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Abstract

In this report, we present our CCDL system for the OLR-ASR
tasks of OLR2021. For constrained condition, we trained an
end-to-end multilingual ASR system for all of the target lan-
guages and six hybrid monolingual ASR systems for Man-
darin, Cantonese, Shanghainese, Indonesia, Japanese and Ko-
rean. Model fusion is based on the confidence of language
identification and ASR systems. For unconstrained condition,
we additionally trained three end-to-end monolingual systems
for Mandarin, Japanese and Indonesian. Finally, we achieved
CER of 13.1% in constrained condition on the progress subset.
Index Terms: automatic speech recognition, OLR2021

1. Introduction
The OLR 2021 challenge [1] intends to improve the perfor-
mance of language recognition systems and speech recognition
systems within multilingual scenarios. The challenge this year
contains four tasks: (1) constrained LID, (2) unconstrained LID,
(3) constrained multilingual ASR, (4) unconstrained multilin-
gual ASR.

In this challenge, we focused on the constrained multilin-
gual ASR task and submitted the final results of task 3 and task
4. Since the test recordings were provided without language
tag, we divided it into two sub-tasks. We first determined the
language through language identification, and then transcribed
the speech using the ASR system of corresponding language.

2. Constrained System
2.1. Data preparation

2.1.1. Training Datasets

For LID system, we utilized all available training datasets,
including OLR16-OL7, OLR17-OL3, OLR17-test, OLR17-
dev, OLR18-test, OLR19-test, OLR19-dev, OLR20-dialect and
OLR20-test [1] .

For ASR system, we only utilized the labeled training
datasets, including OLR16-OL7, OLR17-OL3, OLR20-dialect
and OLR20-test. Unlike the OLR-ASR baseline [1], for each
language, we reserved 100 sentences for validation and others
for training. We removed all of punctuation marks and special
labels, except the unintelligible speech tag as described in [1].

2.1.2. Data Augmentation

The speed perturbation and spectral augmentation [2] were used
in the same way as in the baseline system [1]. In addition, the
MUSAN 1 corpus and RIRs 2 datasets were also used to do aug-
mentation.

1http://www.openslr.org/17
2http://www.openslr.org/28

2.2. E2E Multilingual ASR

Due to the lack of lexicons and text data, building the hybrid
ASR system is challenging. Thus, we first trained an end-to-
end (E2E) multilingual ASR system by combining all target
languages. Our system was based on the OLR-ASR baseline
with the following modifications:

• We used conformer [3] as the neural network architec-
ture, which contained 12-layer encoder and 6-layer de-
coder with 2048-dimensional each layer. And the atten-
tion sub-layer was 1024-dimensional with 16 attention
heads.

• We used a mixture of characters and sub-words as the
output units of model. For the languages of Indonesian,
Korean, Russian, Kazakh, Tibetan, Uyghur and Viet-
namese, we used sub-words as output units. We used
SentencePiece 3 to train tokenizer for each language.
The vocab size was set to 500 for Indonesian, Russian,
Kazakh, Tibetan, Uyghur and Vietnamese, but 1500 for
Korean. For the language of Mandarin, Hokkien, Shang-
hainese, Sichuanese, Cantonese and Japanese, we used
characters as output units directly.

• We performed the model average according to the loss
of validation set, not just used the last 10 epochs. The
number of epochs was also increased to 40.

• We modified the data preparation as described in session
2.1.

2.3. Hybrid monolingual ASR

Since hybrid HMM-DNN acoustic model is proved to be more
promising than conformer-based end-to-end structures in the
particular under-resource condition [4], hybrid ASR systems
were also employed for model fusion. Due to the limit of lexi-
cons and text data, we only employed the hybrid ASR systems
for the languages of Mandarin, Cantonese, Shanghainese, In-
donesia, Japanese and Korean. All of systems were trained sep-
arately with the same architecture.

