonal matrix, refer to
the routine cublas<t>dgmm.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

uplo input indicates if matrix C lower or upper part, is stored, the other
symmetric part is not referenced and is inferred from the
stored elements.

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 75

Param. Memory In/out Meaning

trans input operation op(A) that is non- or transpose.

n input number of rows of matrix op(A), op(B) and C.

k input number of columns of matrix op(A) and op(B).

alpha host or device input <type> scalar used for multiplication.

A device input <type> array of dimension lda x k with lda>=max(1,n)
if transa == CUBLAS_OP_N and lda x n with
lda>=max(1,k) otherwise.

lda input leading dimension of two-dimensional array used to store
matrix A.

B device input <type> array of dimensions ldb x k with ldb>=max(1,n)
if transa == CUBLAS_OP_N and ldb x n with
ldb>=max(1,k) otherwise.

ldb input leading dimension of two-dimensional array used to store
matrix B.

beta host or device input <type> scalar used for multiplication, if beta==0, then C
does not have to be a valid input.

C device in/out <type> array of dimensions ldc x n with ldc>=max(1,n).

ldc input leading dimension of two-dimensional array used to store
matrix C.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters n,k<0

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

ssyrk, dsyrk, csyrk, zsyrk and

ssyr2k, dsyr2k, csyr2k, zsyr2k

http://www.netlib.org/blas/ssyrk.f
http://www.netlib.org/blas/dsyrk.f
http://www.netlib.org/blas/csyrk.f
http://www.netlib.org/blas/zsyrk.f
http://www.netlib.org/blas/ssyr2k.f
http://www.netlib.org/blas/dsyr2k.f
http://www.netlib.org/blas/csyr2k.f
http://www.netlib.org/blas/zsyr2k.f

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 76

2.6.7. cublas<t>trmm()
cublasStatus_t cublasStrmm(cublasHandle_t handle,
 cublasSideMode_t side, cublasFillMode_t uplo,
 cublasOperation_t trans, cublasDiagType_t diag,
 int m, int n,
 const float *alpha,
 const float *A, int lda,
 const float *B, int ldb,
 float *C, int ldc)
cublasStatus_t cublasDtrmm(cublasHandle_t handle,
 cublasSideMode_t side, cublasFillMode_t uplo,
 cublasOperation_t trans, cublasDiagType_t diag,
 int m, int n,
 const double *alpha,
 const double *A, int lda,
 const double *B, int ldb,
 double *C, int ldc)
cublasStatus_t cublasCtrmm(cublasHandle_t handle,
 cublasSideMode_t side, cublasFillMode_t uplo,
 cublasOperation_t trans, cublasDiagType_t diag,
 int m, int n,
 const cuComplex *alpha,
 const cuComplex *A, int lda,
 const cuComplex *B, int ldb,
 cuComplex *C, int ldc)
cublasStatus_t cublasZtrmm(cublasHandle_t handle,
 cublasSideMode_t side, cublasFillMode_t uplo,
 cublasOperation_t trans, cublasDiagType_t diag,
 int m, int n,
 const cuDoubleComplex *alpha,
 const cuDoubleComplex *A, int lda,
 const cuDoubleComplex *B, int ldb,
 cuDoubleComplex *C, int ldc)

This function performs the triangular matrix-matrix multiplication

where is a triangular matrix stored in lower or upper mode with or without the main
diagonal, and are matrix, and is a scalar. Also, for matrix

Notice that in order to achieve better parallelism cuBLAS differs from the BLAS API
only for this routine. The BLAS API assumes an in-place implementation (with results
written back to B), while the cuBLAS API assumes an out-of-place implementation (with
results written into C). The application can obtain the in-place functionality of BLAS
in the cuBLAS API by passing the address of the matrix B in place of the matrix C. No
other overlapping in the input parameters is supported.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

side input indicates if matrix A is on the left or right of B.

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 77

Param. Memory In/out Meaning

uplo input indicates if matrix A lower or upper part is stored, the
other part is not referenced and is inferred from the stored
elements.

trans input operation op(A) that is non- or (conj.) transpose.

diag input indicates if the elements on the main diagonal of matrix A
are unity and should not be accessed.

m input number of rows of matrix B, with matrix A sized accordingly.

n input number of columns of matrix B, with matrix A sized
accordingly.

alpha host or device input <type> scalar used for multiplication, if alpha==0 then A is
not referenced and B does not have to be a valid input.

A device input <type> array of dimension lda x m with lda>=max(1,m)
if side == CUBLAS_SIDE_LEFT and lda x n with
lda>=max(1,n) otherwise.

lda input leading dimension of two-dimensional array used to store
matrix A.

B device input <type> array of dimension ldb x n with ldb>=max(1,m).

ldb input leading dimension of two-dimensional array used to store
matrix B.

C device in/out <type> array of dimension ldc x n with ldc>=max(1,m).

ldc input leading dimension of two-dimensional array used to store
matrix C.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters m,n<0

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

strmm, dtrmm, ctrmm, ztrmm

http://www.netlib.org/blas/strmm.f
http://www.netlib.org/blas/dtrmm.f
http://www.netlib.org/blas/ctrmm.f
http://www.netlib.org/blas/ztrmm.f

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 78

2.6.8. cublas<t>trsm()
cublasStatus_t cublasStrsm(cublasHandle_t handle,
 cublasSideMode_t side, cublasFillMode_t uplo,
 cublasOperation_t trans, cublasDiagType_t diag,
 int m, int n,
 const float *alpha,
 const float *A, int lda,
 float *B, int ldb)
cublasStatus_t cublasDtrsm(cublasHandle_t handle,
 cublasSideMode_t side, cublasFillMode_t uplo,
 cublasOperation_t trans, cublasDiagType_t diag,
 int m, int n,
 const double *alpha,
 const double *A, int lda,
 double *B, int ldb)
cublasStatus_t cublasCtrsm(cublasHandle_t handle,
 cublasSideMode_t side, cublasFillMode_t uplo,
 cublasOperation_t trans, cublasDiagType_t diag,
 int m, int n,
 const cuComplex *alpha,
 const cuComplex *A, int lda,
 cuComplex *B, int ldb)
cublasStatus_t cublasZtrsm(cublasHandle_t handle,
 cublasSideMode_t side, cublasFillMode_t uplo,
 cublasOperation_t trans, cublasDiagType_t diag,
 int m, int n,
 const cuDoubleComplex *alpha,
 const cuDoubleComplex *A, int lda,
 cuDoubleComplex *B, int ldb)

This function solves the triangular linear system with multiple right-hand-sides

where is a triangular matrix stored in lower or upper mode with or without the main
diagonal, and are matrices, and is a scalar. Also, for matrix

The solution overwrites the right-hand-sides on exit.

No test for singularity or near-singularity is included in this function.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

side input indicates if matrix A is on the left or right of X.

uplo input indicates if matrix A lower or upper part is stored, the
other part is not referenced and is inferred from the stored
elements.

trans input operation op(A) that is non- or (conj.) transpose.

diag input indicates if the elements on the main diagonal of matrix A
are unity and should not be accessed.

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 79

Param. Memory In/out Meaning

m input number of rows of matrix B, with matrix A sized accordingly.

n input number of columns of matrix B, with matrix A is sized
accordingly.

alpha host or device input <type> scalar used for multiplication, if alpha==0 then A is
not referenced and B does not have to be a valid input.

A device input <type> array of dimension lda x m with lda>=max(1,m)
if side == CUBLAS_SIDE_LEFT and lda x n with
lda>=max(1,n) otherwise.

lda input leading dimension of two-dimensional array used to store
matrix A.

B device in/out <type> array. It has dimensions ldb x n with
ldb>=max(1,m).

ldb input leading dimension of two-dimensional array used to store
matrix B.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters m,n<0

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

strsm, dtrsm, ctrsm, ztrsm

http://www.netlib.org/blas/strsm.f
http://www.netlib.org/blas/dtrsm.f
http://www.netlib.org/blas/ctrsm.f
http://www.netlib.org/blas/ztrsm.f

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 80

2.6.9. cublas<t>trsmBatched()
cublasStatus_t cublasStrsmBatched(cublasHandle_t handle,
 cublasSideMode_t side,
 cublasFillMode_t uplo,
 cublasOperation_t trans,
 cublasDiagType_t diag,
 int m,
 int n,
 const float *alpha,
 float *A[],
 int lda,
 float *B[],
 int ldb,
 int batchCount);
cublasStatus_t cublasDtrsmBatched(cublasHandle_t handle,
 cublasSideMode_t side,
 cublasFillMode_t uplo,
 cublasOperation_t trans,
 cublasDiagType_t diag,
 int m,
 int n,
 const double *alpha,
 double *A[],
 int lda,
 double *B[],
 int ldb,
 int batchCount);
cublasStatus_t cublasCtrsmBatched(cublasHandle_t handle,
 cublasSideMode_t side,
 cublasFillMode_t uplo,
 cublasOperation_t trans,
 cublasDiagType_t diag,
 int m,
 int n,
 const cuComplex *alpha,
 cuComplex *A[],
 int lda,
 cuComplex *B[],
 int ldb,
 int batchCount);
cublasStatus_t cublasZtrsmBatched(cublasHandle_t handle,
 cublasSideMode_t side,
 cublasFillMode_t uplo,
 cublasOperation_t trans,
 cublasDiagType_t diag,
 int m,
 int n,
 const cuDoubleComplex *alpha,
 cuDoubleComplex *A[],
 int lda,
 cuDoubleComplex *B[],
 int ldb,
 int batchCount);

This function solves an array of triangular linear systems with multiple right-hand-sides

where is a triangular matrix stored in lower or upper mode with or without the main
diagonal, and are matrices, and is a scalar. Also, for matrix

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 81

The solution overwrites the right-hand-sides on exit.

No test for singularity or near-singularity is included in this function.

This function works for any sizes but is intended to be used for matrices of small
sizes where the launch overhead is a significant factor. For bigger sizes, it might be
advantageous to call batchCount times the regular cublas<t>trsm within a set of
CUDA streams.

The current implementation is limited to devices with compute capability above or equal
2.0.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

side input indicates if matrix A[i] is on the left or right of X[i].

uplo input indicates if matrix A[i] lower or upper part is stored, the
other part is not referenced and is inferred from the stored
elements.

trans input operation op(A[i]) that is non- or (conj.) transpose.

diag input indicates if the elements on the main diagonal of matrix
A[i] are unity and should not be accessed.

m input number of rows of matrix B[i], with matrix A[i] sized
accordingly.

n input number of columns of matrix B[i], with matrix A[i] is sized
accordingly.

alpha host or device input <type> scalar used for multiplication, if alpha==0 then
A[i] is not referenced and B[i] does not have to be a valid
input.

A device input array of pointers to <type> array, with each array of dim.
lda x m with lda>=max(1,m) if transa==CUBLAS_OP_N
and lda x n with lda>=max(1,n) otherwise.

lda input leading dimension of two-dimensional array used to store
matrix A[i].

B device in/out array of pointers to <type> array, with each array of dim.
ldb x n with ldb>=max(1,m)

ldb input leading dimension of two-dimensional array used to store
matrix B[i].

batchCount input number of pointers contained in A and B.

The possible error values returned by this function and their meanings are listed below.

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 82

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters m,n<0.

CUBLAS_STATUS_ARCH_MISMATCH the device is below compute capability 2.0.

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

strsm, dtrsm, ctrsm, ztrsm

2.6.10. cublas<t>hemm()
cublasStatus_t cublasChemm(cublasHandle_t handle,
 cublasSideMode_t side, cublasFillMode_t uplo,
 int m, int n,
 const cuComplex *alpha,
 const cuComplex *A, int lda,
 const cuComplex *B, int ldb,
 const cuComplex *beta,
 cuComplex *C, int ldc)
cublasStatus_t cublasZhemm(cublasHandle_t handle,
 cublasSideMode_t side, cublasFillMode_t uplo,
 int m, int n,
 const cuDoubleComplex *alpha,
 const cuDoubleComplex *A, int lda,
 const cuDoubleComplex *B, int ldb,
 const cuDoubleComplex *beta,
 cuDoubleComplex *C, int ldc)

This function performs the Hermitian matrix-matrix multiplication

where is a Hermitian matrix stored in lower or upper mode, and are
matrices, and and are scalars.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

side input indicates if matrix A is on the left or right of B.

uplo input indicates if matrix A lower or upper part is stored, the other
Hermitian part is not referenced and is inferred from the
stored elements.

m input number of rows of matrix C and B, with matrix A sized
accordingly.

n input number of columns of matrix C and B, with matrix A sized
accordingly.

alpha host or device input <type> scalar used for multiplication.

http://www.netlib.org/blas/strsm.f
http://www.netlib.org/blas/dtrsm.f
http://www.netlib.org/blas/ctrsm.f
http://www.netlib.org/blas/ztrsm.f

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 83

Param. Memory In/out Meaning

A device input <type> array of dimension lda x m with lda>=max(1,m)
if side==CUBLAS_SIDE_LEFT and lda x n with
lda>=max(1,n) otherwise. The imaginary parts of the
diagonal elements are assumed to be zero.

lda input leading dimension of two-dimensional array used to store
matrix A.

B device input <type> array of dimension ldb x n with ldb>=max(1,m).

ldb input leading dimension of two-dimensional array used to store
matrix B.

beta input <type> scalar used for multiplication, if beta==0 then C does
not have to be a valid input.

C device in/out <type> array of dimensions ldc x n with ldc>=max(1,m).

ldc input leading dimension of two-dimensional array used to store
matrix C.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters m,n<0

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

chemm, zhemm

2.6.11. cublas<t>herk()
cublasStatus_t cublasCherk(cublasHandle_t handle,
 cublasFillMode_t uplo, cublasOperation_t trans,
 int n, int k,
 const float *alpha,
 const cuComplex *A, int lda,
 const float *beta,
 cuComplex *C, int ldc)
cublasStatus_t cublasZherk(cublasHandle_t handle,
 cublasFillMode_t uplo, cublasOperation_t trans,
 int n, int k,
 const double *alpha,
 const cuDoubleComplex *A, int lda,
 const double *beta,
 cuDoubleComplex *C, int ldc)

This function performs the Hermitian rank- update

http://www.netlib.org/blas/chemm.f
http://www.netlib.org/blas/zhemm.f

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 84

where and are scalars, is a Hermitian matrix stored in lower or upper mode, and
 is a matrix with dimensions . Also, for matrix

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

uplo input indicates if matrix A lower or upper part is stored, the other
Hermitian part is not referenced and is inferred from the
stored elements.

trans input operation op(A) that is non- or (conj.) transpose.

n input number of rows of matrix op(A) and C.

k input number of columns of matrix op(A).

alpha host or device input <type> scalar used for multiplication.

A device input <type> array of dimension lda x k with lda>=max(1,n)
if transa == CUBLAS_OP_N and lda x n with
lda>=max(1,k) otherwise.

lda input leading dimension of two-dimensional array used to store
matrix A.

beta input <type> scalar used for multiplication, if beta==0 then C does
not have to be a valid input.

