
Wang and Wang

CSLT TECHNICAL REPORT-20150031 [Wednesday 6th January, 2016]

An implementation of Pointer-Networks with
Extensions
Xiaoxi Wang1 and Dong Wang1,2*

*Correspondence: wang-
dong99@mails.tsinghua.edu.cn
1Center for Speech and Language
Technology, Research Institute of
Information Technology, Tsinghua
University, ROOM 1-303, BLDG
FIT, 100084 Beijing, China
Full list of author information is
available at the end of the article

Abstract
This report presents the technique for implementing Pointer-Networks as well
as extending the models in two ways: deploying an incremental strategy for
refine results for large size problems and adding extra memory slots to
enhance the attention mechanism in order to generate more accurate results.
By doing such preliminary research on these two extensions, we show the
potential advantage of the incrementally learning strategy and memory
structures that can benefit our future works.

Keywords: deep learning; sequence-to-sequence model; attention
mechanism; convex hull problems

1 Introduction
This report presents the technique for building an implementation of Pointer-Networks
(Ptr-Nets) [1]. The Ptr-Nets are RNN Encoder-Decoder models which are designed based
upon the sequence-to-sequence (Seq-to-Seq) models [2] with content-based attention
mechanism[3]. Traditionally, the general Seq-to-Seq model can deal with input sequences
with varies of length, while the dictionary of outputs must be fixed. However, in many
problems such as sorting, the size of output dictionaries vary according to its inputs. This
makes it impossible to train a Seq-to-Seq model on size n problems also fit on a size of
n′ 6= n problems. In order to overcome this shortage, the Ptr-Nets deployed content-based
input attention as a pointing mechanism and replace the traditional dictionary-looking-up
outputs by using the pointers as the outputs. Comparing with the Seq-to-Seq model, Ptr-
Nets produce the probabilities of selecting over the encoded units of the input sequence,
so the size of outputs is equal to the length of input sequences and changes when the input
changes. By doing so, the Ptr-Nets are capable of solving several combinatorial problems,
such as Convex Hull Problems, Delaunay Triangle Problems and Traveling Salesman Prob-
lems (TSPs).

In this paper we also proposes two extensions: 1) an incremental decoding strategy and 2)
an encoding method with parallel memory slots. In the first extension we applied an incre-
mental algorithm into the decoding process of Ptr-Nets model. It is only applicable when
outputs is in a subset of corresponding inputs and no element appears more than once in
the outputs, e.g. the 2-D convex hull problems. More specifically, the inputs are divided
into several batches with a fixed size. At the first turn, the first batch is sent to the model
and the model generates a sub-solution, then for each following turn, the output from last
turn is joined to the current input batch and both are sent to the encoder to generate next
sub-solution, until all batches are accepted and the solution is finally generated. The moti-
vation of this strategy is to improve the solution when the size of problems is large. From

Wang and Wang Page 2 of 7

our experiments on Convex Hull Problems, we found that the Ptr-Nets can generate hulls
that are very close to the target hulls; however, the accuracy of whether the exact points
are generated correctly is dropping down significantly when the size of problems growing
large.This is due to the difficulty of neural network models in generating solution meticu-
lously; therefore, the incremental strategy can produce a much better results by refining the
solutions repeatedly.

In the second extension, we add memory slots in parallel to the encoded states. The
memories are hidden units encoded in the same way as its original encoder but different
parameters. Then the latest hidden unit of the original encoder is used as the initial state of
the decoder, and the memories are used for the attention mechanism in its decoding process.
As we know, in Seq-to-Seq model, the hidden units in encoders are not only representations
of input points, but also saved partial context information that had been encoded so far;
therefore, our hypothesis is that the encoded information of each input and the context
information may interfere each other. By adding an extra memory, during the attention
precess in decoding the model will point back to the memory instead of the LSTM encoded
hidden unit, so the encoder can focus on producing the context information. Out experiment
results shows that this method outperforms the baseline results.

