
The Royal Flush System for AP20-OLR Challenge

Ding Wang, Shuaishuai Ye, and Xinhui Hu

Hithink RoyaFlush AI Research Institute, Zhejiang, China
{wangding2,yeshuaishuai,huxinhui}@myhexin.com

Abstract
This paper describes our royal flush system for AP20-OLR
challenge. The challenge this year contains three tasks: (1)
cross-channel Language identification (LID), (2) dialect identi-
fication, and (3) noisy LID. We leveraged the system pipeline
from three aspects, including the data preparation, modeling
method, and fusion strategy. Firstly, we performed the data
augmentation strategy by applying the speed and volume per-
turbation on the training set. Secondly, the traditional speech
denoising method based on WebRTC was used in the test set for
task 3. As for the model building, we developed LID systems
on Kaldi, Pytorch, and ESPnet, in which different optimization
methods are available. For task 1 and task 3, the extended x-
vector architecture and the i-vector system were used to extract
corresponding embedding features. In order to classify differ-
ent languages using the embedding features, we used the Logis-
tic Regression , a supervised backend classifier, in our systems
of task 1 and task3. For task 2, we used knowledge transfer
learning to train an end-to-end LID model from another end-to-
end automatic speech recognition (ASR) model built by using
a large corpus. Finally, the greedy fusion strategy helped us
choose the subsystems for the final fusion system of tasks 1 and
3 (the submitted systems).
Index Terms: language identification, x-vector, end-to-end

1. Introduction
LID refers to identify the language categories from utterances.
Considering the challenge existing in LID tasks, the orien-
tal language recognition challenge is organized annually since
2016 [1, 2, 3]. The AP20-OLR challenge [4] includes three
tasks: cross-channel LID (task 1), where the subset recordings
were recorded using different devices in different environments;
dialect identification (task 2), which was designed for the dialect
identification task; and noisy LID (task 3) with the test data
set recorded under noisy environment (low SNR). All tasks are
evaluated and ranked separately. We participated all the three
tasks, and submitted the results of these tasks according to the
required test conditions by the challenge.

In this paper, we introduce the Royal Flush systems for
AP20-OLR in detail. The remainder of this paper is organized
as follows. Section 2 describes the data preparation. Section 3
introduces the approaches adopted for our systems. The exper-
imental settings and results of subsystems on the development
set are shown in Section 4. Finally, the conclusion is given in
Section 5.

2. Data Preparation
In this AP20-OLR challenge, except for the data sets specified
by the challenge committee, the other training materials and
non-speech data are forbidden to participants. The permitted
resources are several specified data sets, including AP16-OL7,
AP17-OL3, AP17-OLR-test, AP18-OLR-test, AP19-OLR-test

and THCHS 30 [1, 2, 3, 4]. The data sets used in this challenge
are listed in Table 1 and Table 2, and their detailed descriptions
will be given in following parts.

2.1. Training Set

For task 1 and task 3, the AP16-OL7, AP17-OL3, AP17-
OLR-test, AP18-OLR-test-task2, and THCHS 30, namely
ap20 task 1 train with thchs30 aug, constitute the training set
for Kaldi [5] and Pytorch [6] based systems.

For task 2, the AP16-OL7, AP17-OL3, and THCHS 30,
which were named ap20 task2 e2e asr train, constituted the
training set for the end-to-end ASR model, and the AP20-OLR-
dialect was used for knowledge transfer learning.

In task 1 and task 3, we adopted the data augmentation
methods, including speed and volume perturbation, to increase
the training data’s amount and diversity. We applied the random
speed factor of 0.9 or 1.1 to slow down or speed up the original
recordings for speed perturbation and volume factor to mod-
ify the volume of original recordings. Finally, two augmented
copies of the original recording were added to the original data
set to obtain a 3-fold training set. In task 2, we only applied
speed perturbation with the speed factor of 0.9 and 1.1 to in-
crease the training data’s amount and diversity.

2.2. Enrollment Set

The enrollment sets for task 1 and task 3 are sub-
sets of the ap20 task 1 train with thchs30 without data
augmentation, namely ap20 task1 back end train and
ap20 task3 back end train. For better matching the test
sets, the ap20 task1 back end train contains only 6 target
languages, and the ap20 task3 back end train contains only
5 target languages, which is also the best way to select the
enrollment set for each task.

2.3. Training Set for Bottleneck Feature

For task1 and task 3, the THCHS 30 was used for train-
ing the ASR bottleneck featuring (BNF) [7] network, namely
ap20 task 1 bnf train.We chose the BNF feature as one of the
acoustic features to train the x-vector and i-vector models for
the LID tasks, because we thought that the feature based on
speech recognition was more helpful for the extraction of lan-
guage information than the other features.

2.4. Training Set for Backend

According to the strategies of embedding extraction and back-
end classifier, the selection of training set for backend is very in-
fluential. So, we used the corresponding enrollment set to train
its backend systems for task 1 and task 3. We used the Logistic
Regression(LR) as the classifier for these two tasks, which was
trained on the enrollment set of each task.



Table 1: Data sets used in our systems

Task Data for Model Data for Backend Classifier

Task 1 ap20 task 1 train with thchs30 aug ap20 task1 back end trainap20 task 1 bnf train

Task 2 ap20 task2 e2e asr train -AP20-OLR-dialect

Task 3 ap20 task 1 train with thchs30 aug ap20 task3 back end trainap20 task 1 bnf train

Table 2: The results of subsystems on dev sets

Task Platform Model Feature Denoise Epoch Cavg EER%

Task 1
kaldi I-vector PLP&PITCH No - 0.1522 25.36

I-vector BNF No - 0.1577 26.21
Pytorch Extended TDNN PLP&PITCH No 21 0.1807 30.21

Task 2 ESPnet Transformer-12L FBANK&PITCH No 40 0.0351 6.337

Task 3 Pytorch

Extended TDNN PLP&PITCH Yes 21 - -
Extended TDNN PLP&PITCH No 21 - -
Extended TDNN BNF Yes 21 - -
Extended TDNN BNF No 21 - -

3. System Descriptions

In this section, we will briefly describe our approaches for
this challenges, including all sub-systems for LID, regressions
adopted, and the strategy of system fusion.

3.1. I-vector

The baseline i-vector system [8] was used in our systems, in
which the input features were acoustic features with its first and
second order derivatives.

3.2. Extended X-Vector

We chose an extended TDNN [9, 10] as the x-vector system,
which was mentioned in the recipes of ap-olr2020-baseline
(run kaldi ivector.sh). Compared to the traditional x-vector, the
extended TDNN x-vector structure used a slightly wider tem-
poral context in the TDNN layers and interleaved dense layers
between TDNN layers than the original x-vector architecture,
which led to a deeper x-vector model. The deep structure was
trained to classify the N languages using the cross entropy (CE)
loss function. During the test stage, the embedding features of
¡®x-vector¡¯ were extracted from the affine component of the
penultimate layer.

3.3. End-to-end LID

In the task 2, we first trained a transformer-based [11] Joint
CTC/Attention end-to-end ASR model on the ESPnet plat-
form using the training set ap20 task2 e2e asr train. Then,
we trained the 6-layer encoder with an attention mechanism of
the transformer as LID model to classify the three dialects us-
ing knowledge transfer learning on the 12-layer encoder of the
transformer-based Joint CTC/Attention ASR model, using the
training data AP20-OLR-dialect.

3.4. Logistic Regression

LR [12] is a classical supervised classification-regression algo-
rithm. With the help of sigmoid function, the training samples
are compressed between [0, 1] which represents a probability of
significance of each sample in the discrimination space. There-
fore, in order to classify different language categories, we used
the LRs for task 1 and task 3 which were trained using em-
bedding feature (e.g. x-vector or i-vector) extracted from their
respective enrollment sets.

3.5. Greedy Fusion

The fusion strategy adopted in our systems was the greedy fu-
sion [13]. The greedy fusion strategy is to weighted average the
output of all subsystems to obtain the final result. According
to our preliminary experiments, all subsystems were set to the
same fusion weight, and the sum of fusion weight of all subsys-
tems was 1.

4. Experimental Settings and Results
4.1. Experimental Settings

In this challenge, we built more than 20 subsystems for all
the 3 tasks. Although 3 platforms (Kaldi, Pytorch, EspNet)
were used to build subsystems, the feature engineering and
the backend processing were all completed on the Kaldi plat-
form. For feature engineering, two basic acoustic features:
80-dimensional FBANK and 20-dimensional PLP concatenated
with 3-dimensional pitch feature respectively were used. Also,
a 60-dimensional BNF was used as another acoustic feature for
model training, which was trained by 12-dimensional MFCC of
the THCHS30 data set.

For task 1 and task 3, our training process of i-vector system
was the same as what it’s in the recipes of ap-olr2020-baseline
(run pytorch xvector.sh). The differences of the x-vector sys-
tem between ours and the baselines are on our adjustments



of hyper-parameters and the number of epochs. Furthermore,
for task3 which is for noisy LID task, we use the traditional
WebRTC-based noise reduction module to denoise the test au-
dio. The x-vector are extracted from both the original and de-
noised test data for the LID task. The backend processing was
almost the same in task 1 and task3. Linear discriminative anal-
ysis (LDA) trained on the enrollment set was employed to pro-
mote language-related information. The dimension of the LDA
projection space was set to 100. After the LDA projection and
centering, the LR trained on the enrollment set was used to
compute the score of a trial on a particular language. Finally,
according to the results of score-level greedy fusion on the de-
velopment set, the final 3 subsystems were chosen (for fusion)
for the task 1 and the final 4 subsystems were chosen for the
task 3.

For task 2, we only used 6 of 10 languages to train the ASR
model. The 6 languages are Cantonese, Indonesian, Japanese,
Russian, Uygur, and Mandarin. We used 80-dimensional
FBANK concatenated with 3-dimensional PITCH to train the
ASR and LID models of the task. The transformer-based end-
to-end ASR model was composed of a 12-layer encoder with
2048 units, a 6-layer decoder with 2048 units, and 4-head at-
tention with 256 dimensions, which was trained on the premise
of taking the word as the modeling unit for 50 epochs with a
batch size of 64. The LID model was structured using a 6-layer
encoder with 2048 units and 4-head attention with 256 dimen-
sions, which was initialized respectively using the transformer
ASR model’s encoder and attention to classify 3 dialects. The
LID model was trained with 40 epochs using a batch size of 32.

The results and configurations of subsystems used for fu-
sion were presented in the Table 2.

4.2. Experimental Results

As shown in the result Table 2, for task 1, the best single system
is the i-vector system based on the Kaldi platform, with the fea-
ture of PLP&PITCH. The fusion of the 3 sub-systems is used
for submission.

For task 2, we found that the end-to-end system signifi-
cantly outperforms the other systems. However, because the
system’s scores are not easy to fuse with the other systems for
the task2, only the output of the end-to-end system is used for
submission.

For task 3, due to the lack of development set for it, we
only showed 2 Pytorch-based systems in which different fea-
tures were used, and no corresponding results were presented
here. In order to improve the performance for the test set, we
enhanced the test set using a WebRTC-based noise reduction
module. Therefore, depending on whether noise reduction is
used, we totally used four sub-systems for the final submission.

5. Conclusions
In this paper, we illustrated the Royal Flush system for the
AP20-OLR challenge. Many methods were investigated for
three tasks. Among our experimented systems, the best sin-
gle system was the i-vector for task 1 and the transformer-based
encoder classifier for task 2. Furthermore, the fusion of sub-
systems is verified to improve the performance and robustness
of the submitted systems for all three tasks. The contributions
of our submitted systems can be concluded as: 1) End-to-end
based modeling for the language identification systems, and 2)
the optimization of different subsystems.

6. References
[1] Z. Tang, D. Wang, Y. Chen, and Q. Chen, “Ap17-olr challenge:

Data, plan, and baseline,” in 2017 Asia-Pacific Signal and Infor-
mation Processing Association Annual Summit and Conference
(APSIPA ASC), 2017.

[2] Z. Tang, D. Wang, and Q. Chen, “Ap18-olr challenge: Three tasks
and their baselines,” in 2018 Asia-Pacific Signal and Information
Processing Association Annual Summit and Conference (APSIPA
ASC), 2018.

[3] Z. Tang, D. Wang, and L. Song, “Ap19-olr challenge: Three tasks
and their baselines,” in 2019 Asia-Pacific Signal and Information
Processing Association Annual Summit and Conference (APSIPA
ASC), 2019.

[4] Z. Li, M. Zhao, Q. Hong, L. Li, and C. Yang, “Ap20-olr challenge:
Three tasks and their baselines,” 2020.

[5] G. Boulianne, “The kaldi speech recognition toolkit,” IEEE 2011
workshop on automatic speech recognition and understanding.
No. CONF. IEEE Signal Processing Society, 2011.

[6] P. A, G. S, C. S, and et al., “Automatic differentiation in pytorch,”
NIPS, 2011.

[7] H. Sun, K. A. Lee, N. T. Hieu, B. Ma, and H. Li, “I2r-nus sub-
mission to oriental language recognition ap16-ol7 challenge,” in
2017 Asia-Pacific Signal and Information Processing Association
Annual Summit and Conference (APSIPA ASC), 2017.

[8] D. Garcia-Romero and C. Y. Espy-Wilson, “Analysis of i-vector
length normalization in speaker recognition systems.” in Inter-
speech, Conference of the International Speech Communication
Association, Florence, Italy, August, 2011.

[9] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudan-
pur, “X-vectors: Robust dnn embeddings for speaker recognition,”
in ICASSP 2018 - 2018 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), 2018.

[10] D. Snyder, D. Garcia-Romero, G. Sell, A. Mccree, and D. Povey,
“Speaker recognition for multi-speaker conversations using x-
vectors,” in ICASSP 2019 - 2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2019.

[11] N. S. Vaswani, Ashish and et al., “Attention is all you need,” in In
Advances in neural information processing systems, 2019.

[12] D. Kleinbaum and M. Klein, Logistic Regression. New York:
Springer, 2010.

[13] K. Kennedy, “Fast greedy weighted fusion,” International Journal
of Parallel Programming, 2001.


	 Introduction
	 Data Preparation
	 Training Set
	 Enrollment Set
	 Training Set for Bottleneck Feature
	 Training Set for Backend

	 System Descriptions
	 I-vector
	 Extended X-Vector
	 End-to-end LID
	 Logistic Regression
	 Greedy Fusion

	 Experimental Settings and Results 
	 Experimental Settings
	 Experimental Results

	 Conclusions
	 References