C device in/out <type> array of dimension ldc x n, with ldc>=max(1,n).
The imaginary parts of the diagonal elements are assumed
and set to zero.

ldc input leading dimension of two-dimensional array used to store
matrix C.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters n,k<0

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

cherk, zherk

http://www.netlib.org/blas/cherk.f
http://www.netlib.org/blas/zherk.f

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 85

2.6.12. cublas<t>her2k()
cublasStatus_t cublasCher2k(cublasHandle_t handle,
 cublasFillMode_t uplo, cublasOperation_t trans,
 int n, int k,
 const cuComplex *alpha,
 const cuComplex *A, int lda,
 const cuComplex *B, int ldb,
 const float *beta,
 cuComplex *C, int ldc)
cublasStatus_t cublasZher2k(cublasHandle_t handle,
 cublasFillMode_t uplo, cublasOperation_t trans,
 int n, int k,
 const cuDoubleComplex *alpha,
 const cuDoubleComplex *A, int lda,
 const cuDoubleComplex *B, int ldb,
 const double *beta,
 cuDoubleComplex *C, int ldc)

This function performs the Hermitian rank- update

where and are scalars, is a Hermitian matrix stored in lower or upper mode, and
 and are matrices with dimensions and , respectively. Also,

for matrix and

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

uplo input indicates if matrix A lower or upper part is stored, the other
Hermitian part is not referenced and is inferred from the
stored elements.

trans input operation op(A) that is non- or (conj.) transpose.

n input number of rows of matrix op(A), op(B) and C.

k input number of columns of matrix op(A) and op(B).

alpha host or device input <type> scalar used for multiplication.

A device input <type> array of dimension lda x k with lda>=max(1,n)
if transa == CUBLAS_OP_N and lda x n with
lda>=max(1,k) otherwise.

lda input leading dimension of two-dimensional array used to store
matrix A.

B device input <type> array of dimension ldb x k with ldb>=max(1,n)
if transa == CUBLAS_OP_N and ldb x n with
ldb>=max(1,k) otherwise.

ldb input leading dimension of two-dimensional array used to store
matrix B.

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 86

Param. Memory In/out Meaning

beta host or device input <type> scalar used for multiplication, if beta==0 then C does
not have to be a valid input.

C device in/out <type> array of dimension ldc x n, with ldc>=max(1,n).
The imaginary parts of the diagonal elements are assumed
and set to zero.

ldc input leading dimension of two-dimensional array used to store
matrix C.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters n,k<0

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

cher2k, zher2k

2.6.13. cublas<t>herkx()
cublasStatus_t cublasCherkx(cublasHandle_t handle,
 cublasFillMode_t uplo, cublasOperation_t trans,
 int n, int k,
 const cuComplex *alpha,
 const cuComplex *A, int lda,
 const cuComplex *B, int ldb,
 const float *beta,
 cuComplex *C, int ldc)
cublasStatus_t cublasZherkx(cublasHandle_t handle,
 cublasFillMode_t uplo, cublasOperation_t trans,
 int n, int k,
 const cuDoubleComplex *alpha,
 const cuDoubleComplex *A, int lda,
 const cuDoubleComplex *B, int ldb,
 const double *beta,
 cuDoubleComplex *C, int ldc)

This function performs a variation of the Hermitian rank- update

where and are scalars, is a Hermitian matrix stored in lower or upper mode, and
 and are matrices with dimensions and , respectively. Also,

for matrix and

http://www.netlib.org/blas/cher2k.f
http://www.netlib.org/blas/zher2k.f

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 87

This routine can be used when the matrix B is in such way that the result is garanteed to
be hermitian. An usual example is when the matrix B is a scaled form of the matrix A :
this is equivalent to B being the product of the matrix A and a diagonal matrix. For an
efficient computation of the product of a regular matrix with a diagonal matrix, refer to
the routine cublas<t>dgmm.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

uplo input indicates if matrix A lower or upper part is stored, the other
Hermitian part is not referenced and is inferred from the
stored elements.

trans input operation op(A) that is non- or (conj.) transpose.

n input number of rows of matrix op(A), op(B) and C.

k input number of columns of matrix op(A) and op(B).

alpha host or device input <type> scalar used for multiplication.

A device input <type> array of dimension lda x k with lda>=max(1,n)
if transa == CUBLAS_OP_N and lda x n with
lda>=max(1,k) otherwise.

lda input leading dimension of two-dimensional array used to store
matrix A.

B device input <type> array of dimension ldb x k with ldb>=max(1,n)
if transa == CUBLAS_OP_N and ldb x n with
ldb>=max(1,k) otherwise.

ldb input leading dimension of two-dimensional array used to store
matrix B.

beta host or device input real scalar used for multiplication, if beta==0 then C does
not have to be a valid input.

C device in/out <type> array of dimension ldc x n, with ldc>=max(1,n).
The imaginary parts of the diagonal elements are assumed
and set to zero.

ldc input leading dimension of two-dimensional array used to store
matrix C.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters n,k<0

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 88

For references please refer to:

cherk, zherk and

cher2k, zher2k

2.7. BLAS-like Extension
In this chapter we describe the BLAS-extension functions that perform matrix-matrix
operations.

2.7.1. cublas<t>geam()
cublasStatus_t cublasSgeam(cublasHandle_t handle,
 cublasOperation_t transa, cublasOperation_t transb,
 int m, int n,
 const float *alpha,
 const float *A, int lda,
 const float *beta,
 const float *B, int ldb,
 float *C, int ldc)
cublasStatus_t cublasDgeam(cublasHandle_t handle,
 cublasOperation_t transa, cublasOperation_t transb,
 int m, int n,
 const double *alpha,
 const double *A, int lda,
 const double *beta,
 const double *B, int ldb,
 double *C, int ldc)
cublasStatus_t cublasCgeam(cublasHandle_t handle,
 cublasOperation_t transa, cublasOperation_t transb,
 int m, int n,
 const cuComplex *alpha,
 const cuComplex *A, int lda,
 const cuComplex *beta ,
 const cuComplex *B, int ldb,
 cuComplex *C, int ldc)
cublasStatus_t cublasZgeam(cublasHandle_t handle,
 cublasOperation_t transa, cublasOperation_t transb,
 int m, int n,
 const cuDoubleComplex *alpha,
 const cuDoubleComplex *A, int lda,
 const cuDoubleComplex *beta,
 const cuDoubleComplex *B, int ldb,
 cuDoubleComplex *C, int ldc)

This function performs the matrix-matrix addition/transposition

where and are scalars, and , and are matrices stored in column-major format
with dimensions , and , respectively. Also, for matrix

and is defined similarly for matrix .

The operation is out-of-place if C does not overlap A or B.

http://www.netlib.org/blas/cherk.f
http://www.netlib.org/blas/zherk.f
http://www.netlib.org/blas/cher2k.f
http://www.netlib.org/blas/zher2k.f

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 89

The in-place mode supports the following two operations,

For in-place mode, if C = A, ldc = lda and transa = CUBLAS_OP_N. If C = B, ldc
= ldb and transb = CUBLAS_OP_N. If the user does not meet above requirements,
CUBLAS_STATUS_INVALID_VALUE is returned.

The operation includes the following special cases:

the user can reset matrix C to zero by setting *alpha=*beta=0.

the user can transpose matrix A by setting *alpha=1 and *beta=0.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

transa input operation op(A) that is non- or (conj.) transpose.

transb input operation op(B) that is non- or (conj.) transpose.

m input number of rows of matrix op(A) and C.

n input number of columns of matrix op(B) and C.

alpha host or device input <type> scalar used for multiplication. If *alpha == 0, A does
not have to be a valid input.

A device input <type> array of dimensions lda x n with lda>=max(1,m) if
transa == CUBLAS_OP_N and lda x m with lda>=max(1,n)
otherwise.

lda input leading dimension of two-dimensional array used to store the
matrix A.

B device input <type> array of dimension ldb x n with ldb>=max(1,m) if
transa == CUBLAS_OP_N and ldb x m with ldb>=max(1,n)
otherwise.

ldb input leading dimension of two-dimensional array used to store
matrix B.

beta host or device input <type> scalar used for multiplication. If *beta == 0, B does
not have to be a valid input.

C device output <type> array of dimensions ldc x n with ldc>=max(1,m).

ldc input leading dimension of a two-dimensional array used to store
the matrix C.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 90

Error Value Meaning

CUBLAS_STATUS_INVALID_VALUE the parameters m,n<0, alpha,beta=NULL or
improper settings of in-place mode

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

2.7.2. cublas<t>dgmm()
cublasStatust cublasSdgmm(cublasHandle_t handle, cublasSideMode_t mode,
 int m, int n,
 const float *A, int lda,
 const float *x, int incx,
 float *C, int ldc)
cublasStatus_t cublasDdgmm(cublasHandle_t handle, cublasSideMode_t mode,
 int m, int n,
 const double *A, int lda,
 const double *x, int incx,
 double *C, int ldc)
cublasStatus_t cublasCdgmm(cublasHandle_t handle, cublasSideMode_t mode,
 int m, int n,
 const cuComplex *A, int lda,
 const cuComplex *x, int incx,
 cuComplex *C, int ldc)
cublasStatus_t cublasZdgmm(cublasHandle_t handle, cublasSideMode_t mode,
 int m, int n,
 const cuDoubleComplex *A, int lda,
 const cuDoubleComplex *x, int incx,
 cuDoubleComplex *C, int ldc)

This function performs the matrix-matrix multiplication

where and are matrices stored in column-major format with dimensions
. is a vector of size if mode == CUBLAS_SIDE_RIGHT and of size if mode ==
CUBLAS_SIDE_LEFT. is gathered from one-dimensional array x with stride incx. The
absolute value of incx is the stride and the sign of incx is direction of the stride. If incx
is positive, then we forward x from the first element. Otherwise, we backward x from the
last element. The formula of X is

where if mode == CUBLAS_SIDE_LEFT and if mode ==
CUBLAS_SIDE_RIGHT.

Example 1: if the user wants to perform , then where
 is leading dimension of matrix B, either row-major or column-major.

Example 2: if the user wants to perform , then there are two choices, either
cublasgeam with *beta=0 and transa == CUBLAS_OP_N or cublasdgmm with incx=0
and x[0]=alpha.

The operation is out-of-place. The in-place only works if lda = ldc.

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 91

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

mode input left multiply if mode == CUBLAS_SIDE_LEFT or right multiply if
mode == CUBLAS_SIDE_RIGHT

m input number of rows of matrix A and C.

n input number of columns of matrix A and C.

A device input <type> array of dimensions lda x n with lda>=max(1,m)

lda input leading dimension of two-dimensional array used to store the
matrix A.

x device input one-dimensional <type> array of size if mode
== CUBLAS_SIDE_LEFT and if mode ==
CUBLAS_SIDE_RIGHT

incx input stride of one-dimensional array x.

C device in/out <type> array of dimensions ldc x n with ldc>=max(1,m).

ldc input leading dimension of a two-dimensional array used to store the
matrix C.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters m,n<0 or mode !=
CUBLAS_SIDE_LEFT, CUBLAS_SIDE_RIGHT

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 92

2.7.3. cublas<t>getrfBatched()
cublasStatus_t cublasSgetrfBatched(cublasHandle_t handle,
 int n,
 float *Aarray[],
 int lda,
 int *PivotArray,
 int *infoArray,
 int batchSize);

cublasStatus_t cublasDgetrfBatched(cublasHandle_t handle,
 int n,
 double *Aarray[],
 int lda,
 int *PivotArray,
 int *infoArray,
 int batchSize);

cublasStatus_t cublasCgetrfBatched(cublasHandle_t handle,
 int n,
 cuComplex *Aarray[],
 int lda,
 int *PivotArray,
 int *infoArray,
 int batchSize);

cublasStatus_t cublasZgetrfBatched(cublasHandle_t handle,
 int n,
 cuDoubleComplex *Aarray[],
 int lda,
 int *PivotArray,
 int *infoArray,
 int batchSize);

Aarray is an array of pointers to matrices stored in column-major format with
dimensions nxn and leading dimension lda.

This function performs the LU factorization of each Aarray[i] for i = 0, ...,
batchSize-1 by the following equation

where P is a permutation matrix which represents partial pivoting with row
interchanges. L is a lower triangular matrix with unit diagonal and U is an upper
triangular matrix.

Formally P is written by a product of permutation matrices Pj, for j = 1,2,...,n,
say P = P1 * P2 * P3 * * Pn. Pj is a permutation matrix which interchanges
two rows of vector x when performing Pj*x. Pj can be constructed by j element of
PivotArray[i] by the following matlab code

// In Matlab PivotArray[i] is an array of base-1.
// In C, PivotArray[i] is base-0.
Pj = eye(n);
swap Pj(j,:) and Pj(PivotArray[i][j] ,:)

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 93

L and U are written back to original matrix A, and diagonal elements of L are discarded.
The L and U can be constructed by the following matlab code

// A is a matrix of nxn after getrf.
L = eye(n);
for j = 1:n
 L(:,j+1:n) = A(:,j+1:n)
end
U = zeros(n);
for i = 1:n
 U(i,i:n) = A(i,i:n)
end

If matrix A(=Aarray[i]) is singular, getrf still works and the value of
info(=infoArray[i]) reports first row index that LU factorization cannot proceed.
If info is k, U(k,k) is zero. The equation P*A=L*U still holds, however L and U are from
the following matlab code

// A is a matrix of nxn after getrf.
// info is k, which means U(k,k) is zero.
L = eye(n);
for j = 1:k-1
 L(:,j+1:n) = A(:,j+1:n)
end
U = zeros(n);
for i = 1:k-1
 U(i,i:n) = A(i,i:n)
end
for i = k:n
 U(i,k:n) = A(i,k:n)
end

This function is intended to be used for matrices of small sizes where the launch
overhead is a significant factor.

cublas<t>getrfBatched supports non-pivot LU factorization if PivotArray is nil.

cublas<t>getrfBatched supports arbitrary dimension.

cublas<t>getrfBatched only supports compute capability 2.0 or above.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

n input number of rows and columns of Aarray[i].

Aarray device input array of pointers to <type> array, with each array of dim. n
x n with lda>=max(1,n).

lda input leading dimension of two-dimensional array used to store
each matrix Aarray[i].

PivotArray device output array of size n x batchSize that contains the pivoting
sequence of each factorization of Aarray[i] stored in a
linear fashion. If PivotArray is nil, pivoting is disabled.

infoArray device output array of size batchSize that info(=infoArray[i]) contains
the information of factorization of Aarray[i].

If info=0, the execution is successful.

If info = -j, the j-th parameter had an illegal value.

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 94

Param. Memory In/out Meaning
If info = k, U(k,k) is 0. The factorization has been
completed, but U is exactly singular.

batchSize input number of pointers contained in A

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters n,batchSize,lda <0

CUBLAS_STATUS_ARCH_MISMATCH the device has a compute capability < 200

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

sgeqrf, dgeqrf, cgeqrf, zgeqrf

http://www.netlib.no/netlib/lapack/single/sgetrf.f
http://www.netlib.no/netlib/lapack/double/dgetrf.f
http://www.netlib.no/netlib/lapack/complex/cgetrf.f
http://www.netlib.no/netlib/lapack/complex16/zgetrf.f

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 95

2.7.4. cublas<t>getrsBatched()
cublasStatus_t cublasSgetrsBatched(cublasHandle_t handle,
 cublasOperation_t trans,
 int n,
 int nrhs,
 const float *Aarray[],
 int lda,
 const int *devIpiv,
 float *Barray[],
 int ldb,
 int *info,
 int batchSize);

cublasStatus_t cublasDgetrsBatched(cublasHandle_t handle,
 cublasOperation_t trans,
 int n,
 int nrhs,
 const double *Aarray[],
 int lda,
 const int *devIpiv,
 double *Barray[],
 int ldb,
 int *info,
 int batchSize);

cublasStatus_t cublasCgetrsBatched(cublasHandle_t handle,
 cublasOperation_t trans,
 int n,
 int nrhs,
 const cuComplex *Aarray[],
 int lda,
 const int *devIpiv,
 cuComplex *Barray[],
 int ldb,
 int *info,
 int batchSize);

cublasStatus_t cublasZgetrsBatched(cublasHandle_t handle,
 cublasOperation_t trans,
 int n,
 int nrhs,
 const cuDoubleComplex *Aarray[],
 int lda,
 const int *devIpiv,
 cuDoubleComplex *Barray[],
 int ldb,
 int *info,
 int batchSize);

This function solves an array of systems of linear equations of the form :

where is a matrix which has been LU factorized with pivoting , and are
 matrices. Also, for matrix

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 96

This function is intended to be used for matrices of small sizes where the launch
overhead is a significant factor.

cublas<t>getrsBatched supports non-pivot LU factorization if devIpiv is nil.

cublas<t>getrsBatched supports arbitrary dimension.

cublas<t>getrsBatched only supports compute capability 2.0 or above.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

trans input operation op(A) that is non- or (conj.) transpose.

n input number of rows and columns of Aarray[i].

nrhs input number of columns of Barray[i].