2 Pointer Networks Review
The Pointer Network is a generation model that can be seen as a combination of sequence-
to-sequence model and attention mechanism. The vanilla sequence-to-sequence model is
composed by two RNNs, one encoder and one decoder. The Long Short Term Memory
(LSTM) is used here for the RNNs. It use a input sequence P to produce the conditional
probability of output sequence CP , which can be represented as:

p(CP |P; θ) =
m(P)∏
i=1

pθ(Ci|C1, ..., Ci−1,P; θ) (1)

where θ denotes the parameter of the model and (P, CP) denotes the pair of an input se-
quence and an output sequence. For the Ptr-Nets, P = {P1, ..., Pn} is a sequence of n
vectors and CP = {C1, ..., Cm(P} is a sequence of m(P) indices, each between 1 and
n. In addition, two special symbols ⇒ and ⇐ are used in the Ptr-Net model, where the
⇐ works as a termination symbol of the output sequence and the ⇒ is fed to the model
just after the input sequence to tell the model switch to generation mode. More specifically,
let (e1, ..., en) and (d1, ..., dm(P)) denote the hidden states of encoder and decoder respec-
tively. At time step j, the current hiddenej is encoded from Pj as well as the last state ej−1.
For the first state e1, an state that indicate the termination symbol⇐ is used as the previous
state e0. Once the encoding process is finished, the last state en has been encoded with the
necessary information of the overall problem, so it is then used as the initial state for the
decoder. Once the⇒ symbol is fed to the model, the model start generating decoding states
(d1, ..., dm(P)) until the termination symbol⇒ is generated.

The most distinct advantage in Ptr-Nets is using outputs as pointers that can selecting
from the encoding states. This is based upon the content-based attention mechanism[3].
The attention mechanism works as a soft search through the hidden states of the encoder.
Once a state di is generated from the decoder at time step i, it is used to evaluate a focusing

Wang and Wang Page 3 of 7

weight aij with each hidden state ej in the encoder. This weight can be seen as a measure-
ment of the relation between the state di and each state ej . In many other papers[4, 5, 6, 7, 8]
about the content-based attention mechanism, aij is used to compute an “attention vector”
d′i on each time i, and using d′i as additional information for decoding. All these process
can be represented as follows:

uij = vT tanh(W1ej +W2dj) j ∈ (1, ..., n)

aij = softmax(uij) j ∈ (1, ..., n)

d′i =

n∑
j=1

aijej

(2)

where uij can be seen as a focus weight on state ej on time i and aij is a softmax normalised
version of uij , so the attention vector d′i is a weighted sum of all encoder hidden units.

However, since the pointer network using the attention mechanism as a pointer, instead of
obtaining an “attention vector” over a soft search, it choose an a from all aij , j ∈ (1, ..., n)

as a pointer, which is located according to:

uij = vT tanh(W1ej +W2di) j ∈ (1, ..., n)

p(Ci|C1, ..., Ci−1,P) = softmax(ui)
(3)

therefore applying a hard search over all hidden states. The input element correspond to the
chosen state is now be pointed as the output for current di. As a result, the Ptr-Net select
outputs from its input elements rather than using a fixed vocabulary.

x
1

y
1

e
1

e
2

e
3

e
4

d
1

d
2

d
3

d
4

d
5

x
2

y
2

x
3

y
3

x
4

y
4

x
1

y
1

x
4

y
4

x
2

y
2

x
1

y
1

1 4 2 1

Figure 1: Ptr-Nets.

3 Incrementally Learning
The incrementally learning is a decoding strategy, which can benefit the performance on
large size problems. Given a problem P = {p1, p2, ..., pn}, where each pj represents the
coordinate of point j, we divideP into several disjoint subsetsP1, P2, ..., where each subset
contains winc elements. Initially, the model is fed with P1 and generates an sub-solution
C1, then the points correspond to C1 is united to P2 and feed to the model to generate
sub-solution C2. By repeating this, each step we add winc more points to the existing sub-
solution to complete the solution. The experiment result is in section 5.2.

Wang and Wang Page 4 of 7

4 Adding Extra Memories
For adding memory slots in parallel to the encoded units, we encode another series of
hidden states as the same way as the encoder but with different parameters. Let (e1, ..., en)
denote the hidden units of the encoder and (e′1, ..., e

′
n) denote the encoded memory slots.

Then the equation 3 can be changed as follows:

uij = vT tanh(W1e
′
j +W2di) j ∈ (1, ..., n)

p(Ci|C1, ..., Ci−1,P) = softmax(ui)
(4)

And the original en is only worked as the initial state of decoder for decoding the di.
The changed model is depicted as Fig.2:

x
1

y
1

e
1

e
2

e
3

e
4

m
1

m
2

m
3

m
4

d
1

d
2

d
3

d
4

d
5

x
2

y
2

x
3

y
3

x
4

y
4

x
1

y
1

x
4

y
4

x
2

y
2

x
1

y
1

1 4 2 1

Figure 2: Ptr-Nets with Memories.

5 Experiments
The task we used to evaluated the model is the 2-D Convex Hull Problems. The training
data contains 1M examples. Each example has the 2D coordinates of a point set with n
elements and the corresponding convex hull to this point set. Here n is a random number
within a range of [5, 50] and selected according to the uniform distribution. For the test set,
there are nine set of problems in size of {5, 10, 25, 50, 100, 200, 300, 400, 500} in total.
Each set contains 1K examples.

