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Abstract—An emerging topic in face recognition is matching 
between facial images acquired from different sensing modalities, 
referred to as heterogeneous face recognition.  Heterogeneous face 
recognition has the potential to provide key capabilities for the 
commercial sector as well as for law enforcement, intelligence 
gathering, and the military, especially in challenging 
unconstrained settings.  However, the difficulty in heterogeneous 
face recognition is compounded by phenomenology differences 
between modalities, giving rise to significant facial appearance 
variations due to the modality gap.  In this paper, we focus on a 
subset of heterogeneous face recognition and present a succinct 
review of recent work on infrared-to-visible face recognition. 

I. INTRODUCTION (HEADING 1) 
Face recognition research and development have focused 

primarily on the visible spectrum in the past few decades, 
attempting to address challenges in expression, illumination, 
pose, and resolution.  Since the seminal eigenface approach was 
developed by Sirovich and Kirby in 1987 [1], and later 
expanded by Turk and Pentland in 1991 [2], significant 
advancements have been made for face recognition in the 
visible spectrum, addressing challenges such as illumination, 
expressions, pose, and resolution.  The availability of low-cost 
digital cameras and the ubiquitous cell phone camera have led 
to a surge in the amount of visible imagery captured across the 
world.  Coupled with the increasing popularity of social 
network sites (e.g. Facebook, Twitter) and media sharing 
websites (e.g. Youtube), there is a massive amount of visible 
face imagery acquired under different conditions/settings with 
different visible camera models that can be used to train 
complex algorithms such as deep neural networks to accurately 
detect and recognize faces.  Infrared cameras, on the other hand, 

are usually significantly more expensive than their visible 
counterpart, and acquire imagery in spectral bands not 
perceivable by the human visual system.  Consequently, the use 
of infrared imagers have been traditionally for military 
applications in target detection and recognition, especially 
using thermal infrared sensors.  However, there is now an 
emerging interest in using infrared sensors for biometric face 
recognition. One of the motivations behind utilizing infrared for 
face image capture is illumination invariance, which is a 
significant confound for visible face recognition [4], especially 
in unconstrained settings 

The infrared spectrum consists of four main bands: near 
infrared (NIR, 0.75-1.4 μm), short-wave infrared (SWIR, 1.4-3 
μm), mid-wave infrared (MWIR, 3-5 μm), and long-wave 
infrared (LWIR, 8-15 μm).  In comparison, the visible spectrum 
is the portion of the electromagnetic spectrum that is 
perceivable by the human visual system, and includes 
wavelengths from 0.4 μm to 0.75 μm. The NIR and SWIR 
bands compose the reflection-dominated region of the infrared 
spectrum (phenomenology in the visible spectrum is also 
reflection-dominated), while the MWIR and LWIR bands 
compose the emission-dominated region (and are collectively 
referred to as thermal infrared).  Figure 1 shows images of a 
subject in the visible and infrared bands.  As can be observed, 
the NIR and SWIR images more closely resemble the visible 
spectrum image than the MWIR and LWIR imagery.  This is 
expected, as imaging in the visible, NIR, and SWIR bands 
acquires reflected radiation, while imaging in the thermal bands 
acquires radiation mainly emitted from facial skin tissue.  
Therefore, matching infrared imagery to visible spectrum 
imagery increases in difficulty as the wavelength increases in 
the infrared spectrum due to the enlarging modality gap.  

Figure 1. Visible and infrared imagery of a subject. 

- - - -  
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Infrared-to-visible matching, the focus of this paper, is a subset 
of the broader heterogeneous face recognition research area. 