Aarray device input array of pointers to <type> array, with each array of dim. n
x n with lda>=max(1,n).

lda input leading dimension of two-dimensional array used to store
each matrix Aarray[i].

devIpiv device input array of size n x batchSize that contains the pivoting
sequence of each factorization of Aarray[i] stored in a
linear fashion. If devIpiv is nil, pivoting for all Aarray[i]
is ignored.

Barray device input/
output

array of pointers to <type> array, with each array of dim. n
x nrhs with ldb>=max(1,n).

ldb input leading dimension of two-dimensional array used to store
each solution matrix Barray[i].

info host output If info=0, the execution is successful.

If info = -j, the j-th parameter had an illegal value.

batchSize input number of pointers contained in A

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters n,batchSize,lda <0

CUBLAS_STATUS_ARCH_MISMATCH the device has a compute capability < 200

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

sgeqrs, dgeqrs, cgeqrs, zgeqrs

http://www.netlib.no/netlib/lapack/single/sgetrs.f
http://www.netlib.no/netlib/lapack/double/dgetrs.f
http://www.netlib.no/netlib/lapack/complex/cgetrs.f
http://www.netlib.no/netlib/lapack/complex16/zgetrs.f

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 97

2.7.5. cublas<t>getriBatched()
cublasStatus_t cublasSgetriBatched(cublasHandle_t handle,
 int n,
 float *Aarray[],
 int lda,
 int *PivotArray,
 float *Carray[],
 int ldc,
 int *infoArray,
 int batchSize);

cublasStatus_t cublasDgetriBatched(cublasHandle_t handle,
 int n,
 double *Aarray[],
 int lda,
 int *PivotArray,
 double *Carray[],
 int ldc,
 int *infoArray,
 int batchSize);

cublasStatus_t cublasCgetriBatched(cublasHandle_t handle,
 int n,
 cuComplex *Aarray[],
 int lda,
 int *PivotArray,
 cuComplex *Carray[],
 int ldc,
 int *infoArray,
 int batchSize);

cublasStatus_t cublasZgetriBatched(cublasHandle_t handle,
 int n,
 cuDoubleComplex *Aarray[],
 int lda,
 int *PivotArray,
 cuDoubleComplex *Carray[],
 int ldc,
 int *infoArray,
 int batchSize);

Aarray and Carray are arrays of pointers to matrices stored in column-major format
with dimensions n*n and leading dimension lda and ldc respectively.

This function performs the inversion of matrices A[i] for i = 0, ..., batchSize-1.

Prior to calling cublas<t>getriBatched, the matrix A[i] must be factorized first using
the routine cublas<t>getrfBatched. After the call of cublas<t>getrfBatched, the matrix
pointing by Aarray[i] will contain the LU factors of the matrix A[i] and the vector
pointing by (PivotArray+i) will contain the pivoting sequence.

Following the LU factorization, cublas<t>getriBatched uses forward and backward
triangular solvers to complete inversion of matrices A[i] for i = 0, ..., batchSize-1. The
inversion is out-of-place, so memory space of Carray[i] cannot overlap memory space of
Array[i].

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 98

Typically all parameters in cublas<t>getrfBatched would be passed into
cublas<t>getriBatched. For example,

// step 1: perform in-place LU decomposition, P*A = L*U.
// Aarray[i] is n*n matrix A[i]
 cublasDgetrfBatched(handle, n, Aarray, lda, PivotArray, infoArray,
 batchSize);
// check infoArray[i] to see if factorization of A[i] is successful or not.
// Array[i] contains LU factorization of A[i]

// step 2: perform out-of-place inversion, Carray[i] = inv(A[i])
 cublasDgetriBatched(handle, n, Aarray, lda, PivotArray, Carray, ldc,
 infoArray, batchSize);
// check infoArray[i] to see if inversion of A[i] is successful or not.

The user can check singularity from either cublas<t>getrfBatched or
cublas<t>getriBatched.

This function is intended to be used for matrices of small sizes where the launch
overhead is a significant factor.

If cublas<t>getrfBatched is performed by non-pivoting, PivotArray of
cublas<t>getriBatched should be nil.

cublas<t>getriBatched supports arbitrary dimension.

cublas<t>getriBatched only supports compute capability 2.0 or above.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

n input number of rows and columns of Aarray[i].

Aarray device input array of pointers to <type> array, with each array of
dimension n*n with lda>=max(1,n).

lda input leading dimension of two-dimensional array used to store
each matrix Aarray[i].

PivotArray device output array of size n*batchSize that contains the pivoting
sequence of each factorization of Aarray[i] stored in a
linear fashion. If PivotArray is nil, pivoting is disabled.

Carray device output array of pointers to <type> array, with each array of
dimension n*n with ldc>=max(1,n).

ldc input leading dimension of two-dimensional array used to store
each matrix Carray[i].

infoArray device output array of size batchSize that info(=infoArray[i]) contains
the information of inversion of A[i].

If info=0, the execution is successful.

If info = k, U(k,k) is 0. The U is exactly singular and the
inversion failed.

batchSize input number of pointers contained in A

The possible error values returned by this function and their meanings are listed below.

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 99

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters n,batchSize,lda,ldc <0

CUBLAS_STATUS_ARCH_MISMATCH the device has a compute capability < 200

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

2.7.6. cublas<t>matinvBatched()
cublasStatus_t cublasSmatinvBatched(cublasHandle_t handle,
 int n,
 const float *A[],
 int lda,
 float *Ainv[],
 int lda_inv,
 int *info,
 int batchSize);

cublasStatus_t cublasDmatinvBatched(cublasHandle_t handle,
 int n,
 const double *A[],
 int lda,
 double *Ainv[],
 int lda_inv,
 int *info,
 int batchSize);

cublasStatus_t cublasCmatinvBatched(cublasHandle_t handle,
 int n,
 const cuComplex *A[],
 int lda,
 cuComplex *Ainv[],
 int lda_inv,
 int *info,
 int batchSize);

cublasStatus_t cublasZmatinvBatched(cublasHandle_t handle,
 int n,
 const cuDoubleComplex *A[],
 int lda,
 cuDoubleComplex *Ainv[],
 int lda_inv,
 int *info,
 int batchSize);

A and Ainv are arrays of pointers to matrices stored in column-major format with
dimensions n*n and leading dimension lda and lda_inv respectively.

This function performs the inversion of matrices A[i] for i = 0, ..., batchSize-1.

This function is a short cut of cublas<t>getrfBatched plus
cublas<t>getriBatched. However it only works if n is less than 32. If not, the user
has to go through cublas<t>getrfBatched and cublas<t>getriBatched.

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 100

If the matrix A[i] is singular, then info[i] reports singularity, the same as
cublas<t>getrfBatched.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

n input number of rows and columns of A[i].

A device input array of pointers to <type> array, with each array of
dimension n*n with lda>=max(1,n).

lda input leading dimension of two-dimensional array used to store
each matrix A[i].

Ainv device output array of pointers to <type> array, with each array of
dimension n*n with lda_inv>=max(1,n).

lda_inv input leading dimension of two-dimensional array used to store
each matrix Ainv[i].

info device output array of size batchSize that info[i] contains the
information of inversion of A[i].

If info[i]=0, the execution is successful.

If info[i]=k, U(k,k) is 0. The U is exactly singular and the
inversion failed.

batchSize input number of pointers contained in A.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters n,batchSize,lda,lda_inv <0;
or n >32

CUBLAS_STATUS_ARCH_MISMATCH the device has a compute capability < 200

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 101

2.7.7. cublas<t>geqrfBatched()
cublasStatus_t cublasSgeqrfBatched(cublasHandle_t handle,
 int m,
 int n,
 float *Aarray[],
 int lda,
 float *TauArray[],

 int *info,
 int batchSize);

cublasStatus_t cublasDgeqrfBatched(cublasHandle_t handle,
 int m,
 int n,
 double *Aarray[],
 int lda,
 double *TauArray[],

 int *info,
 int batchSize);

cublasStatus_t cublasCgeqrfBatched(cublasHandle_t handle,
 int m,
 int n,
 cuComplex *Aarray[],
 int lda,
 cuComplex *TauArray[],

 int *info,
 int batchSize);

cublasStatus_t cublasZgeqrfBatched(cublasHandle_t handle,
 int m,
 int n,
 cuDoubleComplex *Aarray[],
 int lda,
 cuDoubleComplex *TauArray[],

 int *info,
 int batchSize);

Aarray is an array of pointers to matrices stored in column-major format with
dimensions m x n and leading dimension lda. TauArray is an array of pointers to
vectors of dimension of at least max (1, min(m, n).

This function performs the QR factorization of each Aarray[i] for i =
0, ...,batchSize-1 using Householder reflections. Each matrix Q[i] is represented
as a product of elementary reflectors and is stored in the lower part of each Aarray[i]
as follows :

 Q[j] = H[j][1] H[j][2] . . . H[j](k), where k = min(m,n).

 Each H[j][i] has the form

 H[j][i] = I - tau[j] * v * v'
 where tau[j] is a real scalar, and v is a real vector with
 v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in Aarray[j][i
+1:m,i],
 and tau in TauArray[j][i]

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 102

This function is intended to be used for matrices of small sizes where the launch
overhead is a significant factor.

cublas<t>geqrfBatched supports arbitrary dimension.

cublas<t>geqrfBatched only supports compute capability 2.0 or above.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

m input number of rows Aarray[i].

n input number of columns of Aarray[i].

Aarray device input array of pointers to <type> array, with each array of dim. m
x n with lda>=max(1,m).

lda input leading dimension of two-dimensional array used to store
each matrix Aarray[i].

TauArray device output array of pointers to <type> vector, with each vector of
dim. max(1,min(m,n)).

info host output If info=0, the parameters passed to the function are valid

If info<0, the parameter in postion -info is invalid

batchSize input number of pointers contained in A

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters m,n,batchSize <0 or lda <
imax(1,m)

CUBLAS_STATUS_ARCH_MISMATCH the device has a compute capability < 200

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

sgeqrf, dgeqrf, cgeqrf, zgeqrf

http://www.netlib.no/netlib/lapack/single/sgeqrf.f
http://www.netlib.no/netlib/lapack/double/dgeqrf.f
http://www.netlib.no/netlib/lapack/complex/cgeqrf.f
http://www.netlib.no/netlib/lapack/complex16/zgeqrf.f

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 103

2.7.8. cublas<t>gelsBatched()
cublasStatus_t cublasSgelsBatched(cublasHandle_t handle,
 cublasOperation_t trans,
 int m,
 int n,
 int nrhs,
 float *Aarray[],
 int lda,
 float *Carray[],
 int ldc,

 int *info,
 int *devInfoArray,
 int batchSize);

cublasStatus_t cublasDgelsBatched(cublasHandle_t handle,
 cublasOperation_t trans,
 int m,
 int n,
 int nrhs,
 double *Aarray[],
 int lda,
 double *Carray[],
 int ldc,

 int *info,
 int *devInfoArray,
 int batchSize);

cublasStatus_t cublasCgelsBatched(cublasHandle_t handle,
 cublasOperation_t trans,
 int m,
 int n,
 int nrhs,
 cuComplex *Aarray[],
 int lda,
 cuComplex *Carray[],
 int ldc,

 int *info,
 int *devInfoArray,
 int batchSize);

cublasStatus_t cublasZgelsBatched(cublasHandle_t handle,
 cublasOperation_t trans,
 int m,
 int n,
 int nrhs,
 cuDoubleComplex *Aarray[],
 int lda,
 cuDoubleComplex *Carray[],
 int ldc,

 int *info,
 int *devInfoArray,
 int batchSize);

Aarray is an array of pointers to matrices stored in column-major format with
dimensions m x n and leading dimension lda. Carray is an array of pointers to
matrices stored in column-major format with dimensions n x nrhs and leading
dimension ldc.

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 104

This function find the least squares solution of a batch of overdetermined systems : it
solves the least squares problem described as follows :

 minimize || Carray[i] - Aarray[i]*Xarray[i] || , with i =
 0, ...,batchSize-1

On exit, each Aarray[i] is overwritten with their QR factorization and each Carray[i]
is overwritten with the least square solution

cublas<t>gelsBatched supports only the non-transpose operation and only solves over-
determined systems (m >= n).

cublas<t>gelsBatched only supports compute capability 2.0 or above.

This function is intended to be used for matrices of small sizes where the launch
overhead is a significant factor.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

trans input operation op(Aarray[i]) that is non- or (conj.) transpose.
Only non-transpose operation is currently supported.

m input number of rows Aarray[i].

n input number of columns of each Aarray[i] and rows of each
Carray[i].

nrhs input number of columns of each Carray[i].

Aarray device input/
output

array of pointers to <type> array, with each array of dim. m
x n with lda>=max(1,m).

lda input leading dimension of two-dimensional array used to store
each matrix Aarray[i].

Carray device input/
output

array of pointers to <type> array, with each array of dim. n
x nrhs with ldc>=max(1,n).

ldc input leading dimension of two-dimensional array used to store
each matrix Carray[i].

info host output If info=0, the parameters passed to the function are valid

If info<0, the parameter in position -info is invalid

devInfoArray device output optional array of integers of dimension batchsize.

If non-null, every element devInfoArray[i] contain a value
V with the following meaning:

V = 0 : the i-th problem was sucessfully solved

V > 0 : the V-th diagonal element of the Aarray[i] is zero.
Aarray[i] does not have full rank.

batchSize input number of pointers contained in Aarray and Carray

The possible error values returned by this function and their meanings are listed below.

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 105

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters m,n,batchSize <0 , lda <
imax(1,m) or ldc < imax(1,n)

CUBLAS_STATUS_NOT_SUPPORTED the parameters m <n or trans is different from
non-transpose.

CUBLAS_STATUS_ARCH_MISMATCH the device has a compute capability < 200

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

sgels, dgels, cgels, zgels

2.7.9. cublas<t>tpttr()
cublasStatus_t cublasStpttr (cublasHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 const float *AP,
 float *A,
 int lda);

cublasStatus_t cublasDtpttr (cublasHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 const double *AP,
 double *A,
 int lda);

cublasStatus_t cublasCtpttr (cublasHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 const cuComplex *AP,
 cuComplex *A,
 int lda);

cublasStatus_t cublasZtpttr (cublasHandle_t handle,
 cublasFillMode_t uplo
 int n,
 const cuDoubleComplex *AP,
 cuDoubleComplex *A,
 int lda);

This function performs the conversion from the triangular packed format to the
triangular format

If uplo == CUBLAS_FILL_MODE_LOWER then the elements of AP are copied into the
lower triangular part of the triangular matrix A and the upper part of A is left untouched.
If uplo == CUBLAS_FILL_MODE_UPPER then the elements of AP are copied into the
upper triangular part of the triangular matrix A and the lower part of A is left untouched.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

http://www.netlib.no/netlib/lapack/single/sgels.f
http://www.netlib.no/netlib/lapack/double/dgels.f
http://www.netlib.no/netlib/lapack/complex/cgels.f
http://www.netlib.no/netlib/lapack/complex16/zgels.f

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 106

Param. Memory In/out Meaning

uplo input indicates if matrix AP contains lower or upper part of matrix A.

n input number of rows and columns of matrix A.