Our model is a typical RNN LSTM model with a dimension of 512. For training we use
adadelta to reach a relatively good local minimum and then switch to rmsprop to refine the
model and achieve much better results.

5.1 The Baseline
We train our models before we know the exact setting of Vinyals, et.al’s [1] baseline[1],
so our baseline is a bit difference from Vinyals, et.al’s. For Vinyals, et.al’s baseline, the
data settings contains 920K examples, 20K examples for each n from 5 to 50. The data
also follow two order: (1) The first element of the outputs is always the smallest one in the
sequence; (2) the points are sorted in counter-clockwise order. However, in our experiments
we found that it is hard to reach the baseline results by following this order, but by starting
from the elements that closed to the down-left corner, the model can reach a even better
[1]https://github.com/meirefortunato/Pointer Networks/blob/master/Convex Hull README.txt

Wang and Wang Page 5 of 7

points 5 10
accuracy validation area accuracy validation area

Vinyals, et.al’s baseline 92.0% ≥99% 99.6% 87.0% ≥99% 99.8%
Baseline 93.31% 99.45% 99.82% 90.92% 99.61% 99.97%

Incrementally
learning
(winc)

1 - - - - - -
5 - - - - - -

10 - - - - - -
25 - - - - - -
50 - - - - - -

Memory 93.69% 99.29% 99.84% 93.38% 99.56% 99.98%

points 25 50
accuracy validation area accuracy validation area

Vinyals, et.al’s baseline - - - 69.6% ≥99% 99.9%
Baseline 82.28% 98.08% 99.99% 67.93% 96.10% 99.98%

Incrementally
learning
(winc)

1 - - - 60.45% 99.36% 99.69%
5 - - - 69.08% 99.08% 99.98%

10 - - - 69.03% 98.51% 99.98%
25 - - - 67.64% 96.74% 99.98%
50 - - - 67.93% 96.10% 99.98%

Memory 87.81% 99.56% 99.93% 78.16% 99.51% 99.88%

points 100 200
accuracy validation area accuracy validation area

Vinyals, et.al’s baseline 50.3% ≥99% 99.9% 22.1% ≥99% 99.9%
Baseline 48.69% 99.52% 99.97% 12.63% 99.97% 99.86%

Incrementally
learn-
ing
(winc)

1 43.93% 99.61% 99.88% 21.82% 99.88% 99.91%
5 49.23% 99.55% 99.97% 24.41% 99.73% 99.94%

10 49.10% 99.09% 99.97% 24.96% 99.42% 99.94%
25 47.79% 96.55% 99.97% 25.96% 98.26% 99.95%
50 47.29% 96.49% 99.97% 24.81% 98.26% 99.95%

Memory 58.95% 100.00% 99.92% 14.84% 99.95% 99.76%

points 300 400
accuracy validation area accuracy validation area

Vinyals, et.al’s baseline - - - - - -
Baseline 3.00% 99.98% 99.74% 0.83% 100.00% 99.66%

Incrementally
learn-
ing
(winc)

1 10.33% 99.87% 99.89% 5.16% 99.89% 99.87%
5 11.82% 99.83% 99.91% 6.04% 99.91% 99.89%

10 12.01% 99.62% 99.92% 6.36% 99.86% 99.89%
25 12.77% 98.81% 99.92% 6.92% 99.11% 99.90%
50 11.86% 98.45% 99.92% 6.19% 99.02% 99.90%

Memory 3.35% 99.86% 99.56% 0.85% 99.91% 99.45%

points 500 -
accuracy validation area accuracy validation area

Vinyals, et.al’s baseline 1.3% ≥99% 99.2% - - -
Baseline 0.19% 99.99% 99.59% - - -

Incrementally
learn-
ing
(winc)

1 2.44% 99.85% 99.84% - - -
5 2.86% 99.86% 99.86% - - -

10 3.09% 99.82% 99.87% - - -
25 3.54% 99.11% 99.88% - - -
50 3.28% 99.30% 99.87% - - -

Memory 0.24% 99.96% 99.38% - - -

Table 1: Experimental results

results. [2] In addition, in Vinyals, et.al’s results, if the validation is below 99.0%, it will

be reported as FAIL, but in our result we present the exact validation for reference and we

observe that the validation is less than 99.0% in some case (e.g. our baseline on 50 points

task.). One possible reason is due to our dataset issue (see footnote[2]). The other possible

reason is that Vinyals, et.al may use beam search for decoding, which may improve the

performance on large size problems, but no specific settings are declared in their paper.

