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Abstract

In this report, we describe the submissions of Yidun NISP for
all of the four tasks. For task1, we fuse ResNet with Squeeze-
Excitation and Ecapa-tdnn to achieve 0.0417 Cavg. For task2,
we fine-tune the wav2vec2.0 encoder with additional pooling
and linear layer. We also expand the training dataset by col-
lecting data from common voice. For task3, we use a hybrid
CTC/Attention end-to-end approach to model Multilingual-
ASR tasks, and meanwhile try to select and fuse acoustic and
language models in multiple ways based on language classi-
fication information. For task4, we collect additional open
source data and try cross-language transfer learning from high-
resource languages to low-resource languages. Finally, the per-
formance of our system exceeds the baseline greatly.
Index Terms: language identification, deep neural network,
Multilingual-ASR

1. Introduction
OLR Challenge is the sixth oriental language recognition
(OLR) challenge with four tasks: (1) Constrained Task cross-
channel language identification, which includes 13 target lan-
guages (Indonesian, Japanese, Russian, Korean, Vietnamese,
Mandarin, Cantonese, Sichuanese, Shanghainese, Hokkien,
Tibetan, Kazakh and Uyghur), (2) Unconstrained Task lan-
guage identification, which involves 17 languages (Indonesian,
Japanese, Russian, Korean, Vietnamese, Thai, Malay, Telugu,
Hindi, English, Kazakh, Tibetan, Uyghur, Mandarin, Sichuan,
Shanghainese, Hokkien) and can use any data and pertained
model, (3) Constrained ASR, which only the data provided by
the organizer can be used and (4)Unconstrained ASR, where
any publicly labeled can be used for training and optimization.
Task1 and task2 are Language Identification (LID) tasks. Task3
and task4 are multilingual ASR tasks. The following sections
describe submitted systems for all the tasks.

2. Data definition
For task1, OLR16, OLR17, OLR18, OLR19-dev, OLR20-
dailect, namely task1-train constitute the training set.OLR20-
test and OLR2019-test which were named task1 − enroll for
enrollment sets.

For task2, we used,Telugu, Hindi Chinese, English from
Common voice[1]. The train and enroll dataset for task 2 is
named, task−2− train− cv−aug and task−2− enroll−
cv − aug respectively.

For task3, we only use official data, and split the training
set and validation set according to the baseline[2].

For task4, in addition to official data, we additionally use
the ASR open source data sets from openslr and magichub for
some languages. The external data sets used are shown in the
following table 1:

Table 1: External dataset list of task4

language Dataset name Source Duration/h

Mandarin Aishell SLR-33 151
Mandarin Free ST SLR-38 110
Mandarin Primewords SLR-47 99
Mandarin aidatatang 200zh SLR-62 140
Mandarin MAGICDATA SLR-68 712
Japanese JSSC magichub 18
Korean Zeroth-Korean SLR-40 51.6
Kazakh Kazakh Speech Corpus SLR-102 332
Russian Golos SLR-114 1240

3. Experiment setup
3.1. Augmentation

Several data augmentation methods is used to the raw data
pipeline (reverb, music, noise, speed perturbation(sp) (0.9x
1.1x)[3]), also spectral augmentation (SpecAugment)[4] with
hyper parameters of freq-max-proportion=0.3, time-zeroed-
proportion=0.2, and time-mask-max-frames=20 is applied.

3.2. Features

For task1 and task2, we used 64-dimensional filter banks. The
filter banks were computed in Kaldi with 25 ms window length
and 10 ms shift. For task2, raw wave is feed to the model. For
both task1 and task2 utterance-level mean and variance normal-
ization (CMVN) is applied for robustness.

For task3 and task4, the input of the acoustic model is 80-
dimensional LogFbank concatenated with 3-dimensional pitch
features. We use character as modeling unit of Mandarin,
Shanghainese, Sichuanese, Hokkien and Cantonese. And sub-
words encoded by BPE[5] are employed as the multilingual
modeling unit of the other languages.

3.3. LID Architecture

3.3.1. Pipeline

For task1 and task2, in order to keep the context information
as much as possible, we dynamically batch the training set
and group utterance based on its duration in which of 0-1, 1-
2,. . . ,29-30 seconds chunks and randomly subsample the utter-
ance to 30s if longer than 30s.

3.3.2. task1

Resnet34SE[6], a variant of Resnet which adds Squeeze-and-
Excitation block (SE-block) to Resnet, which is a successful
DNN architecture developed for image processing and used in
a wide variety of tasks, including speech processing.

Ecapa-tdnn[7] is a neural net architecture popularly used in



Figure 1: ASR system framework

speech processing for tasks like SID or LID. The deep structure
was trained to classify the N languages using the cross entropy
(CE) loss function. The final system is constituted of the fusion
of two models: resnetSE and Ecapa-tdnn with equal wights,
named Fusion.