The definition of heterogeneous face recognition (HFR) is 
the matching of probe face imagery acquired in one modality or 
domain to gallery face imagery acquired in another modality or 
domain.  There are several useful biometric applications that 
motivates HFR.   One of the earliest scenarios for HFR is 
sketch-to-photo face recognition [3], where a hand-drawn face 
image is matched to a gallery of visible photo images.  The 
primary motivation is to aid law enforcement in finding a 
suspect whose appearance was sketched by an artist from a 
description provided by a witness or victim.  Other examples of 
HFR scenarios are low-resolution to high resolution matching 
[41], video-to-still matching [42], and 3D-to-2D matching [43].  
In this paper, we focus on the infrared-to-visible matching 
scenario.  Note that while the converse of infrared-to-visible 
face recognition (i.e. visible-to-infrared face recognition; 
matching a visible probe image to an infrared gallery set) is 
equally valid as a HFR scenario, we emphasize infrared-to-
visible matching because of its operational relevance.  Since, 
most existing government watch lists and biometric databases 
only contain visible face imagery of individuals of interest, the 
concept of operations is therefore to match an infrared probe 
image to a gallery of visible images. 

This paper will discuss four HFR scenarios (NIR-to-VIS, 
SWIR-to-VIS, MWIR-to-VIS, and LWIR-to-VIS), providing 
an overview of each infrared-to-visible matching scenario and 
reviewing the first studies published on each scenario as well as 
representative literature published in recent years.  Section II 
will present a brief correlation experiment showing the 
increasing challenge of infrared-to-visible face recognition as 
wavelength increases.  Sections III.B and III.C present the NIR-
to-VIS and SWIR-to-VIS face recognition scenarios, covering 
the reflective part of the infrared spectrum.  Sections IV.A and 
IV.B focus on the MWIR-to-VIS and LWIR-to-VIS face 
recognition scenarios, covering the emissive part of the infrared 
spectrum. Section IV.C describes the use of polarimetric 
information in the LWIR band to enhance HFR performance 
over conventional LWIR-to-VIS face recognition.  Section V 
concludes the paper.  

II. MODALITY GAP 
To illustrate the degree of difficulty of infrared-to-visible 

face recognition, especially as the wavelength increases in the 
infrared, an analysis using structural similarity is conducted 
between each infrared band and the visible spectrum.  Structural 
similarity between images 𝑥𝑥 and 𝑦𝑦 is defined as  

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥,𝑦𝑦) = (2𝜇𝜇𝑥𝑥𝜇𝜇𝑦𝑦+𝐶𝐶1)(2𝜎𝜎𝑥𝑥𝑥𝑥+𝐶𝐶2)
�𝜇𝜇𝑥𝑥2+𝜇𝜇𝑦𝑦2+𝐶𝐶1��𝜎𝜎𝑥𝑥2+𝜎𝜎𝑦𝑦2+𝐶𝐶2�

, (1) 

where 𝜇𝜇𝑥𝑥 and  𝜇𝜇𝑦𝑦 denote the means of the respective images (or 
local regions), and 𝜎𝜎𝑥𝑥 and 𝜎𝜎𝑦𝑦 denote the standard deviations of 
the respective images (or local regions), and 𝜎𝜎𝑥𝑥𝑥𝑥 denotes the 
cross-covariance. 

 The images in Figure 1 are first aligned using three fiducial 
points (centers of left eye and right eye, and base of the nose), 
and cropped.  Note that the pixel intensities in each image have 

been normalized to [0 255].  Next, the structural similarity 
(SSIM) formulation of [17] is used as a quantitative measure of 
the modality gap between each infrared face image and the 
“reference” visible face image.  The SSIM formulation of [17] 
defines the structural information as the attributes that represent 
the structures of objects in an image, independent of the average 
luminance and contrast.  We compute the SSIM of each infrared 
image in Figure 1 to the visible reference image of Figure 1, 
yielding SSIM values of 0.581 for NIR-to-VIS, 0.491 for 
SWIR-to-VIS, 0.368 for MWIR-to-VIS, and 0.335 for LWIR-
to-VIS.  As the wavelength in the infrared band increases, the 
modality gap (represented here by the SSIM) also increases, 
with a sharp decrease in SSIM transitioning from the reflective 
infrared region to the emissive infrared region.  Figure 2 shows 
the SSIM maps (computed for each pixel using a circular-
symmetric window with standard deviation of 1.5 samples 
[17]).  Note that the infrared images used here were acquired in 
the same trial/session as the visible reference image.  As a 
comparison, we also computed the SSIM using a visible image 
of the same subject from another trial with the reference visible 
image, yielding a SSIM value of 0.751, even though the pose of 
the subject have changed a few degrees between sessions. 

 
 

As can be observed in Figure 1, in the higher frequency 
regions of the face (around the eyes, nose, and mouth), there are 
increasing differences between the infrared and visible face 
signatures as wavelength increases in the infrared.  Even in the 
smoother facial regions (e.g. cheeks), the temperature 

Figure 2. Structural similarity maps between infrared 
image and reference visible image.  
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variations in skin tissue cause those regions to be more 
dissimilar between the thermal bands and the visible reference, 
as expected.   Therefore, the degree of HFR difficulty increases 
from the NIR-to-VIS face recognition scenario to the hardest 
LWIR-to-VIS scenario.  

III. REFLECTIVE IR-TO-VISIBLE FACE RECOGNITION 

A. NIR-to-Visible 
NIR-to-visible face recognition is one of the earlier HFR 

scenarios to be conceived, after sketch-to-photo.  The benefit of 
NIR imaging is its relative invariance to environmental lighting 
compared to visible imaging, though an active NIR illuminator 
are often employed, especially for low-light or nighttime 
imaging.  For short distance imaging (the most common 
application), NIR illuminators in the form of LEDS are 
typically used, which are safe to the naked eye.  However, for 
long distance imaging, NIR illuminators in the form of lasers 
with wavelengths in the 0.81 μm to 0.94 μm range are typically 
employed, which may cause photothermal damage in the retina 
[5], depending on the intensity level of the laser beam when 
reaching the eye.   The NIR wavelengths are generally not 
perceivable by the human visual system, offering some degree 
of covertness for nighttime operation. However, NIR 
illuminators can be readily observed by silicon-based image 
sensors and, in fewer cases, the human eye [6]. 

The earliest work on NIR-to-VIS face recognition is by Yi 
et al. [7], who formulated the problem as correlational 
regression between an NIR face image and a visible face image 
which have been aligned by the eye coordinates and 
normalized.  [7] proposed a three step process for NIR-to-VIS 
matching: extracting lower-dimensionality features from the 
NIR and VIS imagery, then performing multivariate regression 
between the features, and finally evaluating the similarity score 
based on a correlation score.  For the first step, principal 
component analysis (PCA) and linear discriminant analysis 
(LDA) were used for feature extraction and dimensionality 
reduction.  Next, canonical correlation analysis (CCA) was 
used to compute the best correlational regression between the 
features vectors of the images extracted from the two different 
modalities.  The final step computes the correlation score after 
projection of the NIR and VIS feature vectors into CCA 
subspace.  On a dataset of 200 subjects, [7] achieved a 
verification rate of 93.1% at false alarm rate (FAR) of 0.1% [7]. 

To support algorithm development for NIR based face 
recognition, several databases have been collected by 
universities and are publicly available through request.  Table I 
lists four of the most extensive databases available to 
researchers.  [11] contains only NIR face imagery, while [8-10] 
contain both NIR and visible spectrum face images of each 
subject, and are suitable for HFR research. 

Since the initial work of [7], a number of research groups 
have further advanced NIR-to-VIS face recognition.  Here, we 
discuss several recent works that are representative state-of-the-
art approaches.   The advances in visible face recognition 
through deep learning have been made possible due to two main 
factors: advances in computing technology, and the massive 
amounts of visible spectrum face imagery that are available on 

the Internet.  Though there are several NIR databases, the 
amount of imagery contained in these databases do not rival the 
millions of visible face images that are frequently used to train 
deep neural networks for visible face recognition.  Given that 
the modality gap between visible and NIR imaging is relatively 
small, Liu et al. [12] leverages recent deep learning advances 
by pre-training a deep CNN on the visible imagery from the 
large-scale CASIA WebFace Database [13], and then fine-
tuning the model on NIR face imagery to learn a domain-
invariant deep representation.  [12] used a triplet formulation 
with two types of NIR-VIS triplet loss to reduce intra-class 
variations and augment the number of positive sample training 
pairs.  By performing hard sample selection, their technique 
achieved a verification rate of 91.03% at FAR of 0.1% and 
Rank-1 identification accuracy of 95.74% on the CASIA NIR-
VIS 2.0 database.  In the same spirit, Reale et al. [14] utilized 
deep networks with small convolutional filters, and pre-trained 
on the visible CASIA WebFace Database.  For NIR-to-VIS face 
recognition, [14] initialized two networks based on the pre-
trained network, excluded the softmax classifier and removed 
the fully connected layer, and trained these two networks 
(named VisNet and NIRNet), coupling their output features by 
creating a Siamese network with contrastive loss.  [14] achieved 
a Rank-1 accuracy of 87.1% and a verification rate of 74.5% at 
FAR of 0.1%. A more recent similar CNN pipeline has been 
introduced in [44], where different hyperparameter design 
choices have led to substantial performance gains on CASIA  
NIR-Vis 2.0 database achieving 95.82% Rank-1 accuracy and 
a verification rate of 94.03% at 0.1 FAR. 

A different approach to solving NIR-to-visible face 
recognition is to reconstruct/estimate the visible image 
corresponding to a NIR input image (i.e. synthesizing VIS from 
NIR).  Conceptually, this approach can serve as a preprocessing 
step, after which the reconstructed VIS image corresponding to 
the original NIR probe image can be entered into an existing 
visible face recognition system.  With this approach, 
government agencies would not need to invest in a separate 
NIR-to-visible face recognition system, but instead would add 
the reconstruction software as preprocessing stage to already 
deployed visible face recognition systems.  Juefei-Xu et al. [15] 
recently proposed cross-spectral joint dictionary learning and 
reconstruction based on K-SVD.  Their algorithm jointly learns 
a NIR and a VIS dictionary, enforcing that the sparse 
representation be the same for of the NIR and VIS images in 
each dictionary [15].  On the CASIA NIR-VIS v2.0 database, 
[15] achieved Rank-1 accuracy of 78.5% and a verification rate 
of 85.8% at FAR of 0.1%.   

TABLE I. NIR FACE DATABASES 

Database Name # of Subjects 

CASIA NIR-VIS 2.0 [8] 725  

ND-Near Infrared and Visible Light  
(ND-NIVL) [9]  574 

Long Distance Heterogeneous Face 
Database (LDHF-DB) [10] 100 

Hong Kong Polytechnic University 
(PolyU) NIR Face Database [11] 335 
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B. SWIR-to-Visible 

The phenomenology in the SWIR band, like the NIR band, 
is also reflection dominated.  However, the difference in facial 
signatures between SWIR and visible is more pronounced, 
creating a more challenging HFR scenario than NIR-to-VIS 
face recognition.  Though imaging SWIR typically requires an 
active illuminator in low-light or during nighttime, it is not 
perceivable to the human eye and can be made more covert by 
illuminating at selected wavelengths [6].  Furthermore, SWIR 
can more effectively penetrate fog, haze, and dust (i.e. 
atmospheric obscurants) [16].  A major challenge with SWIR is 
that eye-safe illumination is above 1.4 μm – however, moisture 
in the skin absorbs infrared wavelengths above 1.45 μm, 
causing the facial skin to appear dark in low-light imagery 
acquired with an eye-safe SWIR illuminator [6]. 

The amount of research dedicated to face recognition in the 
SWIR band is very limited, with no available public dataset 
containing SWIR faces.  To the best of our knowledge, [18] was 
the first work on SWIR-to-VIS face recognition, assessing 
photometric normalization through contrast limited adaptive 
histogram equalization (CLAHE) followed by PCA with k-
nearest neighbor matching.  [18] also assessed several 
commercial matchers for SWIR-to-VIS face recognition.  [19] 
extended the results of [18] by assessing more photometric 
normalization methods based on single scale retinex and 
proposed cross-photometric score level fusion to improve 
performance. The most recent work by Cao et al. [20] on SWIR-
to-visible face recognition proposed composite multilobe 
descriptors, which combines a Gaussian function with local 
binary patterns, Weber local descriptor, and histogram of 
oriented gradients (HOG) into multilobe operators.  [20] 
achieved a verification rate of 99.5% at FAR of 10% and Rank-
1 accuracy of 78.7% with SWIR imagery collected at 1.5 m on 
a private dataset of 48 subjects.   