For acoustic model, we used a CNN-TDNNF architecture
which consists of 4 convolutional layers and 17 factored time
delayed neural network layers [5]. The input features were 40-
dimensional MFCC features with 3-dimensional pitch features.
I-vectors were also used for speaker adaptation. The model was
trained with chain model in Kaldi using LF-MMI criterion [6].

For language model, we trained 5-gram for all of systems.
We used the crawled text from web to train the language model
of Mandarin, Indonesian, Japanese and Korean. For Cantonese
and Shanghainese, due to the lack of crawled text, we performed
the mixture of Mandarin language model and the specific lan-
guage model that trained from the corresponding text in the
training set.

3https://github.com/google/sentencepiece



Table 1: The results of CER (%) in constrained condition on the progress subset.

system Total zh-cn Minnan Shanghai Sichuan ct-cn id-id ja-jp ko-kr ru-ru vi-vn Kazak Tibet Uyghu
OLR-ASR baseline 39.1 115.8 69.3 35.9 34.4 47.0 8.4 67.0 32.5 34.8 30.3 35.0 52.7 21.0

E2E Multilingual ASR 14.2 17.6 51.8 29.5 26.8 36.9 5.5 34.7 15.2 10.4 5.8 23.2 5 4
Hybrid Monolingual ASR – 13.8 – 27.9 – 33.5 2.7 22 10.9 – – – – –

Model Fusion 13.1 13.3 51.9 28.2 27 33.2 2.8 24.7 11.4 10.4 5.8 23.2 5 4

2.4. Language Identification

We used two methods to determine the language tag of record-
ings. The first method was a language identification classifier
based on ResNetSE34 [7, 8]. We used the output of classifier to
distinguish languages directly. The second method was based
on the edit-distance between the E2E multilingual ASR system
and hybrid monolingual ASR system. Considering that the E2E
multilingual ASR system mainly suffered the problem of lan-
guage model due the limit of training data, the edit-distance
between with matched hybrid system tended be less than the
score of unmatched system. Thus, we combined two methods
to distinguish languages.

2.5. Model fusion

The fusion strategy adopted in our system was based on the
confidence of language identification and ASR systems. For
the recording with high confidence of language identification
and hybrid ASR systems, we used the transcription of hybrid
ASR system as result. Otherwise, we used the transcription of
E2E multilingual ASR system directly.

3. Unconstrained System
3.1. Training Datasets

For unconstrained condition, we trained three E2E ASR sys-
tems for Mandarin, Japanese and Indonesian separately. In ad-
dition to the training set in constrained condition, we utilized
WenetSpeech 4 dataset for Mandarin system, Mozilla Com-
mon Voice 5 Japanese and CSJ 6 datasets for Japanese system,
Mozilla Common Voice Indonesian and MagicData Indonesian
Scripted Speech 7 and Google TTS 8 datasets for Indonesian
system.

3.2. E2E Monolingual ASR

We used WeNet [9] toolkit to build the systems. The neural
network architecture was based on conformer, which contained
12-layer encoder and 6-layer decoder with 2048-dimensional
each layer. The attention sub-layer was 512-dimensional and
used 8 attention heads.

4. Results
Table 1 shows the results of CER in constrained condition on the
progress subset. As can be seen, our E2E multilingual ASR sys-
tem significantly outperforms the OLR-ASR baseline, reducing
the CER about 64% relatively. We also evaluated our hybrid
monolingual ASR systems without the distinction of language,

4https://github.com/wenet-e2e/WenetSpeech
5https://commonvoice.mozilla.org/zh-CN/datasets
6https://ccd.ninjal.ac.jp/csj/
7https://magichub.com/datasets/indonesian-scripted-speech-corpus-

daily-use-sentence
8https://github.com/Wikidepia/indonesian datasets/tree/master/speech/gtts

as shown in the third line of Table 1. Finally, the fusion system
achieved a CER of 13.1% on the progress subset.
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