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Abstract

Pre-training is crucial for learning deep neural networks. Most of existing
pre-training methods train simple models (e.g., restricted Boltzmann machines)
and then stack them layer by layer to form the deep structure. This layer-wise
pre-training has found strong theoretical foundation and broad empirical support.
However, it is not easy to employ such method to pre-train models without a
clear multi-layer structure, e.g., recurrent neural networks (RNNs). This paper
presents a new pre-training approach based on knowledge transfer learning. In
contrast to the layer-wise approach which trains model components
incrementally, the new approach trains the entire model as a whole but with an
easier objective function. This is achieved by utilizing soft targets produced by a
prior trained model (teacher model). Compared to the conventional layer-wise
methods, this new method does not care about the model structure, so can be
used to pre-train very complex models. Experiments on a speech recognition task
demonstrated that with this approach, complex RNNs can be well trained with a
weaker deep neural network (DNN) model. Furthermore, the new method can be
combined with conventional layer-wise pre-training to deliver additional gains.
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1 Introduction
Deep learning has gained significant success in a wide range of applications, for

example, automatic speech recognition (ASR) [1, 2]. Typical deep models used in

ASR include deep neural networks (DNNs) [3, 4] and recurrent neural networks

(RNNs) [5, 6, 7, 8]. The success of the deep models is largely attributed to various

pre-training approaches that alleviate the under-fitting and over-fitting problem

that had hindered the development of complex neural models for a long time. Most

of the well-known pre-training methods are layer-wise, which train simple models

and then stack them layer by layer to form the deep structure. This pre-training is

mostly unsupervised, and is usually followed by a fine-tuning step which refines the

model in a supervised fashion. Two popular pre-training approaches are based on

restricted Boltzmann machines (RBMs) [9, 3] and auto-associators [10] respectively.

The basic idea of layer-wise pre-training is to divide the hard deep learning task

into easier tasks of training simpler shallow models. A theoretical analysis for its

role in deep model training was presented by Bengio [10], and a through empirical

analysis was provided by Erhan et al. [11]. These studies show that the layer-wise

pre-training plays a role of regularization that locates the model to a ‘good’ place

in the parameter space so that the succeeding supervised training (aka fine-tuning)

is easy to find a good local minimum. Recently, the effectiveness of layer-wise pre-

training is proved by Paul et al. using the group theory [12]. In ASR, Yu and

colleagues reported that a layer-wise discriminative pre-training can obtain similar
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performance as the layer-wise unsupervised pre-training does [13, 14]. It is now

widely accepted that the layer-wise pre-training makes its contribution in two ways:

(1) it can discover hierarchical patterns by which invariant high-level feature can be

obtained; (2) it can initialize deep models in a health state so that the supervised

training can be conducted more effectively.

Although theoretically sound and empirically effective, the layer-wise pre-training

is limited to multi-layer models. For models without a clear layer-wise structure,

they can not be easily pre-trained by the existing methods. As an example, the

RNN model does not involve a clear layer-wise structure and the model is compli-

cated by the hidden-hidden connections. To pre-train this model, either an ad-hoc

treatment is required or a special pre-training model needs designing. For example,

Vinyals et al. [15] proposed a two-stage approach: in the first stage, the hidden-

hidden connections are cut off and only the forward paths are trained, and in the

second stage, the entire network is optimized. This approach is obviously subop-

timal since the recurrent path is not pre-trained together with the forward path.

Pasa and colleagues [16] constructed a linear autoencoder on sequential data to

pre-train the RNN model. This linear autoencoder model exactly matches the RNN

structure so that all the parameters can be jointly pre-trained. Following the same

idea, Boulanger-Lewandowski et al. [17] proposed a recurrent temporal RBM model

to match the RNN structure. These task-specific pre-training models need to be

specifically designed, which is certainly not ideal. Moreover, if the target model is

complex, e.g., with cross-layer connections, it would be difficult to design an appro-

priate pre-training model, and training such a model by unsupervised learning is

often a prohibit task.

This paper presents a simple yet powerful pre-training approach based on knowl-

edge transfer, which is largely motivated by the logit matching approach from Ba et

al. [18] and the dark knowledge distiller model from Hinton and colleagues [19]. The

basic idea is that a well-trained model involves rich knowledge and can be used to

guide the training of other models. In Ba and Hinton’s work [18, 19], this idea was

applied to learn simple models from complex models or model ensembles [18, 19].

In ASR, Li et al. has applied the same idea to train small DNNs from a large and

complex DNN [20]. We show in this paper that knowledge transfer is a general ap-

proach and can be used in a very different way. Instead of learning simple models

from complex models, it can be used to pre-train complex models using a simpler

model. Specifically, it is possible to train a simple model and then use this model as

a teacher to guide the training of a complex model (child model) that is normally

difficult to accomplish. This teacher model might be rather weak, but it is sufficient

to direct the child model where to go. Once the teacher model helps the child model

reach a reasonable place in the parameter space, the child model can learn by itself

and finally finds a good local optimum, delivering a performance even better than

the teacher model.

This weak teacher strategy is rather different from the idea of logit matching

and dark knowledge distillation proposed in [18, 19]. The teacher model plays a

role of ