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Abstract

Although highly correlated, speech and speaker recognition have been regarded
as two independent tasks and studied by two communities. This is certainly not
the way that people behave: we decipher both speech content and speaker traits
at the same time.

This paper presents a unified model to perform speech and speaker recognition
simultaneously and altogether. The model is based on a unified neural network
where the output of one task is fed to the input of the other, leading to a
multi-task recurrent network. Experiments show that the joint model outperforms
the task-specific models on both the two tasks.

Keywords: Multi-task learning; Recurrent neural network,; Speech recognition;
Speaker recognition

1 Introduction
Speech recognition (ASR) and speaker recognition (SRE) are two important re-

search areas in speech processing. Traditionally, these two tasks are treated inde-

pendently and studied by two independent communities, although some researchers

indeed work on both areas. Unfortunately, this is not the way that human processes

speech signals: we always decipher speech content and other meta information to-

gether and simultaneously, including languages, speaker characteristics, emotions,

etc. This ‘multi-task decoding’ is based on two foundations: (1) all these human

capabilities share the same signal processing pipeline in our aural system, and (2)

they are mutually beneficial as the success of one task promotes others’ in real life.

Therefore, we believe that multiple tasks in speech processing should be performed

by a unified artificial intelligence system. This paper focuses on speech and speaker

recognition, and demonstrates that these two tasks can be solved by a single unified

model.

In fact, the relevance of speech and speaker recognition has been recognized by

researchers for a long time. On one hand, these two tasks share many common

techniques, from the MFCC feature extraction to the HMM modeling; and on the

other hand, researchers in both areas have been used to learning from each other. For

instance, the success of deep neural networks (DNNs) in speech recognition [1, 2] has

motivated the neural model in speaker recognition [3, 4]. Additionally, researchers

also know for a long time that employing the knowledge provided by one area often

helps improve the other. For instance, i-vectors produced by speaker recognition
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have been used to improve speech recognition [5], and phone posteriors derived

from speech recognition have been utilized to improve speaker recognition [6, 7].

Moreover, the combination of these two systems has already gained attention. For

instance, speech and speaker joint inference was proposed in [8], and an LSTM-

based multi-task model was proposed in [9]. Although highly interesting, all the

above research can not be considered as multi-task learning, and the speech and

speaker recognition systems are designed, trained and executed independently.

The development of deep learning techniques in speech processing provides new

hope for multi-task learning. Since 2011, deep recurrent neural networks (RNNs)

have become the new state-of-the-art architectures in speech recognition [10, 11],

and recently, the same architecture has gained much success in speaker recogni-

tion, at least in text-dependent conditions [12]. In both the two tasks, deep learning

delivers two main advantages: first, the structural depth (multiple layers) extracts

task-oriented features, and second, the temporal depth (recurrent connections) ac-

cumulates dynamic evidence. Due to the similarity in the model structure, a simple

question rises that can we use a single model to perform the two tasks together?

Indeed, this ‘multi-task learning’ has been known working well to boost correlated

tasks [13]. For example, in multilingual speech recognition, it has been known that

sharing low-level layers of DNNs can improve performance on each language [14].

And in another experiment, phone and grapheme recognition were treated as two

correlated tasks [15]. The central idea of multi-task learning in the deep learning

era is that correlated tasks can share the same feature extraction, and so the low-

level layers of DNNs for these tasks can be shared. However, this feature-sharing

architecture does not apply to speech and speaker recognition. This is because

these two tasks are actually ‘negatively correlated’: speech recognition requires fea-

tures involving as much as content information, with speaker variance removed;

while speaker recognition requires features involving as much as speaker informa-

tion, with linguistic content removed. For these tasks, feature sharing is certainly

not applicable. Unfortunately, many tasks are negatively correlated, e.g., language

identification and speaker recognition, emotion recognition and speech recognition.

Finding a multi-task learning approach that can deal with negatively-correlated

tasks is therefore highly desirable.

This paper presents a novel recurrent architecture that can be used to learn

negatively-correlated tasks simultaneously. The basic idea is to use the output of

one task as part of the input of others. It would be ideal if the output of one task can

provide information for others immediately, but this is not feasible in implementa-

tion. Therefore the output of one task at the previous time step is used to provide

information for others at the current time step. This leads to an inter-task recurrent

structure that is similar to conventional RNNs, though the recurrent connections

link different tasks. We employed this multi-task recurrent learning to speech and

speaker recognition and observed promising results. The idea is illustrated in Fig. 1.

We note that a similar multi-task architecture was recently proposed in [9]. The d-

ifference is that they focus on speaker adaptation for ASR, while we demonstrated

improvement on both ASR and SRE tasks with the joint learning.

The rest of the paper is organized as follows: Section 2 presents the model ar-

chitecture, and Section 3 reports the experiments. The conclusions plus the future

work are presented in Section 4.
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Figure 1 Multi-task recurrent learning for ASR and SRE. F (t) denotes primary features (e.g.,
Fbanks), P (t) denotes phone identities (e.g., phone posteriors, high-level representations for
phones), S(t) denotes speaker identities (e.g., speaker posteriors, high-level representations for
speakers).