AP device input <type> array with stored in packed format.

A device output <type> array of dimensions lda x n , with lda>=max(1,n). The
opposite side of A is left untouched.

lda input leading dimension of two-dimensional array used to store matrix
A.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters n<0

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

stpttr, dtpttr, ctpttr, ztpttr

2.7.10. cublas<t>trttp()
cublasStatus_t cublasStrttp (cublasHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 const float *A,
 int lda,
 float *AP);

cublasStatus_t cublasDtrttp (cublasHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 const double *A,
 int lda,
 double *AP);

cublasStatus_t cublasCtrttp (cublasHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 const cuComplex *A,
 int lda,
 cuComplex *AP);

cublasStatus_t cublasZtrttp (cublasHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 const cuDoubleComplex *A,
 int lda,
 cuDoubleComplex *AP);

http://www.netlib.org/lapack/explore-html/d7/d70/stpttr_8f.html
http://www.netlib.org/lapack/explore-html/df/d63/dtpttr_8f.html
http://www.netlib.org/lapack/explore-html/de/d13/ctpttr_8f.html
http://www.netlib.org/lapack/explore-html/d6/dbc/ztpttr_8f.html

Using the cuBLAS API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 107

This function performs the conversion from the triangular format to the triangular
packed format

If uplo == CUBLAS_FILL_MODE_LOWER then the lower triangular part of the triangular
matrix A is copied into the array AP. If uplo == CUBLAS_FILL_MODE_UPPER then then
the upper triangular part of the triangular matrix A is copied into the array AP.

Param. Memory In/out Meaning

handle input handle to the cuBLAS library context.

uplo input indicates which matrix A lower or upper part is referenced.

n input number of rows and columns of matrix A.

A device input <type> array of dimensions lda x n , with lda>=max(1,n).

lda input leading dimension of two-dimensional array used to store matrix
A.

AP device output <type> array with stored in packed format.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters n<0

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

strttp, dtrttp, ctrttp, ztrttp

http://www.netlib.org/lapack/explore-html/d9/def/strttp_8f.html
http://www.netlib.org/lapack/explore-html/d0/daf/dtrttp_8f.html
http://www.netlib.org/lapack/explore-html/d7/d56/ctrttp_8f.html
http://www.netlib.org/lapack/explore-html/da/dc2/ztrttp_8f.html

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 108

Chapter 3.
USING THE CUBLASXT API

3.1. General description
The cublasXt API of cuBLAS exposes a multi-GPU capable Host interface : when
using this API the application only needs to allocate the required matrices on the Host
memory space. There are no restriction on the sizes of the matrices as long as they can fit
into the Host memory. The cublasXt API takes care of allocating the memory across the
designated GPUs and dispatched the workload between them and finally retrieves the
results back to the Host. The cublasXt API supports only the compute-intensive BLAS3
routines (e.g matrix-matrix operations) where the PCI transfers back and forth from the
GPU can be amortized.

Note : The cublasXt API is only supported on 64-bit platforms.

3.1.1. Tiling design approach
To be able to share the workload between multiples GPUs, the cublasXt API uses a
tiling strategy : every matrix is divided in square tiles of user-controllable dimension
BlockDim x BlockDim. The resulting matrix tiling defines the static scheduling policy :
each resulting tile is affected to a GPU in a round robin fashion One CPU thread is
created per GPU and is responsible to do the proper memory transfers and cuBLAS
operations to compute all the tiles that it is responsible for. From a performance point of
view, due to this static scheduling strategy, it is better that compute capabilites and PCI
bandwidth are the same for every GPU. The figure below illustrates the tiles distribution
between 3 GPUs. To compute the first tile G0 from C, the CPU thread 0 responsible of
GPU0, have to load 3 tiles from the first row of A and tiles from the first columun of B in
a pipeline fashion in order to overlap memory transfer and computations and sum the
results into the first tile G0 of C before to move on to the next tile G0.

Using the CUBLASXT API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 109

Figure 1 Example of cublasXt<t>gemm() tiling for 3 Gpus

When the tile dimension is not an exact multiple of the dimensions of C, some
tiles are partially filled on the right border or/and the bottom border. The current
implementation does not pad the incomplete tiles but simply keep track of those
incomplete tiles by doing the right reduced cuBLAS opearations : this way, no extra
computation is done. However it still can lead to some load unbalance when all GPUS
do not have the same number of incomplete tiles to work on.

3.1.2. Hybrid CPU-GPU computation
In the case of very large problems, the cublasXt API offers the possibility to offload
some of the computation to the Host CPU. This feature can be setup with the routines
cublasXtSetCpuRoutine() and cublasXtSetCpuRatio() The workload affected
to the CPU is put aside : it is simply a percentage of the resulting matrix taken from the
bottom and the right side whichever dimension is bigger. The GPU tiling is done after
that on the reduced resulting matrix.

This feature should be used with caution because it could interfere with the CPU threads
responsible of feeding the GPUs.

Currenty, only the routine cublasXt<t>gemm() supports this feature.

Using the CUBLASXT API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 110

3.1.3. Results reproducibility
Currently all CUBLAS XT API routines from a given toolkit version, generate the same
bit-wise results when the following conditions are respected :

‣ all GPUs particating to the computation have the same compute-capabilities and the
same number of SMs.

‣ the tiles size is kept the same between run.

‣ either the CPU hybrid computation is not used or the CPU Blas provided is also
guaranteed to produce reproducible results.

3.2. cublasXt API Datatypes Reference

3.2.1. cublasXtHandle_t
The cublasXtHandle_t type is a pointer type to an opaque structure holding
the cublasXt API context. The cublasXt API context must be initialized using
cublasXtCreate() and the returned handle must be passed to all subsequent
cublasXt API function calls. The context should be destroyed at the end using
cublasXtDestroy().

3.2.2. cublasXtOpType_t
The cublasOpType_t enumerates the four possible types supported by BLAS routines.
This enum is used as parameters of the routines cublasXtSetCpuRoutine and
cublasXtSetCpuRatio to setup the hybrid configuration.

Value Meaning

CUBLASXT_FLOAT float or single precision type

CUBLASXT_DOUBLE double precision type

CUBLASXT_COMPLEX single precision complex

CUBLASXT_DOUBLECOMPLEX double precision complex

3.2.3. cublasXtBlasOp_t
The cublasXtBlasOp_t type enumerates the BLAS3 or BLAS-like routine
supported by cublasXt API. This enum is used as parameters of the routines
cublasXtSetCpuRoutine and cublasXtSetCpuRatio to setup the hybrid
configuration.

Value Meaning

CUBLASXT_GEMM GEMM routine

CUBLASXT_SYRK SYRK routine

Using the CUBLASXT API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 111

Value Meaning

CUBLASXT_HERK HERK routine

CUBLASXT_SYMM SYMM routine

CUBLASXT_HEMM HEMM routine

CUBLASXT_TRSM TRSM routine

CUBLASXT_SYR2K SYR2K routine

CUBLASXT_HER2K HER2K routine

CUBLASXT_SPMM SPMM routine

CUBLASXT_SYRKX SYRKX routine

CUBLASXT_HERKX HERKX routine

3.2.4. cublasXtPinningMemMode_t
The type is used to enable or disable the Pinning Memory mode through the routine
cubasMgSetPinningMemMode

Value Meaning

CUBLASXT_PINNING_DISABLED the Pinning Memory mode is disabled

CUBLASXT_PINNING_ENABLED the Pinning Memory mode is enabled

3.3. cublasXt API Helper Function Reference

3.3.1. cublasXtCreate()
cublasStatus_t
cublasXtCreate(cublasXtHandle_t *handle)

This function initializes the cublasXt API and creates a handle to an opaque structure
holding the cublasXt API context. It allocates hardware resources on the host and device
and must be called prior to making any other cublasXt API calls.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the initialization succeeded

CUBLAS_STATUS_ALLOC_FAILED the resources could not be allocated

CUBLAS_STATUS_NOT_SUPPORTED cublasXt API is only supported on 64-bit platform

3.3.2. cublasXtDestroy()
cublasStatus_t
cublasXtDestroy(cublasXtHandle_t handle)

Using the CUBLASXT API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 112

This function releases hardware resources used by the cublasXt API context. The release
of GPU resources may be deferred until the application exits. This function is usually the
last call with a particular handle to the cublasXt API.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the shut down succeeded

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

3.3.3. cublasXtDeviceSelect()
cublasXtDeviceSelect(cublasXtHandle_t handle, int nbDevices, int deviceId[])

This function allows the user to provide the number of GPU devices and their respective
Ids that will participate to the subsequent cublasXt API Math function calls. This
function will create a cuBLAS context for every GPU provided in that list. Currently the
device configuration is static and cannot be changed between Math function calls. In that
regard, this function should be called only once after cublasXtCreate. To be able to run
multiple configurations, multiple cublasXt API contexts should be created.

Note : In the current release of cuBLAS, the CUBLASXT API supports two GPUs
if they are on the same board such as Tesla K10 or GeForce GTX690 and one GPU
otherwise. If access to more GPUs devices is needed, details of the licensing are
described at cublasXt.

Return Value Meaning

CUBLAS_STATUS_SUCCESS user call was sucessful

CUBLAS_STATUS_INVALID_VALUE Access to at least one of the device could not be
done or a cuBLAS context could not be created on
at least one of the device

CUBLAS_STATUS_ALLOC_FAILED some resources could not be allocated.

CUBLAS_STATUS_LICENSE_ERROR The number of GPUs requested exceeds the
maximum number authorized by the current
licensing.

3.3.4. cublasXtSetBlockDim()
cublasXtSetBlockDim(cublasXtHandle_t handle, int blockDim)

This function allows the user to set the block dimension used for the tiling of the
matrices for the subsequent Math function calls. Matrices are split in square tiles of
blockDim x blockDim dimension. This function can be called anytime and will take
effect for the following Math function calls. The block dimension should be chosen in
a way to optimize the math operation and to make sure that the PCI transfers are well
overlapped with the computation.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the call has been successful

CUBLAS_STATUS_INVALID_VALUE blockDim <= 0

https://developer.nvidia.com/cublasxt

Using the CUBLASXT API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 113

3.3.5. cublasXtGetBlockDim()
cublasXtGetBlockDim(cublasXtHandle_t handle, int *blockDim)

This function allows the user to query the block dimension used for the tiling of the
matrices.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the call has been successful

3.3.6. cublasXtSetCpuRoutine()
cublasXtSetCpuRoutine(cublasXtHandle_t handle, cublasXtHandle_t handle,
 cublasXtBlasOp_t blasOp, cublasXtOpType_t type, void *blasFunctor)

This function allows the user to provide a CPU implementation of the corresponding
BLAS routine. This function can be used with the function cublasXtSetCpuRatio() to
define an hybrid computation between the CPU and the GPUs. Currently the hybrid
feature is only supported for the xGEMM routines.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the call has been successful

CUBLAS_STATUS_INVALID_VALUE blasOp or type define an invalid combination

CUBLAS_STATUS_NOT_SUPPORTED CPU-GPU Hybridization for that routine is not
supported

3.3.7. cublasXtSetCpuRatio()
cublasXtSetCpuRatio(cublasXtHandle_t handle, cublasXtBlasOp_t blasOp,
 cublasXtOpType_t type, float ratio)

This function allows the user to define the percentage of workload that should be done
on a CPU in the context of an hybrid computation. This function can be used with the
function cublasXtSetCpuRoutine() to define an hybrid computation between the CPU
and the GPUs. Currently the hybrid feature is only supported for the xGEMM routines.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the call has been successful

CUBLAS_STATUS_INVALID_VALUE blasOp or type define an invalid combination

CUBLAS_STATUS_NOT_SUPPORTED CPU-GPU Hybridization for that routine is not
supported

3.3.8. cublasXtSetPinningMemMode()
cublasXtSetPinningMemMode(cublasXtHandle_t handle, cublasXtPinningMemMode_t
 mode)

This function allows the user to enable or disable the Pinning Memory mode. When
enabled, the matrices passed in subsequent cublasXt API calls will be pinned/

Using the CUBLASXT API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 114

unpinned using the CUDART routine cudaHostRegister and cudaHostUnregister
respectively if the matrices are not already pinned. If a matrix happened to be pinned
partially, it will also not be pinned. Pinning the memory improve PCI transfer
performace and allows to overlap PCI memory transfer with computation. However
pinning/unpinning the memory take some time which might not be amortized. It
is advised that the user pins the memory on its own using cudaMallocHost or
cudaHostRegister and unpin it when the computation sequence is completed. By
default, the Pinning Memory mode is disabled.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the call has been successful

CUBLAS_STATUS_INVALID_VALUE the mode value is different from
CUBLASXT_PINNING_DISABLED and
CUBLASXT_PINNING_ENABLED

3.3.9. cublasXtGetPinningMemMode()
cublasXtGetPinningMemMode(cublasXtHandle_t handle, cublasXtPinningMemMode_t
 *mode)

This function allows the user to query the Pinning Memory mode. By default, the
Pinning Memory mode is disabled.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the call has been successful

3.4. cublasXt API Math Functions Reference
In this chapter we describe the actual Linear Agebra routines that cublasXt API
supports. We will use abbreviations <type> for type and <t> for the corresponding short
type to make a more concise and clear presentation of the implemented functions.
Unless otherwise specified <type> and <t> have the following meanings:

<type> <t> Meaning

float ‘s’ or ‘S’ real single-precision

double ‘d’ or ‘D’ real double-precision

cuComplex ‘c’ or ‘C’ complex single-precision

cuDoubleComplex ‘z’ or ‘Z’ complex double-precision

The abbreviation Re(.) and Im(.) will stand for the real and imaginary part of a number,
respectively. Since imaginary part of a real number does not exist, we will consider it to
be zero and can usually simply discard it from the equation where it is being used. Also,
the will denote the complex conjugate of .

Using the CUBLASXT API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 115

In general throughout the documentation, the lower case Greek symbols and will
denote scalars, lower case English letters in bold type and will denote vectors and
capital English letters , and will denote matrices.

3.4.1. cublasXt<t>gemm()
cublasStatus_t cublasXtMgSgemm(cublasXtHandle_t handle,
 cublasOperation_t transa, cublasOperation_t transb,
 size_t m, size_t n, size_t k,
 const float *alpha,
 const float *A, int lda,
 const float *B, int ldb,
 const float *beta,
 float *C, int ldc)
cublasStatus_t cublasXtDgemm(cublasXtHandle_t handle,
 cublasOperation_t transa, cublasOperation_t transb,
 int m, int n, int k,
 const double *alpha,
 const double *A, int lda,
 const double *B, int ldb,
 const double *beta,
 double *C, int ldc)
cublasStatus_t cublasXtCgemm(cublasXtHandle_t handle,
 cublasOperation_t transa, cublasOperation_t transb,
 int m, int n, int k,
 const cuComplex *alpha,
 const cuComplex *A, int lda,
 const cuComplex *B, int ldb,
 const cuComplex *beta,
 cuComplex *C, int ldc)
cublasStatus_t cublasXtZgemm(cublasXtHandle_t handle,
 cublasOperation_t transa, cublasOperation_t transb,
 int m, int n, int k,
 const cuDoubleComplex *alpha,
 const cuDoubleComplex *A, int lda,
 const cuDoubleComplex *B, int ldb,
 const cuDoubleComplex *beta,
 cuDoubleComplex *C, int ldc)

This function performs the matrix-matrix multiplication

where and are scalars, and , and are matrices stored in column-major format
with dimensions , and , respectively. Also, for matrix

and is defined similarly for matrix .