 There has not been as many studies performed on the SWIR-
to-VIS scenario than the other infrared-to-visible HFR 
scenarios.  This may be partly due to the lack of a publicly 
available database to support algorithm development by 
researchers who may not have access to SWIR imagers for in-
house data collection.  Given that the SWIR facial signature is 
still somewhat similar to the visible facial signature, we expect 
that SWIR-to-visible face recognition can exploit deep learning 
based face recognition techniques in the visible spectrum 
through fine tuning/transfer learning.  However, this is a 
conjecture based on the reflection dominance in SWIR.   

IV. EMISSIVE IR-TO-VISIBLE FACE RECOGNITION 

A. MWIR-to-Visible 
 Imaging in the MWIR band, unlike in the SWIR and NIR 
bands, is emission dominated, though there is a stronger 
reflective component in the MWIR than LWIR.   Imaging in the 
MWIR band is completely passive, not requiring active 
illuminating during daytime or nighttime, and is therefore more 
covert than imaging in the SWIR and NIR bands that require an 
active illuminator in low-light and nighttime settings. Human 
facial skin tissue has high emissivity in the MWIR band (0.91 
as measured by Wolff et al. [21]) – the face signature acquired 

in MWIR reflects the heat distribution arising from the 
underlying vasculature and depends on an individual’s 
physiology.  Consequently, there is a large modality gap 
between the MWIR and visible human face signatures, 
rendering MWIR-to-VIS face recognition a highly challenging 
HFR scenario.  The availability of MWIR face databases is also 
limited – a few databases can be requested, though they are not 
publicly available.  The Pinellas County Sheriff’s Office 
(PCSO) collected MWIR and visible images of 1000 subjects, 
and was first used in the study of Klare and Jain [22].  The US 
Army CERDEC-NVESD database collected jointly with the US 
Army Research Laboratory contains MWIR, LWIR, and visible 
imagery of 50 subjects, and was first used in the study of Hu et 
al. [23]. 

 One of the first published work on MWIR-to-VIS face 
recognition was by Bourlai et al. [24], who evaluated 
preprocessing, feature extraction, and similarity metrics as a 
complete processing chain for matching.  [24] reported that the 
best Rank-1 accuracy of 53.9% on an in-house dataset of 39 
subjects was achieved with difference-of-Gaussian 
preprocessing, three patch local binary patterns (LBP) feature 
extraction, and chi-squared distance based matching.  Klare and 
Jain [22] developed a nonlinear kernel prototype based 
approach that represents features extracted from heterogeneous 
image modalities, followed by linear discriminant analysis 
(LDA) to improve the discriminative capabilities of the 
prototype representations.  Testing on a subset (333 subjects) of 
the PCSO dataset and augmenting the visible gallery with 
10,000 additional subjects, [22] achieved a verification rate of 
78.2% at FAR=1%.  Hu et al. [23] developed an approach using 
DOG filtering, followed by HOG feature extraction, and partial 
least squares (PLS) based matching.  The incorporation of 
thermal cross-examples as negative samples in the PLS 
framework improved recognition performance, achieving a 
verification rate of 94.8% at FAR=1% on a 48-subject gallery 
using the NVESD dataset. 

 More recently, Chen and Ross [25] proposed a cascaded 
subspace learning framework consisting of whitening 
transformation, factor analysis, and common discriminant 
analysis, seeking to extract identity features that are invariant 
across spectral bands.  First, [25] reduced cross-spectral 
differences in facial signatures through photometric 
adjustment.  Then, histograms of principal oriented gradients 
and a variant of the scale invariant feature transform (SIFT) 
called PSIFT are extracted as feature vectors.  Next, multiple 
subspaces are constructed by random sampling of image 
patches, and the corresponding feature vectors are used as input 
into the cascaded subspace learning framework.  On the PCSO 
dataset, [25] achieved a verification rate of 80.9% at FAR=1%.  
Sarfraz and Stiefelhagen [26] proposed a neural network based 
approach called deep perceptual mapping (DPM) to bridge the 
modality gap and facilitate MWIR-to-VIS face recognition.  
[26] used a 3-layer (2 hidden layers) neural network to learn a 
non-linear mapping between the SIFT features extracted from 
the DOG filtered facial images in the MWIR and visible 
domains.  This approach can be considered a direct regression 
approach that maps SIFT features from the MWIR domain to 
its visible representation (or vice versa), and can be effectively 
trained on a relatively small training dataset.  [26] achieved a 
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high Rank-1 identification accuracy of 98.7% on the NVESD 
dataset using all available visible imagery per subject to form a 
25-subject gallery.  Whereas [26] performs direct regression, 
Riggan et al. [27] proposed a novel coupled autoassociative 
neural network that performs an indirect regression between 
visible SIFT features and MWIR SIFT features to extract 
common latent features.  [27] achieved a Rank-1 accuracy of 
94.4% on the NVESD dataset with a 40-subject gallery. 