Meanwhile, they may only use standard stochastic gradient descent (SGD), while we are

using rmsprop, so our baseline shows a slight better results on small size problems.

In table 1, we show both Vinyals, et.al’s baseline and our baseline together for compari-

son in detail.

[2]When writing this report we notice that it could be some difference on the settings between our model and Vinyals, et.al’s, we
will do more investigation on this in our future works.

Wang and Wang Page 6 of 7

5.2 Incrementally Learning
For incrementally learning, the training method is same as the baseline. The only difference
is how we deploy the model on the process of testing. Given a test example, we first divided
the input sequence into groups, where each group contains winc elements (the last group
may contains less than winc elements). The winc is denoted as incremental window. We
test different winc ∈ {1, 5, 10, 25, 50} on different size of problems (number of points).

For the first turn, the first group of winc input elements are fed to the model. Then a
number of w′1 outputs will be generated. In following turns, each time we append next
group of input elements to the outputs in previous turn, so there are w′i + winc elements in
the ith in total as the input elements.

The model are evaluated in two ways as same as in [1], accuracy and area covered of the
target convex hull. The accuracy is computed as if the output sequence represents the same
polygon as the sequence produced by the target sequence.

The results are presented in table 1. We note that the accuracy on number points ≥ 200

outperforms other experiment groups. However, this method costs much more time than
the original method.

5.3 Adding Memory Slots
Our experiment results shows that this method outperforms the baseline results in table
1. However, as noted in section5.1, we did not apply the beam search in the decoding, so
we should do it in future work to see whether this can also outperform the incrementally
learning results on large size problems.

6 Conclusions
In sum, Ptr-Nets can show some unique capabilities for approximately solving combina-
torial problems. As the discussion in [9], Ptr-Nets provide an mechanism for selecting
discrete targets. However, in [8] Ptr-Nets are viewed as technique for geometry reason-
ing instead of combinatorial problem deducing, since all three tasks presented in [1] are
only in planar spaces. It is worth to argue whether it can solve combinatorial problems in
general.Due to the structure limitation of current neural networks, some general combina-
torial problems may not be able to represented as some special data structures (e.g, vectors
with fixed dimension number) that fit for the current neural networks. From the experi-
mental result, Ptr-Nets can produce good solutions for small size problems but become less
meticulous when the size grow large. By deploying incremental strategy, we can obtain
relatively well-fined solution. With additional memory slots, the overall performance can
be improved but still need refine on large size solutions.

Wang and Wang Page 7 of 7

Author details
1Center for Speech and Language Technology, Research Institute of Information Technology, Tsinghua University,
ROOM 1-303, BLDG FIT, 100084 Beijing, China. 2Center for Speech and Language Technologies, Division of
Technical Innovation and Development, Tsinghua National Laboratory for Information Science and Technology,
ROOM 1-303, BLDG FIT, 100084 Beijing, China.

References
1. Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly, “Pointer networks,” arXiv preprint arXiv:1506.03134, 2015.
2. Ilya Sutskever, Oriol Vinyals, and Quoc VV Le, “Sequence to sequence learning with neural networks,” in

Advances in neural information processing systems, 2014, pp. 3104–3112.
3. Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio, “Neural machine translation by jointly learning to align

and translate,” arXiv preprint arXiv:1409.0473, 2014.
4. Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan, “Show and tell: A neural image caption

generator,” arXiv preprint arXiv:1411.4555, 2014.
5. Andrej Karpathy, Justin Johnson, and Fei-Fei Li, “Visualizing and understanding recurrent networks,” arXiv

preprint arXiv:1506.02078, 2015.
6. Minh-Thang Luong, Hieu Pham, and Christopher D Manning, “Effective approaches to attention-based neural

machine translation,” arXiv preprint arXiv:1508.04025, 2015.
7. Alexander M Rush, Sumit Chopra, and Jason Weston, “A neural attention model for abstractive sentence

summarization,” arXiv preprint arXiv:1509.00685, 2015.
8. Tim Rocktaschel, Edward Grefenstette, Karl Moritz Hermann, Tomas Kocisky, and Phil Blunsom, “Reasoning

about entailment with neural attention,” arXiv preprint arXiv:1509.06664, 2015.
9. Kyunghyun Cho, Aaron Courville, and Yoshua Bengio, “Describing multimedia content using attention-based

encoder-decoder networks,” Multimedia, IEEE Transactions on, vol. 17, no. 11, pp. 1875–1886, 2015.