3.3.3. task2

Pretrained wav2vec2.0(w2v-encoder)[8] is believed to have
the ability to capture the information about the speaker and
language.[9] w2v-encoder consists of CNN-based feature en-
coder, a Transformer-based context network. We add a statistics
pooling layer and a fully connected layer to w2v-encoder. The
CNN encoder of w2v-encoder is freezed during finetune.

3.4. ASR Architecture

3.4.1. Workflow

Our system framework is shown in Figure 1.Since the language
information of each audio in the test set is unknown, we train
a multilingual speech recognition model with a single end-to-
end model for all languages. At the same time, we selected
a specific language model to participate in the decoding and
re-scoring based on the LID information such as the results of
task1 and task2. On the other hand, we train a separate acous-
tic model for several languages with serious confusion in the
recognition results and combine language information for sys-
tem integration.

3.4.2. Language identification

Before speech recognition, we use the methods and results of
task1 and task2 respectively as the language classification in-
formation of task3 and task4.

3.4.3. Acoustic model

The acoustic model adapts the conformer structure[10], which
has 12-layer encoder with 2048 units and a 6-layer decoder with
2048 units. There are 4-head attention with 256 dimensions.
The in lambda in Equation 1 is 0.5. During decoding, the beam
size is 20. We have used the data of all languages to train a
unified acoustic model, as well as individually trained acoustic
models for specific languages. We perform model selection and
model fusion based on the comparison of language classifica-
tion information and the results of dev and progress sets which
is better. The ASR loss is based on a hybrid CTC/Attention
structure[11]. The output of the encoder is used to calculate
the CTC loss, and the output of the decoder together with the
ground-truth label are utilized to obtain the CE loss. During
training, the loss functions of the two branches will be linearly
combined in a certain proportion. As shown in Equation 1 ,
where lambda denotes the weight of different loss.

Table 2: Results on task1 and task2 systems

Task Model EER% Cavg

task1 Resnet34SE 6.86 0.0617
task1 Ecapa-tdnn 8.39 0.0793
task1 Fusion 5.02 0.0417
task2 wav2vec+pooling 15.31 0.1612

Table 3: CER of task3 and task4 systems

Language Code Baseline Task3 Task4

Hokkien Minnan 64.1 60.7 53.4
Shanghainese Shanghai 34.0 28.9 22.1

Sichuanese Sichuan 22.8 15.5 11.1
Cantonese ct-cn 19.3 16.0 12.0
Mandarin zh-cn 27.0 25.7 16.0
Japanese ja-jp 30.0 28.7 18.0
Korean ko-kr 29.1 24.3 8.9

Indonesian id-id 16.4 13.4 13.4
Russian ru-ru 32.2 28.4 23.1

Vietnamese vi-vn 10.9 7.9 7.1
Kazakh Kazak 15.8 11.1 8.9
Tibetan Tibet 27.3 9.8 9.4
Uyghur Uyghu 13.0 8.1 8.0

Avg-CER(%) 21.6 16.0 13.3

loss = λlossctc + (1− λ)lossatt (1)

During inference, the Encoder-CTC branch generates can-
didate sequences through beam search decoding, and the
Decoder-Attention branch re-scores and sorts the candidate se-
quences to obtain the optimal sequence.

3.4.4. Language model

In this paper, the language model doesn’t use the text of all lan-
guages to generate a common language model, but uses each
language text to generate a specific 4-gram language model.
And the language model is selected according to the results of
LID when decoding. We find that compared with a single mul-
tilingual speech model, this method can effectively alleviate the
confusion between languages in the ASR recognition results

3.4.5. Cross-lingual transfer learning

In the task4, we added external open source data for training.
There are big differences in the amount of open source data
available in different languages. For example, Mandarin has
lots of open source corpus, while dialects have almost none.
Therefore, we try cross-language transfer learning for dialect
based Mandarin ASR model, which can significantly improve
the performance of several dialects.

4. Results
As shown in Table 2, our system achieves EER of 5.02% and
Cavg of 0.0417 on task1−enroll set of Task1, EER of 15.31%
and Cavg of 0.1612 on task−2−enroll− cv−aug of Task2.

Because the test channel of the progress set has been closed
when the final result is completed, the result of task3 and task4
under dev is shown in Table 3.



5. Conclusion
In this work, we presented our language identification and ASR
system for OLR 2021 Challenge. And our fusion submission
achieved 0.0417 Cavg and 0.1612 Cavg for task 1, and task 2
on our own development set respectively.

We use a hybrid CTC/Attention end-to-end approach to
model multilingual ASR tasks, and meanwhile try to select and
fuse acoustic and language models in multiple ways based on
language classification information. It can effectively alleviate
the confusion between different languages and greatly improve
the recognition performance of ASR. In an unrestricted sce-
nario, facing the imbalance of data resources between different
languages, we try cross-language transfer learning from high-
resource languages to low-resource languages, which can ef-
fectively improve the recognition performance of low-resource
languages. In the future, we will further develop other multilin-
gual modeling methods under low-resource conditions (such as
UPS) and a more effective combination of ASR and LID.
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