B. LWIR-to-Visible 
 Facial signatures acquired in the MWIR and LWIR bands 
are visually and phenomenologically similar to a large extent.  
The emissivity of facial skin tissue is 0.97 in LWIR [21], which 
is slightly higher than in MWIR.  Therefore, techniques 
developed for MWIR-to-VIS face recognition can also be 
readily applied to LWIR-to-VIS face recognition.  However, 
LWIR-to-VIS face recognition is a more challenging HFR 
scenario than MWIR-to-VIS face recognition, due to several 
factors.  Firstly, the resolving power of any imager is limited to 
the wavelength of the radiation.  Since the wavelength is longer 
in LWIR than MWIR, imagery acquired in LWIR has 
inherently less spatial resolution.  However, since facial 
structures are not typically on the order of micrometers (the 
wavelength in the thermal spectrum), this is not a significant 
limiting factor for LWIR-to-VIS face recognition versus 
MWIR-to-VIS.  There are, however, major differences between 
the sensors typically used to acquire MWIR and LWIR 
imagery.  MWIR imagers are predominantly cooled systems 
that integrate the imaging sensor with a cryocooler, which 
lowers the sensor temperature to cryogenic conditions.  LWIR 
imagers may also be cooled systems using cryocoolers, similar 
in design to the MWIR imagers.  However, a large segment of 
the commercial market for LWIR imagers relies on uncooled 
designs, the most common form being the microbolometer [28].  
Microbolometers are significantly less expensive than their 
cooled counterparts, often by an order of magnitude or more.  
Though more cost effective, microbolometers have lower 
sensitivity, lower signal-to-noise ratio, and lower spatial 
resolution (partly due to the typically larger detector pitch).  
Therefore, LWIR-to-VIS face recognition is the most 
challenging of the infrared-to-visible heterogeneous face 
recognition scenarios. 

 Due to the accessibility and availability of lower cost 
microbolometers, there are more LWIR face databases 
available to facilitate HFR research.  One of the first LWIR face 
databases is the 82-subject ND-Collection X1, collected by the 
University of Notre Dame in the early 2000’s [29], which also 
contained visible imagery.  Since then, more LWIR face 
databases have collected with improved imagers as the sensor 
technology has rapidly evolved – Table II lists several 
commonly used databases for LWIR-to-VIS face recognition.  
Note that thermal imagery (both MWIR and LWIR) can also 
facilitate the detection of disguises, which is the focus of the 
database introduced in [32]. 

 The first study published on the LWIR-to-VIS scenario is 
[33], which evaluated several different algorithms for 
preprocessing and feature extraction for LWIR-to-VIS face 
recognition using PLS.  On the ND-Collection X1 database, 
[33] achieved the best Rank-1 identification rate of 49.9% on a 