2 Models

2.1 Basic single-task model

We start from the single-task models for ASR and SRE. As mentioned, the state-

of-the-art architecture for ASR is the recurrent neural network, especially the long

short-term memory (LSTM) [10]. This model also delivers good performance in

SRE [12]. We therefore choose LSTM to build the baseline single-task systems.

Particularly, the modified LSTM structure proposed in [11] is used. The network

structure is shown in Fig. 2.
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Figure 2 Basic recurrent LSTM model for ASR and SRE single-task baselines. The picture is
reproduced from [11].
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The associated computation is as follows:

it = σ(Wixxt +Wirrt−1 +Wicct−1 + bi)

ft = σ(Wfxxt +Wfrrt−1 +Wfcct−1 + bf )

ct = ft � ct−1 + it � g(Wcxxt +Wcrrt−1 + bc)

ot = σ(Woxxt +Worrt−1 +Wocct + bo)

mt = ot � h(ct)

rt = Wrmmt

pt = Wpmmt

yt = Wyrrt +Wyppt + by

In the above equations, the W terms denote weight matrices and those associated

with cells were set to be diagonal in our implementation. The b terms denote bias

vectors. xt and yt are the input and output symbols respectively; it, ft, ot represent

respectively the input, forget and output gates; ct is the cell and mt is the cell

output. rt and pt are two output components derived from mt, where rt is recurrent

and fed to the next time step, while pt is not recurrent and contributes to the present

output only. σ(·) is the logistic sigmoid function, and g(·) and h(·) are non-linear

activation functions, often chosen to be hyperbolic. � denotes the element-wise

multiplication.

2.2 Multi-task recurrent model

The basic idea of the multi-task recurrent model, as shown in Fig. 1, is to use the

output of one task at the current frame as an auxiliary information to supervise

other tasks when processing the next frame. When this idea is materialized as a

computational model, there are many alternatives that need to be carefully inves-

tigated. In this study, we use the recurrent LSTM model shown in the previous

section to build the ASR component and the SRE component, as shown in Fig. 3.

These two components are identical in structure and accept the same input signal.

The only difference is that they are trained with different targets, one for phone

discrimination and the other for speaker discrimination. Most importantly, there

are some inter-task recurrent links that combine the two components as a single

network, as shown by the dash lines in Fig. 3.

Besides the model structure, a bunch of design options need to be chosen. The

first question is where the recurrent information should be extracted. For example,

it can be extracted from the cell ct or cell output mt, or from the output component

rt or pt, or even from the output yt. Another question is which computation block

will receive the recurrent information. It can be simply the input variable xt, but

can also be the input gate it, the output gate ot, the forget gate ft or the non-linear

function g(·). Actually, augmenting the recurrent information to xt is equal to feed

the information to it, ot, ft and g(·) simultaneously. Note that a weight matrix

is introduced as an extra free parameter for each recurrent information feedback.

Moreover, the component that the information is extracted from is not necessarily

the same for different tasks, nor is the component that receives the information.

However in this study, we simply consider the symmetric structure.
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Figure 3 Multi-task recurrent model for ASR and SRE, an example.

With all the above alternatives, the multi-task recurrent model is rather flexible.

The structure shown in Fig. 3 is just one simple example, where the recurrent

information is extracted from both the recurrent projection rt and the nonrecurrent

projection pt, and the information is applied to the non-linear function g(·). We

use the superscript a and s to denote the ASR and SRE tasks respectively. The

computation for ASR can be expressed as follows:
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and the computation for SRE is as follows:

ist = σ(W s
ixxt +W s

irr
s
t−1 +W s

icc
s
t−1 + bsi )

fst = σ(W s
fxxt +W s

frr
s
t−1 +W s

fcc
s
t−1 + bsf )

gst = g(W s
cxx

s
t +W s

crr
s
t−1 + bsc +W sa

cr r
a
t−1 +W sa

cp p
a
t−1)

cst = fst � cst−1 + ist � gst

ost = σ(W s
oxx

s
t +W s

orr
s
t−1 +W s

occ
s
t + bso)

ms
t = ost � h(cst )

rst = W s
rmm

s
t

pst = W s
pmm

s
t

yst = W s
yrr

s
t +W s

ypp
s
t + bsy

3 Experiments
The proposed method was tested with the WSJ database, which has been labelled

with both word transcripts and speaker identities. We first present the ASR and

SRE baselines and then report the multi-task model. All the experiments were

conducted with the Kaldi toolkit [16].

3.1 Data

• Training set: This set involves 90% of the speech data randomly selected from

train si284 (the other 10% used for speaker identification test whose results

for almost all systems were perfect thus not presented). It consists of 282

speakers and 33, 587 utterances, with 40-144 utterances per speaker. This set

was used to train the two LSTM-based single-task systems, an i-vector SRE

baseline, and the proposed multi-task system.