Param. In/out Meaning

handle input handle to the cublasXt API context.

transa input operation op(A) that is non- or (conj.) transpose.

transb input operation op(B) that is non- or (conj.) transpose.

m input number of rows of matrix op(A) and C.

Using the CUBLASXT API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 116

Param. In/out Meaning

n input number of columns of matrix op(B) and C.

k input number of columns of op(A) and rows of op(B).

alpha input <type> scalar used for multiplication.

A input <type> array of dimensions lda x k with lda>=max(1,m) if transa ==
CUBLAS_OP_N and lda x m with lda>=max(1,k) otherwise.

lda input leading dimension of two-dimensional array used to store the matrix A.

B input <type> array of dimension ldb x n with ldb>=max(1,k) if transa ==
CUBLAS_OP_N and ldb x k with ldb>=max(1,n) otherwise.

ldb input leading dimension of two-dimensional array used to store matrix B.

beta input <type> scalar used for multiplication. If beta==0, C does not have to be a
valid input.

C in/out <type> array of dimensions ldc x n with ldc>=max(1,m).

ldc input leading dimension of a two-dimensional array used to store the matrix C.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters m,n,k<0

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

sgemm, dgemm, cgemm, zgemm

3.4.2. cublasXt<t>hemm()
cublasStatus_t cublasXtChemm(cublasXtHandle_t handle,
 cublasSideMode_t side, cublasFillMode_t uplo,
 size_t m, size_t n,
 const cuComplex *alpha,
 const cuComplex *A, size_t lda,
 const cuComplex *B, size_t ldb,
 const cuComplex *beta,
 cuComplex *C, size_t ldc)
cublasStatus_t cublasXtZhemm(cublasXtHandle_t handle,
 cublasSideMode_t side, cublasFillMode_t uplo,
 size_t m, size_t n,
 const cuDoubleComplex *alpha,
 const cuDoubleComplex *A, size_t lda,
 const cuDoubleComplex *B, size_t ldb,
 const cuDoubleComplex *beta,
 cuDoubleComplex *C, size_t ldc)

http://www.netlib.org/blas/sgemm.f
http://www.netlib.org/blas/dgemm.f
http://www.netlib.org/blas/cgemm.f
http://www.netlib.org/blas/zgemm.f

Using the CUBLASXT API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 117

This function performs the Hermitian matrix-matrix multiplication

where is a Hermitian matrix stored in lower or upper mode, and are
matrices, and and are scalars.

Param. In/out Meaning

handle input handle to the cublasXt API context.

side input indicates if matrix A is on the left or right of B.

uplo input indicates if matrix A lower or upper part is stored, the other Hermitian part
is not referenced and is inferred from the stored elements.

m input number of rows of matrix C and B, with matrix A sized accordingly.

n input number of columns of matrix C and B, with matrix A sized accordingly.

alpha input <type> scalar used for multiplication.

A input <type> array of dimension lda x m with lda>=max(1,m) if
side==CUBLAS_SIDE_LEFT and lda x n with lda>=max(1,n) otherwise.
The imaginary parts of the diagonal elements are assumed to be zero.

lda input leading dimension of two-dimensional array used to store matrix A.

B input <type> array of dimension ldb x n with ldb>=max(1,m).

ldb input leading dimension of two-dimensional array used to store matrix B.

beta input <type> scalar used for multiplication, if beta==0 then C does not have to
be a valid input.

C in/out <type> array of dimensions ldc x n with ldc>=max(1,m).

ldc input leading dimension of two-dimensional array used to store matrix C.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters m,n<0

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

chemm, zhemm

http://www.netlib.org/blas/chemm.f
http://www.netlib.org/blas/zhemm.f

Using the CUBLASXT API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 118

3.4.3. cublasXt<t>symm()
cublasStatus_t cublasXtSsymm(cublasXtHandle_t handle,
 cublasSideMode_t side, cublasFillMode_t uplo,
 size_t m, size_t n,
 const float *alpha,
 const float *A, size_t lda,
 const float *B, size_t ldb,
 const float *beta,
 float *C, size_t ldc)
cublasStatus_t cublasXtDsymm(cublasXtHandle_t handle,
 cublasSideMode_t side, cublasFillMode_t uplo,
 size_t m, size_t n,
 const double *alpha,
 const double *A, size_t lda,
 const double *B, size_t ldb,
 const double *beta,
 double *C, size_t ldc)
cublasStatus_t cublasXtCsymm(cublasXtHandle_t handle,
 cublasSideMode_t side, cublasFillMode_t uplo,
 size_t m, size_t n,
 const cuComplex *alpha,
 const cuComplex *A, size_t lda,
 const cuComplex *B, size_t ldb,
 const cuComplex *beta,
 cuComplex *C, size_t ldc)
cublasStatus_t cublasXtZsymm(cublasXtHandle_t handle,
 cublasSideMode_t side, cublasFillMode_t uplo,
 size_t m, size_t n,
 const cuDoubleComplex *alpha,
 const cuDoubleComplex *A, size_t lda,
 const cuDoubleComplex *B, size_t ldb,
 const cuDoubleComplex *beta,
 cuDoubleComplex *C, size_t ldc)

This function performs the symmetric matrix-matrix multiplication

where is a symmetric matrix stored in lower or upper mode, and are
matrices, and and are scalars.

Param. In/out Meaning

handle input handle to the cublasXt API context.

side input indicates if matrix A is on the left or right of B.

uplo input indicates if matrix A lower or upper part is stored, the other symmetric part
is not referenced and is inferred from the stored elements.

m input number of rows of matrix A and B, with matrix A sized accordingly.

n input number of columns of matrix C and A, with matrix A sized accordingly.

alpha input <type> scalar used for multiplication.

A input <type> array of dimension lda x m with lda>=max(1,m) if side ==
CUBLAS_SIDE_LEFT and lda x n with lda>=max(1,n) otherwise.

lda input leading dimension of two-dimensional array used to store matrix A.

Using the CUBLASXT API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 119

Param. In/out Meaning

B input <type> array of dimension ldb x n with ldb>=max(1,m).

ldb input leading dimension of two-dimensional array used to store matrix B.

beta input <type> scalar used for multiplication, if beta == 0 then C does not have to
be a valid input.

C in/out <type> array of dimension ldc x n with ldc>=max(1,m).

ldc input leading dimension of two-dimensional array used to store matrix C.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters m,n<0

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

ssymm, dsymm, csymm, zsymm

3.4.4. cublasXt<t>syrk()
cublasStatus_t cublasXtSsyrk(cublasXtHandle_t handle,
 cublasFillMode_t uplo, cublasOperation_t trans,
 int n, int k,
 const float *alpha,
 const float *A, int lda,
 const float *beta,
 float *C, int ldc)
cublasStatus_t cublasXtDsyrk(cublasXtHandle_t handle,
 cublasFillMode_t uplo, cublasOperation_t trans,
 int n, int k,
 const double *alpha,
 const double *A, int lda,
 const double *beta,
 double *C, int ldc)
cublasStatus_t cublasXtCsyrk(cublasXtHandle_t handle,
 cublasFillMode_t uplo, cublasOperation_t trans,
 int n, int k,
 const cuComplex *alpha,
 const cuComplex *A, int lda,
 const cuComplex *beta,
 cuComplex *C, int ldc)
cublasStatus_t cublasXtZsyrk(cublasXtHandle_t handle,
 cublasFillMode_t uplo, cublasOperation_t trans,
 int n, int k,
 const cuDoubleComplex *alpha,
 const cuDoubleComplex *A, int lda,
 const cuDoubleComplex *beta,
 cuDoubleComplex *C, int ldc)

This function performs the symmetric rank- update

http://www.netlib.org/blas/ssymm.f
http://www.netlib.org/blas/dsymm.f
http://www.netlib.org/blas/csymm.f
http://www.netlib.org/blas/zsymm.f

Using the CUBLASXT API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 120

where and are scalars, is a symmetric matrix stored in lower or upper mode, and
 is a matrix with dimensions . Also, for matrix

Param. In/out Meaning

handle input handle to the cublasXt API context.

uplo input indicates if matrix C lower or upper part is stored, the other symmetric part
is not referenced and is inferred from the stored elements.

trans input operation op(A) that is non- or transpose.

n input number of rows of matrix op(A) and C.

k input number of columns of matrix op(A).

alpha input <type> scalar used for multiplication.

A input <type> array of dimension lda x k with lda>=max(1,n) if trans ==
CUBLAS_OP_N and lda x n with lda>=max(1,k) otherwise.

lda input leading dimension of two-dimensional array used to store matrix A.

beta input <type> scalar used for multiplication, if beta==0 then C does not have to
be a valid input.

C in/out <type> array of dimension ldc x n, with ldc>=max(1,n).

ldc input leading dimension of two-dimensional array used to store matrix C.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters n,k<0

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

ssyrk, dsyrk, csyrk, zsyrk

http://www.netlib.org/blas/ssyrk.f
http://www.netlib.org/blas/dsyrk.f
http://www.netlib.org/blas/csyrk.f
http://www.netlib.org/blas/zsyrk.f

Using the CUBLASXT API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 121

3.4.5. cublasXt<t>syr2k()
cublasStatus_t cublasXtSsyr2k(cublasXtHandle_t handle,
 cublasFillMode_t uplo, cublasOperation_t trans,
 size_t n, size_t k,
 const float *alpha,
 const float *A, size_t lda,
 const float *B, size_t ldb,
 const float *beta,
 float *C, size_t ldc)
cublasStatus_t cublasXtDsyr2k(cublasXtHandle_t handle,
 cublasFillMode_t uplo, cublasOperation_t trans,
 size_t n, size_t k,
 const double *alpha,
 const double *A, size_t lda,
 const double *B, size_t ldb,
 const double *beta,
 double *C, size_t ldc)
cublasStatus_t cublasXtCsyr2k(cublasXtHandle_t handle,
 cublasFillMode_t uplo, cublasOperation_t trans,
 size_t n, size_t k,
 const cuComplex *alpha,
 const cuComplex *A, size_t lda,
 const cuComplex *B, size_t ldb,
 const cuComplex *beta,
 cuComplex *C, size_t ldc)
cublasStatus_t cublasXtZsyr2k(cublasXtHandle_t handle,
 cublasFillMode_t uplo, cublasOperation_t trans,
 size_t n, size_t k,
 const cuDoubleComplex *alpha,
 const cuDoubleComplex *A, size_t lda,
 const cuDoubleComplex *B, size_t ldb,
 const cuDoubleComplex *beta,
 cuDoubleComplex *C, size_t ldc)

This function performs the symmetric rank- update

where and are scalars, is a symmetric matrix stored in lower or upper mode, and
 and are matrices with dimensions and , respectively. Also,

for matrix and

Param. In/out Meaning

handle input handle to the cublasXt API context.

uplo input indicates if matrix C lower or upper part, is stored, the other symmetric
part is not referenced and is inferred from the stored elements.

trans input operation op(A) that is non- or transpose.

n input number of rows of matrix op(A), op(B) and C.

k input number of columns of matrix op(A) and op(B).

alpha input <type> scalar used for multiplication.

Using the CUBLASXT API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 122

Param. In/out Meaning

A input <type> array of dimension lda x k with lda>=max(1,n) if transa ==
CUBLAS_OP_N and lda x n with lda>=max(1,k) otherwise.

lda input leading dimension of two-dimensional array used to store matrix A.

B input <type> array of dimensions ldb x k with ldb>=max(1,n) if transa ==
CUBLAS_OP_N and ldb x n with ldb>=max(1,k) otherwise.

ldb input leading dimension of two-dimensional array used to store matrix B.

beta input <type> scalar used for multiplication, if beta==0, then C does not have to
be a valid input.

C in/out <type> array of dimensions ldc x n with ldc>=max(1,n).

ldc input leading dimension of two-dimensional array used to store matrix C.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters n,k<0

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

ssyr2k, dsyr2k, csyr2k, zsyr2k

http://www.netlib.org/blas/ssyr2k.f
http://www.netlib.org/blas/dsyr2k.f
http://www.netlib.org/blas/csyr2k.f
http://www.netlib.org/blas/zsyr2k.f

Using the CUBLASXT API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 123

3.4.6. cublasXt<t>syrkx()

cublasStatus_t cublasXtSsyrkx(cublasXtHandle_t handle,
 cublasFillMode_t uplo, cublasOperation_t trans,
 size_t n, size_t k,
 const float *alpha,
 const float *A, size_t lda,
 const float *B, size_t ldb,
 const float *beta,
 float *C, size_t ldc)
cublasStatus_t cublasXtDsyrkx(cublasXtHandle_t handle,
 cublasFillMode_t uplo, cublasOperation_t trans,
 size_t n, size_t k,
 const double *alpha,
 const double *A, size_t lda,
 const double *B, size_t ldb,
 const double *beta,
 double *C, size_t ldc)
cublasStatus_t cublasXtCsyrkx(cublasXtHandle_t handle,
 cublasFillMode_t uplo, cublasOperation_t trans,
 size_t n, size_t k,
 const cuComplex *alpha,
 const cuComplex *A, size_t lda,
 const cuComplex *B, size_t ldb,
 const cuComplex *beta,
 cuComplex *C, size_t ldc)
cublasStatus_t cublasXtZsyrkx(cublasXtHandle_t handle,
 cublasFillMode_t uplo, cublasOperation_t trans,
 size_t n, size_t k,
 const cuDoubleComplex *alpha,
 const cuDoubleComplex *A, size_t lda,
 const cuDoubleComplex *B, size_t ldb,
 const cuDoubleComplex *beta,
 cuDoubleComplex *C, size_t ldc)

This function performs a variation of the symmetric rank- update

where and are scalars, is a symmetric matrix stored in lower or upper mode, and
 and are matrices with dimensions and , respectively. Also,

for matrix and

This routine can be used when B is in such way that the result is garanteed to be
symmetric. An usual example is when the matrix B is a scaled form of the matrix A : this
is equivalent to B being the product of the matrix A and a diagonal matrix.

Param. In/out Meaning

handle input handle to the cublasXt API context.

uplo input indicates if matrix C lower or upper part, is stored, the other symmetric
part is not referenced and is inferred from the stored elements.

trans input operation op(A) that is non- or transpose.

Using the CUBLASXT API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 124

Param. In/out Meaning

n input number of rows of matrix op(A), op(B) and C.

k input number of columns of matrix op(A) and op(B).

alpha input <type> scalar used for multiplication.

A input <type> array of dimension lda x k with lda>=max(1,n) if transa ==
CUBLAS_OP_N and lda x n with lda>=max(1,k) otherwise.

lda input leading dimension of two-dimensional array used to store matrix A.

B input <type> array of dimensions ldb x k with ldb>=max(1,n) if transa ==
CUBLAS_OP_N and ldb x n with ldb>=max(1,k) otherwise.

ldb input leading dimension of two-dimensional array used to store matrix B.

beta input <type> scalar used for multiplication, if beta==0, then C does not have to
be a valid input.