testing set of 41 subjects with DOG filtering and HOG feature 
extraction.  Results on the more recent thermal-to-visible face 
recognition techniques (please refer back to Section IV.A for 
more algorithm details), are as follows. This method of [33] was 
extended in [23], improving the Rank-1 accuracy to 72.7% on 
the 41-subject testing set from the ND-Collection X1 database. 
On the LWIR portion of the NVESD dataset, [23] achieved a 
verification rate of 80.2% at FAR=1% on a 48-subject gallery.  
Note that this verification rate is notably lower than the 94.8% 
achieved for MWIR-to-VIS matching, demonstrating that 
LWIR-to-VIS face recognition is more challenging.  On the 
NVESD dataset, [27] achieved Rank-1 accuracy of 89.1% for 
LWIR-to-VIS face recognition, also lower than the reported 
94.4% Rank-1 accuracy for MWIR-to-VIS face recognition.  
Also on the NVESD dataset, [26] achieved Rank-1 accuracy of 
97.3% for LWIR-to-VIS matching, only slightly lower than the 
98.7% reported for MWIR-to-VIS matching.  On the Carl 
database, which collected the thermal imagery using a 
microbolometer, [25] achieved a Rank-1 accuracy of 75.6% and 
a verification rate of 51.2% at FAR = 1%. 

 Almost all the databases containing MWIR and LWIR 
facial imagery are collected in controlled settings, typically at 
close ranges.  The reported results for thermal-to-visible face 
recognition are therefore for ideal conditions and mostly for 
frontal face imagery, matching against limited gallery sizes.  
Even so, the HFR performance (in terms of both identification 
and verification accuracy) has only achieved limited success, 
illustrating the significant challenge for thermal-to-visible face 
recognition.  Overcoming these challenges will lead to a critical 
capability that can provide covert day and night face 
recognition.  

TABLE II. LWIR FACE DATABASES 

Database Name # of Subjects 

ND-Collection X1 [29] 82  

Carl Database [30] 41 

OTCBVS Dataset 02 [31] 30 

IIIT-Delhi In and Beyond Visible 
Spectrum Disguise Database [32] 75 

NVESD Database [23] 50 

C. Polarimetric LWIR-to-Visible 
 An emerging area of research is the use of polarization state 
information of LWIR emissions to facilitate face recognition.  
Note that polarization state information can be measured in any 
infrared band as well as in the visible spectrum – here, we focus 
on the LWIR band.  The polarization states are described using 
the Stokes parameters S0, S1, and S2 [34], which are used to 
compute the degree of linear polarization (DoLP) traditionally 
used to visualize polarimetric imagery.  The Stokes parameters 
are derived by measuring radiant intensities of the linear states 
of polarization at angles of 0°, 45°, 90°, and 135°.  Gurton et al. 
[35] is the first study that presented polarimetric LWIR facial 
imagery.  Figure 3 shows polarimetric imagery of a subject.  S0 
represents the conventional LWIR image without any 
polarization, while S1

 represents horizontal & vertical 
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polarization, and S2 represents the diagonal polarization.  As 
can be observed, the polarization state information in S1 and S2 
contain geometric and textural facial details that are not present 
in S0, and can be used to complement S0 in improving face 
recognition performance.  Furthermore, the Stokes images can 
be used to estimate the surface normal at each pixel, enabling a 
3D facial surface to be reconstructed [36] which can potentially 
be used to “frontalize” off-angle probe images to match against 
galleries containing predominantly frontal face imagery. 

 [37] is the first study to combine edge orientation features 
extracted from S0, S1, and S2, demonstrating that polarimetric 
LWIR-to-VIS face recognition outperformed conventional 
LWIR-to-VIS face recognition.  The most recent work by 
Riggan et al. [38] proposed an optimal feature learning and 
discriminative framework for polarimetric LWIR-to-VIS face 
recognition, extending the coupled autoassociative neural 
network followed by PLS to improve the recognition accuracy.  
[38] reported Rank-1 identification rate of 93.3% on a 50-
subject database split into equal subsets for training and testing.  
An extended version of that database containing 60 subjects is 
now available upon request (please refer to [39]).  Figure 4 
shows the cumulative match characteristic curves on this 
extended database comparing polarimetric LWIR-to-VIS to 
conventional LWIR-to-VIS face recognition (treating S0 as the 
conventional LWIR probe set), using couple neural networks 
followed by PLS and a visible face matcher, PittPatt SDK 5.2.2.  
Figure 4 illustrates that polarization state information helps 
improve HFR performance using the approach of [38], which 
extracted SIFT features, followed by PCA for dimensionality 
reduction, indirect regression through CpNN, and PLS for 
classification.  Figure 4 also illustrates that PittPatt cannot 
overcome the large modality gap for polarimetric and 
conventional LWIR-to-VIS.   