• Test set: This set involves three datasets (dev93, eval92 and eval93). It consists

of 27 speakers and 1, 049 utterances. This dataset was used to evaluate the

performance of both ASR and SRE. For SRE, the evaluation consists of 21, 350

target trials and 528, 326 non-target trials, constructed based on the test set.

3.2 ASR baseline

The ASR system was built largely following the Kaldi WSJ s5 nnet3 recipe, except

that we used a single LSTM layer for simplicity. The dimension of the cell was

1, 024, and the dimensions of the recurrent and nonrecurrent projections were set

to 256. The target delay was 5 frames. The natural stochastic gradient descent

(NSGD) algorithm was employed to train the model [17]. The input feature was the

40-dimensional Fbanks, with a symmetric 2-frame window to splice neighboring

frames. The output layer consisted of 3, 419 units, equal to the total number of pdfs

in the conventional GMM system that was trained to bootstrap the LSTM model.

The baseline performance is reported in Table 1.

Table 1 ASR baseline results.

dev92 eval92 eval93 Total
WER% 8.36 5.14 8.06 7.41
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3.3 SRE baseline

We built two SRE baseline systems: one is an i-vector system and the other is an

‘r-vector’ system that is based on the recurrent LSTM model.

For the i-vector system, the acoustic feature was 39-dimensional MFCCs. The

number of Gaussian components of the UBM was 1, 024, and the dimension of i-

vectors was 200. For the r-vector system, the architecture was similar to the one

used by the LSTM-based ASR baseline, except that the dimension of the cell was

512, and the dimensions of the recurrent and nonrecurrent projections were set to

128. Additionally, there was no target delay. The input of the r-vector system was

the same as ASR system, and the output was corresponding to the 282 speakers in

the training set. Similar to the work in [3, 4], the speaker vector (‘r-vector’) was

derived from the output of the recurrent and nonrecurrent projections, by averaging

the output of all the frames. The dimension was 256.

The baseline performance is reported in Table 2. It can be observed that the

i-vector system generally outperforms the r-vector system. Particularly, the dis-

criminative methods (LDA and PLDA) offer much more significant improvement

for the i-vector system than for the r-vector system. This observation is consistent

with the results reported in [4], and can be attributed to the fact that the r-vector

model has already been learned ‘discriminatively’ with the LSTM structure. For

this reason, we only consider the simple cosine kernel when scoring r-vectors in the

following experiments.

Table 2 SRE baseline results.

EER%
System Cosine LDA PLDA

i-vector (200) 2.89 1.03 0.57
r-vector (256) 1.84 1.34 3.18

3.4 Multi-task joint training

Due to the flexibility of the multi-task recurrent LSTM structure, it is not possible

to evaluate all the configurations. We chose some typical ones and report the results

in Table 3. We just show the ASR results on the combined dataset mentioned before.

Note that the last configure, where the recurrent information is fed to all the gates

and the non-linear activation g(·), is equal to augmenting the information to the

input variable x.

From the results shown in Table 3, we first observe that the multi-task recurrent

model consistently improves performance on both ASR and SRE, no matter where

the recurrent information is extracted and where it applies. Most interestingly, on

the SRE task, the multi-task system can obtain equal or even better performance

than the i-vector/PLDA system. This is the first time that the two negatively-

correlated tasks are learned jointly in a unified framework and boost each other.

For the recurrent information, it looks like the recurrent projection rt is sufficient

to provide valuable supervision for the partner task. Involving more information

from the nonrecurrent projection does not offer consistent benefit. This observation,

however, is only based on the present experiments. With more data, it is likely that

more information leads to additional gains.
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Table 3 Joint training results.

Feedback Feedback ASR SRE
Info. Input WER% EER%

r p i f o g
7.41 1.84√ √
7.05 0.62√ √ √
6.97 0.64√ √
7.12 0.66√ √ √
7.24 0.65√ √
7.26 0.65√ √ √
7.28 0.59√ √
7.11 0.62√ √ √
7.11 0.67√ √ √ √
7.06 0.66√ √ √ √ √
7.23 0.71√ √ √ √ √
7.05 0.55√ √ √ √ √ √
7.23 0.62

For the recurrent information ‘receiver’, i.e., the component that receives the

recurrent information, it seems that for ASR the input gate and the activation

function are equally effective, while the output gate seems not so appropriate. For

SRE, all results seem good. Again, these observations are just based on a relative

small database; with more data, the performance with different configurations may

become distinguishable.

4 Conclusions
We report a novel multi-task recurrent learning architecture that can jointly train

multiple negatively-correlated tasks. Primary results on the WSJ database demon-

strated that the presented method can learn speech and speaker models simultane-

ously and improve the performance on both tasks. Future work involves analyzing

more factors such as target delay, exploiting partially labelled data, and applying

the approach to other negatively-correlated tasks.
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