C in/out <type> array of dimensions ldc x n with ldc>=max(1,n).

ldc input leading dimension of two-dimensional array used to store matrix C.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters n,k<0

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

ssyrk, dsyrk, csyrk, zsyrk and

ssyr2k, dsyr2k, csyr2k, zsyr2k

3.4.7. cublasXt<t>herk()
cublasStatus_t cublasXtCherk(cublasXtHandle_t handle,
 cublasFillMode_t uplo, cublasOperation_t trans,
 int n, int k,
 const float *alpha,
 const cuComplex *A, int lda,
 const float *beta,
 cuComplex *C, int ldc)
cublasStatus_t cublasXtZherk(cublasXtHandle_t handle,
 cublasFillMode_t uplo, cublasOperation_t trans,
 int n, int k,
 const double *alpha,
 const cuDoubleComplex *A, int lda,
 const double *beta,
 cuDoubleComplex *C, int ldc)

http://www.netlib.org/blas/ssyrk.f
http://www.netlib.org/blas/dsyrk.f
http://www.netlib.org/blas/csyrk.f
http://www.netlib.org/blas/zsyrk.f
http://www.netlib.org/blas/ssyr2k.f
http://www.netlib.org/blas/dsyr2k.f
http://www.netlib.org/blas/csyr2k.f
http://www.netlib.org/blas/zsyr2k.f

Using the CUBLASXT API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 125

This function performs the Hermitian rank- update

where and are scalars, is a Hermitian matrix stored in lower or upper mode, and
 is a matrix with dimensions . Also, for matrix

Param. In/out Meaning

handle input handle to the cublasXt API context.

uplo input indicates if matrix A lower or upper part is stored, the other Hermitian part
is not referenced and is inferred from the stored elements.

trans input operation op(A) that is non- or (conj.) transpose.

n input number of rows of matrix op(A) and C.

k input number of columns of matrix op(A).

alpha input <type> scalar used for multiplication.

A input <type> array of dimension lda x k with lda>=max(1,n) if transa ==
CUBLAS_OP_N and lda x n with lda>=max(1,k) otherwise.

lda input leading dimension of two-dimensional array used to store matrix A.

beta input <type> scalar used for multiplication, if beta==0 then C does not have to
be a valid input.

C in/out <type> array of dimension ldc x n, with ldc>=max(1,n). The imaginary
parts of the diagonal elements are assumed and set to zero.

ldc input leading dimension of two-dimensional array used to store matrix C.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters n,k<0

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

cherk, zherk

http://www.netlib.org/blas/cherk.f
http://www.netlib.org/blas/zherk.f

Using the CUBLASXT API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 126

3.4.8. cublasXt<t>her2k()
cublasStatus_t cublasXtCher2k(cublasXtHandle_t handle,
 cublasFillMode_t uplo, cublasOperation_t trans,
 size_t n, size_t k,
 const cuComplex *alpha,
 const cuComplex *A, size_t lda,
 const cuComplex *B, size_t ldb,
 const float *beta,
 cuComplex *C, size_t ldc)
cublasStatus_t cublasXtZher2k(cublasXtHandle_t handle,
 cublasFillMode_t uplo, cublasOperation_t trans,
 size_t n, size_t k,
 const cuDoubleComplex *alpha,
 const cuDoubleComplex *A, size_t lda,
 const cuDoubleComplex *B, size_t ldb,
 const double *beta,
 cuDoubleComplex *C, size_t ldc)

This function performs the Hermitian rank- update

where and are scalars, is a Hermitian matrix stored in lower or upper mode, and
 and are matrices with dimensions and , respectively. Also,

for matrix and

Param. In/out Meaning

handle input handle to the cublasXt API context.

uplo input indicates if matrix A lower or upper part is stored, the other Hermitian part
is not referenced and is inferred from the stored elements.

trans input operation op(A) that is non- or (conj.) transpose.

n input number of rows of matrix op(A), op(B) and C.

k input number of columns of matrix op(A) and op(B).

alpha input <type> scalar used for multiplication.

A input <type> array of dimension lda x k with lda>=max(1,n) if transa ==
CUBLAS_OP_N and lda x n with lda>=max(1,k) otherwise.

lda input leading dimension of two-dimensional array used to store matrix A.

B input <type> array of dimension ldb x k with ldb>=max(1,n) if transa ==
CUBLAS_OP_N and ldb x n with ldb>=max(1,k) otherwise.

ldb input leading dimension of two-dimensional array used to store matrix B.

beta input <type> scalar used for multiplication, if beta==0 then C does not have to
be a valid input.

C in/out <type> array of dimension ldc x n, with ldc>=max(1,n). The imaginary
parts of the diagonal elements are assumed and set to zero.

Using the CUBLASXT API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 127

Param. In/out Meaning

ldc input leading dimension of two-dimensional array used to store matrix C.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters n,k<0

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

cher2k, zher2k

3.4.9. cublasXt<t>herkx()
cublasStatus_t cublasXtCherkx(cublasXtHandle_t handle,
 cublasFillMode_t uplo, cublasOperation_t trans,
 size_t n, size_t k,
 const cuComplex *alpha,
 const cuComplex *A, size_t lda,
 const cuComplex *B, size_t ldb,
 const float *beta,
 cuComplex *C, size_t ldc)
cublasStatus_t cublasXtZherkx(cublasXtHandle_t handle,
 cublasFillMode_t uplo, cublasOperation_t trans,
 size_t n, size_t k,
 const cuDoubleComplex *alpha,
 const cuDoubleComplex *A, size_t lda,
 const cuDoubleComplex *B, size_t ldb,
 const double *beta,
 cuDoubleComplex *C, size_t ldc)

This function performs a variation of the Hermitian rank- update

where and are scalars, is a Hermitian matrix stored in lower or upper mode, and
 and are matrices with dimensions and , respectively. Also,

for matrix and

This routine can be used when the matrix B is in such way that the result is garanteed to
be hermitian. An usual example is when the matrix B is a scaled form of the matrix A :
this is equivalent to B being the product of the matrix A and a diagonal matrix. For an
efficient computation of the product of a regular matrix with a diagonal matrix, refer to
the routine cublasXt<t>dgmm.

http://www.netlib.org/blas/cher2k.f
http://www.netlib.org/blas/zher2k.f

Using the CUBLASXT API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 128

Param. In/out Meaning

handle input handle to the cublasXt API context.

uplo input indicates if matrix A lower or upper part is stored, the other Hermitian part
is not referenced and is inferred from the stored elements.

trans input operation op(A) that is non- or (conj.) transpose.

n input number of rows of matrix op(A), op(B) and C.

k input number of columns of matrix op(A) and op(B).

alpha input <type> scalar used for multiplication.

A input <type> array of dimension lda x k with lda>=max(1,n) if transa ==
CUBLAS_OP_N and lda x n with lda>=max(1,k) otherwise.

lda input leading dimension of two-dimensional array used to store matrix A.

B input <type> array of dimension ldb x k with ldb>=max(1,n) if transa ==
CUBLAS_OP_N and ldb x n with ldb>=max(1,k) otherwise.

ldb input leading dimension of two-dimensional array used to store matrix B.

beta input real scalar used for multiplication, if beta==0 then C does not have to be a
valid input.

C in/out <type> array of dimension ldc x n, with ldc>=max(1,n). The imaginary
parts of the diagonal elements are assumed and set to zero.

ldc input leading dimension of two-dimensional array used to store matrix C.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters n,k<0

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

cherk, zherk and

cher2k, zher2k

http://www.netlib.org/blas/cherk.f
http://www.netlib.org/blas/zherk.f
http://www.netlib.org/blas/cher2k.f
http://www.netlib.org/blas/zher2k.f

Using the CUBLASXT API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 129

3.4.10. cublasXt<t>trsm()
cublasStatus_t cublasXtStrsm(cublasXtHandle_t handle,
 cublasSideMode_t side, cublasFillMode_t uplo,
 cublasOperation_t trans, cublasXtDiagType_t diag,
 size_t m, size_t n,
 const float *alpha,
 const float *A, size_t lda,
 float *B, size_t ldb)
cublasStatus_t cublasXtDtrsm(cublasXtHandle_t handle,
 cublasSideMode_t side, cublasFillMode_t uplo,
 cublasOperation_t trans, cublasXtDiagType_t diag,
 size_t m, size_t n,
 const double *alpha,
 const double *A, size_t lda,
 double *B, size_t ldb)
cublasStatus_t cublasXtCtrsm(cublasXtHandle_t handle,
 cublasSideMode_t side, cublasFillMode_t uplo,
 cublasOperation_t trans, cublasXtDiagType_t diag,
 size_t m, size_t n,
 const cuComplex *alpha,
 const cuComplex *A, size_t lda,
 cuComplex *B, size_t ldb)
cublasStatus_t cublasXtZtrsm(cublasXtHandle_t handle,
 cublasSideMode_t side, cublasFillMode_t uplo,
 cublasOperation_t trans, cublasXtDiagType_t diag,
 size_t m, size_t n,
 const cuDoubleComplex *alpha,
 const cuDoubleComplex *A, size_t lda,
 cuDoubleComplex *B, size_t ldb)

This function solves the triangular linear system with multiple right-hand-sides

where is a triangular matrix stored in lower or upper mode with or without the main
diagonal, and are matrices, and is a scalar. Also, for matrix

The solution overwrites the right-hand-sides on exit.

No test for singularity or near-singularity is included in this function.

Param. In/out Meaning

handle input handle to the cublasXt API context.

side input indicates if matrix A is on the left or right of X.

uplo input indicates if matrix A lower or upper part is stored, the other part is not
referenced and is inferred from the stored elements.

trans input operation op(A) that is non- or (conj.) transpose.

diag input indicates if the elements on the main diagonal of matrix A are unity and
should not be accessed.

Using the CUBLASXT API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 130

Param. In/out Meaning

m input number of rows of matrix B, with matrix A sized accordingly.

n input number of columns of matrix B, with matrix A is sized accordingly.

alpha input <type> scalar used for multiplication, if alpha==0 then A is not referenced
and B does not have to be a valid input.

A input <type> array of dimension lda x m with lda>=max(1,m) if side ==
CUBLAS_SIDE_LEFT and lda x n with lda>=max(1,n) otherwise.

lda input leading dimension of two-dimensional array used to store matrix A.

B in/out <type> array. It has dimensions ldb x n with ldb>=max(1,m).

ldb input leading dimension of two-dimensional array used to store matrix B.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters m,n<0

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

strsm, dtrsm, ctrsm, ztrsm

http://www.netlib.org/blas/strsm.f
http://www.netlib.org/blas/dtrsm.f
http://www.netlib.org/blas/ctrsm.f
http://www.netlib.org/blas/ztrsm.f

Using the CUBLASXT API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 131

3.4.11. cublasXt<t>trmm()
cublasStatus_t cublasXtStrmm(cublasXtHandle_t handle,
 cublasSideMode_t side, cublasFillMode_t uplo,
 cublasOperation_t trans, cublasDiagType_t diag,
 size_t m, size_t n,
 const float *alpha,
 const float *A, size_t lda,
 const float *B, size_t ldb,
 float *C, size_t ldc)
cublasStatus_t cublasXtDtrmm(cublasXtHandle_t handle,
 cublasSideMode_t side, cublasFillMode_t uplo,
 cublasOperation_t trans, cublasDiagType_t diag,
 size_t m, size_t n,
 const double *alpha,
 const double *A, size_t lda,
 const double *B, size_t ldb,
 double *C, size_t ldc)
cublasStatus_t cublasXtCtrmm(cublasXtHandle_t handle,
 cublasSideMode_t side, cublasFillMode_t uplo,
 cublasOperation_t trans, cublasDiagType_t diag,
 size_t m, size_t n,
 const cuComplex *alpha,
 const cuComplex *A, size_t lda,
 const cuComplex *B, size_t ldb,
 cuComplex *C, size_t ldc)
cublasStatus_t cublasXtZtrmm(cublasXtHandle_t handle,
 cublasSideMode_t side, cublasFillMode_t uplo,
 cublasOperation_t trans, cublasDiagType_t diag,
 size_t m, size_t n,
 const cuDoubleComplex *alpha,
 const cuDoubleComplex *A, size_t lda,
 const cuDoubleComplex *B, size_t ldb,
 cuDoubleComplex *C, size_t ldc)

This function performs the triangular matrix-matrix multiplication

where is a triangular matrix stored in lower or upper mode with or without the main
diagonal, and are matrix, and is a scalar. Also, for matrix

Notice that in order to achieve better parallelism, similarly to the cublas API, cublasXT
API differs from the BLAS API for this routine. The BLAS API assumes an in-place
implementation (with results written back to B), while the cublasXt API assumes an out-
of-place implementation (with results written into C). The application can still obtain the
in-place functionality of BLAS in the cublasXT API by passing the address of the matrix
B in place of the matrix C. No other overlapping in the input parameters is supported.

Param. Memory In/out Meaning

handle input handle to the cublasXt API context.

side input indicates if matrix A is on the left or right of B.

Using the CUBLASXT API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 132

Param. Memory In/out Meaning

uplo input indicates if matrix A lower or upper part is stored, the
other part is not referenced and is inferred from the stored
elements.

trans input operation op(A) that is non- or (conj.) transpose.

diag input indicates if the elements on the main diagonal of matrix A
are unity and should not be accessed.

m input number of rows of matrix B, with matrix A sized accordingly.

n input number of columns of matrix B, with matrix A sized
accordingly.

alpha host or device input <type> scalar used for multiplication, if alpha==0 then A is
not referenced and B does not have to be a valid input.

A device input <type> array of dimension lda x m with lda>=max(1,m)
if side == CUBLAS_SIDE_LEFT and lda x n with
lda>=max(1,n) otherwise.

lda input leading dimension of two-dimensional array used to store
matrix A.

B device input <type> array of dimension ldb x n with ldb>=max(1,m).

ldb input leading dimension of two-dimensional array used to store
matrix B.

C device in/out <type> array of dimension ldc x n with ldc>=max(1,m).

ldc input leading dimension of two-dimensional array used to store
matrix C.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters m,n<0

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

strmm, dtrmm, ctrmm, ztrmm

http://www.netlib.org/blas/strmm.f
http://www.netlib.org/blas/dtrmm.f
http://www.netlib.org/blas/ctrmm.f
http://www.netlib.org/blas/ztrmm.f

Using the CUBLASXT API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 133

3.4.12. cublasXt<t>spmm()
cublasStatus_t cublasXtSspmm(cublasXtHandle_t handle,
 cublasSideMode_t side,
 cublasFillMode_t uplo,
 size_t m,
 size_t n,
 const float *alpha,
 const float *AP,
 const float *B,
 size_t ldb,
 const float *beta,
 float *C,
 size_t ldc);

cublasStatus_t cublasXtDspmm(cublasXtHandle_t handle,
 cublasSideMode_t side,
 cublasFillMode_t uplo,
 size_t m,
 size_t n,
 const double *alpha,
 const double *AP,
 const double *B,
 size_t ldb,
 const double *beta,
 double *C,
 size_t ldc);

cublasStatus_t cublasXtCspmm(cublasXtHandle_t handle,
 cublasSideMode_t side,
 cublasFillMode_t uplo,
 size_t m,
 size_t n,
 const cuComplex *alpha,
 const cuComplex *AP,
 const cuComplex *B,
 size_t ldb,
 const cuComplex *beta,
 cuComplex *C,
 size_t ldc);

cublasStatus_t cublasXtZspmm(cublasXtHandle_t handle,
 cublasSideMode_t side,
 cublasFillMode_t uplo,
 size_t m,
 size_t n,
 const cuDoubleComplex *alpha,
 const cuDoubleComplex *AP,

 const cuDoubleComplex *B,
 size_t ldb,
 const cuDoubleComplex *beta,
 cuDoubleComplex *C,
 size_t ldc);

This function performs the symmetric packed matrix-matrix multiplication

where is a symmetric matrix stored in packed format, and are
matrices, and and are scalars.