 More recently, Riggan et al. [40] introduced a method of 
estimating/synthesizing a visible spectrum face image from a 
polarimetric LWIR face image.  [40] used a two-step approach, 
first mapping the SIFT features extracted from a polarimetric 
thermal image to its visible feature representation, from which 
the corresponding visible image can be reconstructed using a 
convolutional neural network based approach.  The advantage 
of such a synthesis approach is its ability to provide a 
preprocessing stage to existing visible face matchers for 
heterogeneous face recognition. 

 

 
Figure 4. Cumulative match characteristic curves for 
polarimetric LWIR-to-VIS and conventional LWIR-to-
VIS. 

V. DISCUSSION AND CONCLUSION 
 In this paper, we discussed and reviewed recent works on 
heterogeneous face recognition, focusing on the infrared-to-
visible matching scenarios.  The reflective infrared region 
(NIR, SWIR) offers some advantages for face recognition such 
as imaging through fog and haze, and in low-light conditions 
with an active illuminator not observable to the human eye.  
Face signatures in these bands are also more similar to the 
visible face signature, allowing researchers to potentially adapt 
state-of-the-art deep learning based approaches trained on 
visible imagery for heterogeneous face recognition.  Imaging in 
the emissive infrared region (MWIR and LWIR) has the 
advantage of being purely passive, offering a truly covert 
surveillance capability.  However, due to the difference in facial 
signatures between the thermal spectrum and the visible 
spectrum, heterogeneous face recognition is much more 
challenging.  Polarimetric imaging in the thermal spectrum 
provides additional geometric and textural details that facilitate 
matching with visible spectrum imagery.  Though significant 
progress has been made in infrared-to-visible face recognition, 
researchers in HFR are impeded by a lack of a large multi-
modal face database.  The collection of such a database on the 
order of a thousand subjects, containing imagery 
simultaneously acquired across the infrared bands under 
various conditions and settings, will greatly facilitate HFR 
research.  Furthermore, such a large multi-modal face database 
will also facilitate algorithm development for automated face 
detection and fiducial point (e.g. eyes, nose, mouth, etc.) 
labeling algorithms, which are important processing stages 
prior to the actual matching/recognition stage.   

 With regards to algorithm development for infrared-to-
visible face recognition, transfer learning based approaches 
leveraging existing deep neural networks trained on large 
amounts of visible face imagery are effective for the NIR-to-
VIS scenario, and likely to be effective for the SWIR-to-visible 
scenario as well (though, to the best of our knowledge, no 

Figure 3. Polarimetric LWIR Stokes images of a subject. 
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transfer learning studies have been conducted on SWIR-to-
visible HFR due to the lack of a publicly available SWIR face 
database).  Facial signatures in the NIR and SWIR bands are 
more similar to the corresponding visible face signature, as the 
phenomenology is reflection dominated in these bands.  
However, due to the much wider modality gap arising from 
phenomenology differences, we conjecture that transfer 
learning will not be as effective unless the thermal images are 
first brought closer to the visible counterpart via some prior 
learned functional mappings at the pixel level.  For thermal-to-
visible HFR, regression/mapping techniques via relatively 
shallow neural networks relying on handcrafted edge-based 
features like SIFT or HOG are the most effective at the present, 
given the limited availability of face data in the MWIR and 
LWIR bands.  We believe that approaches using convolutional 
neural networks that do not rely on handcrafted features as input 
is the path forward for thermal-to-visible HFR.  However, this 
would likely entail additional data to be collected and made 
available to the community.  

 Infrared-to-visible HFR, as well as HFR in general, is still a 
nascent research area.  To reiterate, the collection of a large 
scale face data across all the spectral bands under varying 
conditions (e.g. range, pose, etc.) would greatly benefit the 
development of algorithms from face detection to fiducial point 
labeling to recognition.   As the HFR area continues to develop, 
we expect that new HFR systems will enable key capabilities 
for commercial, military, and law enforcement applications, 
providing interoperability with visible spectrum face imagery 
in existing biometric watch lists and social media sites.   
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