Using the CUBLASXT API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 134

If uplo == CUBLAS_FILL_MODE_LOWER then the elements in the lower triangular part
of the symmetric matrix are packed together column by column without gaps, so
that the element is stored in the memory location AP[i+((2*n-j+1)*j)/2] for

 and . Consequently, the packed format requires only elements
for storage.

If uplo == CUBLAS_FILL_MODE_UPPER then the elements in the upper triangular part
of the symmetric matrix are packed together column by column without gaps, so that
the element is stored in the memory location AP[i+(j*(j+1))/2] for

and . Consequently, the packed format requires only elements for storage.

Param. In/out Meaning

handle input handle to the cublasXt API context.

side input indicates if matrix A is on the left or right of B.

uplo input indicates if matrix A lower or upper part is stored, the other symmetric part
is not referenced and is inferred from the stored elements.

m input number of rows of matrix A and B, with matrix A sized accordingly.

n input number of columns of matrix C and A, with matrix A sized accordingly.

alpha input <type> scalar used for multiplication.

AP input <type> array with stored in packed format.

B input <type> array of dimension ldb x n with ldb>=max(1,m).

ldb input leading dimension of two-dimensional array used to store matrix B.

beta input <type> scalar used for multiplication, if beta == 0 then C does not have to
be a valid input.

C in/out <type> array of dimension ldc x n with ldc>=max(1,m).

ldc input leading dimension of two-dimensional array used to store matrix C.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parameters m,n<0

CUBLAS_STATUS_ARCH_MISMATCH the device does not support double-precision

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

ssymm, dsymm, csymm, zsymm

http://www.netlib.org/blas/ssymm.f
http://www.netlib.org/blas/dsymm.f
http://www.netlib.org/blas/csymm.f
http://www.netlib.org/blas/zsymm.f

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 135

Appendix A.
USING THE CUBLAS LEGACY API

This appendix does not provide a full reference of each Legacy API datatype and entry
point. Instead, it describes how to use the API, especially where this is different from the
regular cuBLAS API.

Note that in this section, all references to the “cuBLAS Library” refer to the Legacy
cuBLAS API only.

A.1. Error Status
The cublasStatus type is used for function status returns. The cuBLAS Library helper
functions return status directly, while the status of core functions can be retrieved using
cublasGetError(). Notice that reading the error status via cublasGetError(), resets
the internal error state to CUBLAS_STATUS_SUCCESS. Currently, the following values for
are defined:

Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_ALLOC_FAILED the resource allocation failed

CUBLAS_STATUS_INVALID_VALUE an invalid numerical value was used as an
argument

CUBLAS_STATUS_ARCH_MISMATCH an absent device architectural feature is required

CUBLAS_STATUS_MAPPING_ERROR an access to GPU memory space failed

CUBLAS_STATUS_EXECUTION_FAILED the GPU program failed to execute

CUBLAS_STATUS_INTERNAL_ERROR an internal operation failed

CUBLAS_STATUS_NOT_SUPPORTED the feature required is not supported

This legacy type corresponds to type cublasStatus_t in the cuBLAS library API.

Using the cuBLAS Legacy API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 136

A.2. Initialization and Shutdown
The functions cublasInit() and cublasShutdown() are used to initialize and
shutdown the cuBLAS library. It is recommended for cublasInit() to be called before
any other function is invoked. It allocates hardware resources on the GPU device that is
currently bound to the host thread from which it was invoked.

The legacy initialization and shutdown functions are similar to the cuBLAS library API
routines cublasCreate() and cublasDestroy().

A.3. Thread Safety
The legacy API is not thread safe when used with multiple host threads and devices. It is
recommended to be used only when utmost compatibility with Fortran is required and
when a single host thread is used to setup the library and make all the functions calls.

A.4. Memory Management
The memory used by the legacy cuBLAS library API is allocated and released using
functions cublasAlloc() and cublasFree(), respectively. These functions create and
destroy an object in the GPU memory space capable of holding an array of n elements,
where each element requires elemSize bytes of storage. Please see the legacy cuBLAS
API header file “cublas.h” for the prototypes of these functions.

The function cublasAlloc() is a wrapper around the function cudaMalloc(),
therefore device pointers returned by cublasAlloc() can be passed to any CUDA™
device kernel functions. However, these device pointers can not be dereferenced in the
host code. The function cublasFree() is a wrapper around the function cudaFree().

A.5. Scalar Parameters
There are two categories of the functions that use scalar parameters :

‣ functions that take alpha and/or beta parameters by reference on the host or the
device as scaling factors, such as gemm

‣ functions that return a scalar result on the host or the device such as amax(), amin,
asum(), rotg(), rotmg(), dot() and nrm2().

For the functions of the first category, when the pointer mode is set to
CUBLAS_POINTER_MODE_HOST, the scalar parameters alpha and/or beta can be
on the stack or allocated on the heap. Underneath the CUDA kernels related to
that functions will be launched with the value of alpha and/or beta. Therefore if
they were allocated on the heap, they can be freed just after the return of the call
even though the kernel launch is asynchronous. When the pointer mode is set to
CUBLAS_POINTER_MODE_DEVICE, alpha and/or beta must be accessible on the

Using the cuBLAS Legacy API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 137

device and their values should not be modified until the kernel is done. Note that since
cudaFree() does an implicit cudaDeviceSynchronize(), cudaFree() can still be
called on alpha and/or beta just after the call but it would defeat the purpose of using
this pointer mode in that case.

For the functions of the second category, when the pointer mode is set to
CUBLAS_POINTER_MODE_HOST, these functions blocks the CPU, until the GPU has
completed its computation and the results has been copied back to the Host. When
the pointer mode is set to CUBLAS_POINTER_MODE_DEVICE, these functions return
immediately. In this case, similarly to matrix and vector results, the scalar result is ready
only when execution of the routine on the GPU has completed. This requires proper
synchronization in order to read the result from the host.

In either case, the pointer mode CUBLAS_POINTER_MODE_DEVICE allows the library
functions to execute completely asynchronously from the Host even when alpha
and/or beta are generated by a previous kernel. For example, this situation can arise
when iterative methods for solution of linear systems and eigenvalue problems are
implemented using the cuBLAS library.

A.6. Helper Functions
In this section we list the helper functions provided by the legacy cuBLAS API and
their functionality. For the exact prototypes of these functions please refer to the legacy
cuBLAS API header file “cublas.h”.

Helper function Meaning

cublasInit() initialize the library

cublasShutdown() shuts down the library

cublasGetError() retrieves the error status of the library

cublasSetKernelStream() sets the stream to be used by the library

cublasAlloc() allocates the device memory for the library

cublasFree() releases the device memory allocated for the
library

cublasSetVector() copies a vector x on the host to a vector on the
GPU

cublasGetVector() copies a vector x on the GPU to a vector on the
host

cublasSetMatrix() copies a tile from a matrix on the host to
the GPU

cublasGetMatrix() copies a tile from a matrix on the GPU to
the host

cublasSetVectorAsync() similar to cublasSetVector(), but the copy is
asynchronous

Using the cuBLAS Legacy API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 138

Helper function Meaning

cublasGetVectorAsync() similar to cublasGetVector(), but the copy is
asynchronous

cublasSetMatrixAsync() similar to cublasSetMatrix(), but the copy is
asynchronous

cublasGetMatrixAsync() similar to cublasGetMatrix(), but the copy is
asynchronous

A.7. Level-1,2,3 Functions
The Level-1,2,3 cuBLAS functions (also called core functions) have the same name and
behavior as the ones listed in the chapters 3, 4 and 5 in this document. Please refer to
the legacy cuBLAS API header file “cublas.h” for their exact prototype. Also, the next
section talks a bit more about the differences between the legacy and the cuBLAS API
prototypes, more specifically how to convert the function calls from one API to another.

A.8. Converting Legacy to the cuBLAS API
There are a few general rules that can be used to convert from legacy to the cuBLAS API.

Exchange the header file “cublas.h” for “cublas_v2.h”.

Exchange the type cublasStatus for cublasStatus_t.

Exchange the function cublasSetKernelStream() for cublasSetStream().

Exchange the function cublasAlloc() and cublasFree() for cudaMalloc() and
cudaFree(), respectively. Notice that cudaMalloc() expects the size of the allocated
memory to be provided in bytes (usually simply provide n x elemSize to allocate n
elements, each of size elemSize bytes).

Declare the cublasHandle_t cuBLAS library handle.

Initialize the handle using cublasCreate(). Also, release the handle once finished
using cublasDestroy().

Add the handle as the first parameter to all the cuBLAS library function calls.

Change the scalar parameters to be passed by reference, instead of by value (usually
simply adding “&” symbol in C/C++ is enough, because the parameters are passed
by reference on the host by default). However, note that if the routine is running
asynchronously, then the variable holding the scalar parameter cannot be changed until
the kernels that the routine dispatches are completed. See the CUDA C Programming
Guide for a detailed discussion of how to use streams.

Change the parameter characters 'N' or 'n' (non-transpose operation), 'T' or 't'
(transpose operation) and 'C' or 'c' (conjugate transpose operation) to CUBLAS_OP_N,
CUBLAS_OP_T and CUBLAS_OP_C, respectively.

Using the cuBLAS Legacy API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 139

Change the parameter characters 'L' or 'l' (lower part filled) and 'U' or 'u'
(upper part filled) to CUBLAS_FILL_MODE_LOWER and CUBLAS_FILL_MODE_UPPER,
respectively.

Change the parameter characters 'N' or 'n' (non-unit diagonal) and 'U' or 'u' (unit
diagonal) to CUBLAS_DIAG_NON_UNIT and CUBLAS_DIAG_UNIT, respectively.

Change the parameter characters 'L' or 'l' (left side) and 'R' or 'r' (right side) to
CUBLAS_SIDE_LEFT and CUBLAS_SIDE_RIGHT, respectively.

If the legacy API function returns a scalar value, add an extra scalar parameter of the
same type passed by reference, as the last parameter to the same function.

Instead of using cublasGetError, use the return value of the function itself to check for
errors.

Finally, please use the function prototypes in the header files “cublas.h” and
“cublas_v2.h” to check the code for correctness.

A.9. Examples
For sample code references that use the legacy cuBLAS API please see the two examples
below. They show an application written in C using the legacy cuBLAS library API
with two indexing styles (Example A.1. "Application Using C and cuBLAS: 1-based
indexing" and Example A.2. "Application Using C and cuBLAS: 0-based Indexing"). This

Using the cuBLAS Legacy API

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 140

application is analogous to the one using the cuBLAS library API that is shown in the
Introduction chapter.
//Example A.1. Application Using C and cuBLAS: 1-based indexing
//---
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "cublas.h"
#define M 6
#define N 5
#define IDX2F(i,j,ld) ((((j)-1)*(ld))+((i)-1))

static __inline__ void modify (float *m, int ldm, int n, int p, int q, float
 alpha, float beta){
 cublasSscal (n-p+1, alpha, &m[IDX2F(p,q,ldm)], ldm);
 cublasSscal (ldm-p+1, beta, &m[IDX2F(p,q,ldm)], 1);
}

int main (void){
 int i, j;
 cublasStatus stat;
 float* devPtrA;
 float* a = 0;
 a = (float *)malloc (M * N * sizeof (*a));
 if (!a) {
 printf ("host memory allocation failed");
 return EXIT_FAILURE;
 }
 for (j = 1; j <= N; j++) {
 for (i = 1; i <= M; i++) {
 a[IDX2F(i,j,M)] = (float)((i-1) * M + j);
 }
 }
 cublasInit();
 stat = cublasAlloc (M*N, sizeof(*a), (void**)&devPtrA);
 if (stat != cuBLAS_STATUS_SUCCESS) {
 printf ("device memory allocation failed");
 cublasShutdown();
 return EXIT_FAILURE;
 }
 stat = cublasSetMatrix (M, N, sizeof(*a), a, M, devPtrA, M);
 if (stat != cuBLAS_STATUS_SUCCESS) {
 printf ("data download failed");
 cublasFree (devPtrA);
 cublasShutdown();
 return EXIT_FAILURE;
 }
 modify (devPtrA, M, N, 2, 3, 16.0f, 12.0f);
 stat = cublasGetMatrix (M, N, sizeof(*a), devPtrA, M, a, M);
 if (stat != cuBLAS_STATUS_SUCCESS) {
 printf ("data upload failed");
 cublasFree (devPtrA);
 cublasShutdown();
 return EXIT_FAILURE;
 }
 cublasFree (devPtrA);
 cublasShutdown();
 for (j = 1; j <= N; j++) {
 for (i = 1; i <= M; i++) {
 printf ("%7.0f", a[IDX2F(i,j,M)]);
 }
 printf ("\n");
 }
 free(a);
 return EXIT_SUCCESS;
}

//Example A.2. Application Using C and cuBLAS: 0-based indexing
//---
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "cublas.h"
#define M 6
#define N 5
#define IDX2C(i,j,ld) (((j)*(ld))+(i))

static __inline__ void modify (float *m, int ldm, int n, int p, int q, float
 alpha, float beta){
 cublasSscal (n-p, alpha, &m[IDX2C(p,q,ldm)], ldm);
 cublasSscal (ldm-p, beta, &m[IDX2C(p,q,ldm)], 1);
}

int main (void){
 int i, j;
 cublasStatus stat;
 float* devPtrA;
 float* a = 0;
 a = (float *)malloc (M * N * sizeof (*a));
 if (!a) {
 printf ("host memory allocation failed");
 return EXIT_FAILURE;
 }
 for (j = 0; j < N; j++) {
 for (i = 0; i < M; i++) {
 a[IDX2C(i,j,M)] = (float)(i * M + j + 1);
 }
 }
 cublasInit();
 stat = cublasAlloc (M*N, sizeof(*a), (void**)&devPtrA);
 if (stat != cuBLAS_STATUS_SUCCESS) {
 printf ("device memory allocation failed");
 cublasShutdown();
 return EXIT_FAILURE;
 }
 stat = cublasSetMatrix (M, N, sizeof(*a), a, M, devPtrA, M);
 if (stat != cuBLAS_STATUS_SUCCESS) {
 printf ("data download failed");
 cublasFree (devPtrA);
 cublasShutdown();
 return EXIT_FAILURE;
 }
 modify (devPtrA, M, N, 1, 2, 16.0f, 12.0f);
 stat = cublasGetMatrix (M, N, sizeof(*a), devPtrA, M, a, M);
 if (stat != cuBLAS_STATUS_SUCCESS) {
 printf ("data upload failed");
 cublasFree (devPtrA);
 cublasShutdown();
 return EXIT_FAILURE;
 }
 cublasFree (devPtrA);
 cublasShutdown();
 for (j = 0; j < N; j++) {
 for (i = 0; i < M; i++) {
 printf ("%7.0f", a[IDX2C(i,j,M)]);
 }
 printf ("\n");
 }
 free(a);
 return EXIT_SUCCESS;
}

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 141

Appendix B.
CUBLAS FORTRAN BINDINGS

The cuBLAS library is implemented using the C-based CUDA toolchain, and thus
provides a C-style API. This makes interfacing to applications written in C and C++
trivial, but the library can also be used by applications written in Fortran. In particular,
the cuBLAS library uses 1-based indexing and Fortran-style column-major storage for
multidimensional data to simplify interfacing to Fortran applications. Unfortunately,
Fortran-to-C calling conventions are not standardized and differ by platform and
toolchain. In particular, differences may exist in the following areas:

‣ symbol names (capitalization, name decoration)
‣ argument passing (by value or reference)
‣ passing of string arguments (length information)
‣ passing of pointer arguments (size of the pointer)
‣ returning floating-point or compound data types (for example single-precision or

complex data types)

To provide maximum flexibility in addressing those differences, the cuBLAS Fortran
interface is provided in the form of wrapper functions and is part of the Toolkit delivery.
The C source code of those wrapper functions is located in the src directory and
provided in two different forms:

‣ the thunking wrapper interface located in the file fortran_thunking.c
‣ the direct wrapper interface located in the file fortran.c

The code of one of those 2 files needs to be compiled into an application for it to call
the cuBLAS API functions. Providing source code allows users to make any changes
necessary for a particular platform and toolchain.

The code in those two C files has been used to demonstrate interoperability with the
compilers g77 3.2.3 and g95 0.91 on 32-bit Linux, g77 3.4.5 and g95 0.91 on 64-bit Linux,
Intel Fortran 9.0 and Intel Fortran 10.0 on 32-bit and 64-bit Microsoft Windows XP, and
g77 3.4.0 and g95 0.92 on Mac OS X.

Note that for g77, use of the compiler flag -fno-second-underscore is required to use
these wrappers as provided. Also, the use of the default calling conventions with regard
to argument and return value passing is expected. Using the flag -fno-f2c changes the
default calling convention with respect to these two items.

cuBLAS Fortran Bindings

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 142

The thunking wrappers allow interfacing to existing Fortran applications without any
changes to the application. During each call, the wrappers allocate GPU memory, copy
source data from CPU memory space to GPU memory space, call cuBLAS, and finally
copy back the results to CPU memory space and deallocate the GPU memory. As this
process causes very significant call overhead, these wrappers are intended for light
testing, not for production code. To use the thunking wrappers, the application needs to
be compiled with the file fortran_thunking.c

The direct wrappers, intended for production code, substitute device pointers
for vector and matrix arguments in all BLAS functions. To use these interfaces,
existing applications need to be modified slightly to allocate and deallocate data
structures in GPU memory space (using cuBLAS_ALLOC and cuBLAS_FREE) and
to copy data between GPU and CPU memory spaces (using cuBLAS_SET_VECTOR,
cuBLAS_GET_VECTOR, cuBLAS_SET_MATRIX, and cuBLAS_GET_MATRIX). The
sample wrappers provided in fortran.c map device pointers to the OS-dependent type
size_t, which is 32-bit wide on 32-bit platforms and 64-bit wide on a 64-bit platforms.

One approach to deal with index arithmetic on device pointers in Fortran code is to use
C-style macros, and use the C preprocessor to expand these, as shown in the example
below. On Linux and Mac OS X, one way of pre-processing is to use the option ’-E -x
f77-cpp-input’ when using g77 compiler, or simply the option ’-cpp’ when using g95 or

cuBLAS Fortran Bindings

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 143

gfortran. On Windows platforms with Microsoft Visual C/C++, using ’cl -EP’ achieves
similar results.

! Example B.1. Fortran 77 Application Executing on the Host
! --
 subroutine modify (m, ldm, n, p, q, alpha, beta)
 implicit none
 integer ldm, n, p, q
 real*4 m (ldm, *) , alpha , beta
 external cublas_sscal
 call cublas_sscal (n-p+1, alpha , m(p,q), ldm)
 call cublas_sscal (ldm-p+1, beta, m(p,q), 1)
 return
 end

 program matrixmod
 implicit none
 integer M,N
 parameter (M=6, N=5)
 real*4 a(M,N)
 integer i, j
 external cublas_init
 external cublas_shutdown

 do j = 1, N
 do i = 1, M
 a(i, j) = (i-1)*M + j
 enddo
 enddo
 call cublas_init
 call modify (a, M, N, 2, 3, 16.0, 12.0)
 call cublas_shutdown
 do j = 1 , N
 do i = 1 , M
 write(*,"(F7.0$)") a(i,j)
 enddo
 write (*,*) ""
 enddo
 stop
 end

When traditional fixed-form Fortran 77 code is ported to use the cuBLAS library, line
length often increases when the BLAS calls are exchanged for cuBLAS calls. Longer
function names and possible macro expansion are contributing factors. Inadvertently
exceeding the maximum line length can lead to run-time errors that are difficult to find,
so care should be taken not to exceed the 72-column limit if fixed form is retained.

The examples in this chapter show a small application implemented in Fortran 77 on the
host and the same application with the non-thunking wrappers after it has been ported
to use the cuBLAS library.

cuBLAS Fortran Bindings

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 144

The second example should be compiled with ARCH_64 defined as 1 on 64-bit OS
system and as 0 on 32-bit OS system. For example for g95 or gfortran, this can be done
directly on the command line by using the option ’-cpp -DARCH_64=1’.

! Example B.2. Same Application Using Non-thunking cuBLAS Calls
!---
#define IDX2F (i,j,ld) ((((j)-1)*(ld))+((i)-1))
 subroutine modify (devPtrM, ldm, n, p, q, alpha, beta)
 implicit none
 integer sizeof_real
 parameter (sizeof_real=4)
 integer ldm, n, p, q
#if ARCH_64
 integer*8 devPtrM
#else
 integer*4 devPtrM
#endif
 real*4 alpha, beta
 call cublas_sscal (n-p+1, alpha,
 1 devPtrM+IDX2F(p, q, ldm)*sizeof_real,
 2 ldm)
 call cublas_sscal(ldm-p+1, beta,
 1 devPtrM+IDX2F(p, q, ldm)*sizeof_real,
 2 1)
 return
 end
 program matrixmod
 implicit none
 integer M,N,sizeof_real
#if ARCH_64
 integer*8 devPtrA
#else
 integer*4 devPtrA
#endif
 parameter(M=6,N=5,sizeof_real=4)
 real*4 a(M,N)
 integer i,j,stat
 external cublas_init, cublas_set_matrix, cublas_get_matrix
 external cublas_shutdown, cublas_alloc
 integer cublas_alloc, cublas_set_matrix, cublas_get_matrix
 do j=1,N
 do i=1,M
 a(i,j)=(i-1)*M+j
 enddo
 enddo
 call cublas_init
 stat= cublas_alloc(M*N, sizeof_real, devPtrA)
 if (stat.NE.0) then
 write(*,*) "device memory allocation failed"
 call cublas_shutdown
 stop
 endif
 stat = cublas_set_matrix(M,N,sizeof_real,a,M,devPtrA,M)
 if (stat.NE.0) then
 call cublas_free(devPtrA)
 write(*,*) "data download failed"
 call cublas_shutdown
 stop
 endif
 call modify(devPtrA, M, N, 2, 3, 16.0, 12.0)
 stat = cublas_get_matrix(M, N, sizeof_real, devPtrA, M, a, M)
 if (stat.NE.0) then
 call cublas_free (devPtrA)
 write(*,*) "data upload failed"
 call cublas_shutdown
 stop
 endif
 call cublas_free (devPtrA)
 call cublas_shutdown
 do j = 1 , N
 do i = 1 , M
 write (*,"(F7.0$)") a(i,j)
 enddo
 write (*,*) ""
 enddo
 stop
 end

www.nvidia.com
cuBLAS Library DU-06702-001_v7.0 | 145

Appendix C.
ACKNOWLEDGEMENTS

NVIDIA would like to thank the following individuals and institutions for their
contributions:

‣ Portions of the SGEMM, DGEMM, CGEMM and ZGEMM library routines were
written by Vasily Volkov of the University of California.

‣ Portions of the SGEMM, DGEMM and ZGEMM library routines were written by
Davide Barbieri of the University of Rome Tor Vergata.

‣ Portions of the DGEMM and SGEMM library routines optimized for Fermi
architecture were developed by the University of Tennessee. Subsequently, several
other routines that are optimized for the Fermi architecture have been derived from
these initial DGEMM and SGEMM implementations.

‣ The substantial optimizations of the STRSV, DTRSV, CTRSV and ZTRSV library
routines were developed by Jonathan Hogg of The Science and Technology Facilities
Council (STFC). Subsequently, some optimizations of the STRSM, DTRSM, CTRSM
and ZTRSM have been derived from these TRSV implementations.

‣ Substantial optimizations of the SYMV and HEMV library routines were developed
by Ahmad Abdelfattah, David Keyes and Hatem Ltaief of King Abdullah University
of Science and Technology (KAUST).

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties
that may result from its use. No license is granted by implication of otherwise
under any patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and
replaces all other information previously supplied. NVIDIA Corporation products
are not authorized as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names
may be trademarks of the respective companies with which they are associated.

Copyright

© 2007-2015 NVIDIA Corporation. All rights reserved.

www.nvidia.com

	Introduction
	1.1. Data layout
	1.2. New and Legacy cuBLAS API
	1.3. Example code

	Using the cuBLAS API
	2.1. General description
	2.1.1. Error status
	2.1.2. cuBLAS context
	2.1.3. Thread Safety
	2.1.4. Results reproducibility
	2.1.5. Scalar Parameters
	2.1.6. Parallelism with Streams
	2.1.7. Batching Kernels
	2.1.8. Cache configuration
	2.1.9. Device API Library
	2.1.10. Static Library support

	2.2. cuBLAS Datatypes Reference
	2.2.1. cublasHandle_t
	2.2.2. cublasStatus_t
	2.2.3. cublasOperation_t
	2.2.4. cublasFillMode_t
	2.2.5. cublasDiagType_t
	2.2.6. cublasSideMode_t
	2.2.7. cublasPointerMode_t
	2.2.8. cublasAtomicsMode_t

	2.3. cuBLAS Helper Function Reference
	2.3.1. cublasCreate()
	2.3.2. cublasDestroy()
	2.3.3. cublasGetVersion()
	2.3.4. cublasSetStream()
	2.3.5. cublasGetStream()
	2.3.6. cublasGetPointerMode()
	2.3.7. cublasSetPointerMode()
	2.3.8. cublasSetVector()
	2.3.9. cublasGetVector()
	2.3.10. cublasSetMatrix()
	2.3.11. cublasGetMatrix()
	2.3.12. cublasSetVectorAsync()
	2.3.13. cublasGetVectorAsync()
	2.3.14. cublasSetMatrixAsync()
	2.3.15. cublasGetMatrixAsync()
	2.3.16. cublasSetAtomicsMode()
	2.3.17. cublasGetAtomicsMode()

	2.4. cuBLAS Level-1 Function Reference
	2.4.1. cublasI<t>amax()
	2.4.2. cublasI<t>amin()
	2.4.3. cublas<t>asum()
	2.4.4. cublas<t>axpy()
	2.4.5. cublas<t>copy()
	2.4.6. cublas<t>dot()
	2.4.7. cublas<t>nrm2()
	2.4.8. cublas<t>rot()
	2.4.9. cublas<t>rotg()
	2.4.10. cublas<t>rotm()
	2.4.11. cublas<t>rotmg()
	2.4.12. cublas<t>scal()
	2.4.13. cublas<t>swap()

	2.5. cuBLAS Level-2 Function Reference
	2.5.1. cublas<t>gbmv()
	2.5.2. cublas<t>gemv()
	2.5.3. cublas<t>ger()
	2.5.4. cublas<t>sbmv()
	2.5.5. cublas<t>spmv()
	2.5.6. cublas<t>spr()
	2.5.7. cublas<t>spr2()
	2.5.8. cublas<t>symv()
	2.5.9. cublas<t>syr()
	2.5.10. cublas<t>syr2()
	2.5.11. cublas<t>tbmv()
	2.5.12. cublas<t>tbsv()
	2.5.13. cublas<t>tpmv()
	2.5.14. cublas<t>tpsv()
	2.5.15. cublas<t>trmv()
	2.5.16. cublas<t>trsv()
	2.5.17. cublas<t>hemv()
	2.5.18. cublas<t>hbmv()
	2.5.19. cublas<t>hpmv()
	2.5.20. cublas<t>her()
	2.5.21. cublas<t>her2()
	2.5.22. cublas<t>hpr()
	2.5.23. cublas<t>hpr2()

	2.6. cuBLAS Level-3 Function Reference
	2.6.1. cublas<t>gemm()
	2.6.2. cublas<t>gemmBatched()
	2.6.3. cublas<t>symm()
	2.6.4. cublas<t>syrk()
	2.6.5. cublas<t>syr2k()
	2.6.6. cublas<t>syrkx()
	2.6.7. cublas<t>trmm()
	2.6.8. cublas<t>trsm()
	2.6.9. cublas<t>trsmBatched()
	2.6.10. cublas<t>hemm()
	2.6.11. cublas<t>herk()
	2.6.12. cublas<t>her2k()
	2.6.13. cublas<t>herkx()

	2.7. BLAS-like Extension
	2.7.1. cublas<t>geam()
	2.7.2. cublas<t>dgmm()
	2.7.3. cublas<t>getrfBatched()
	2.7.4. cublas<t>getrsBatched()
	2.7.5. cublas<t>getriBatched()
	2.7.6. cublas<t>matinvBatched()
	2.7.7. cublas<t>geqrfBatched()
	2.7.8. cublas<t>gelsBatched()
	2.7.9. cublas<t>tpttr()
	2.7.10. cublas<t>trttp()

	Using the CUBLASXT API
	3.1. General description
	3.1.1. Tiling design approach
	3.1.2. Hybrid CPU-GPU computation
	3.1.3. Results reproducibility

	3.2. cublasXt API Datatypes Reference
	3.2.1. cublasXtHandle_t
	3.2.2. cublasXtOpType_t
	3.2.3. cublasXtBlasOp_t
	3.2.4. cublasXtPinningMemMode_t

	3.3. cublasXt API Helper Function Reference
	3.3.1. cublasXtCreate()
	3.3.2. cublasXtDestroy()
	3.3.3. cublasXtDeviceSelect()
	3.3.4. cublasXtSetBlockDim()
	3.3.5. cublasXtGetBlockDim()
	3.3.6. cublasXtSetCpuRoutine()
	3.3.7. cublasXtSetCpuRatio()
	3.3.8. cublasXtSetPinningMemMode()
	3.3.9. cublasXtGetPinningMemMode()

	3.4. cublasXt API Math Functions Reference
	3.4.1. cublasXt<t>gemm()
	3.4.2. cublasXt<t>hemm()
	3.4.3. cublasXt<t>symm()
	3.4.4. cublasXt<t>syrk()
	3.4.5. cublasXt<t>syr2k()
	3.4.6. cublasXt<t>syrkx()
	3.4.7. cublasXt<t>herk()
	3.4.8. cublasXt<t>her2k()
	3.4.9. cublasXt<t>herkx()
	3.4.10. cublasXt<t>trsm()
	3.4.11. cublasXt<t>trmm()
	3.4.12. cublasXt<t>spmm()

	Using the cuBLAS Legacy API
	A.1. Error Status
	A.2. Initialization and Shutdown
	A.3. Thread Safety
	A.4. Memory Management
	A.5. Scalar Parameters
	A.6. Helper Functions
	A.7. Level-1,2,3 Functions
	A.8. Converting Legacy to the cuBLAS API
	A.9. Examples

	cuBLAS Fortran Bindings
	Acknowledgements

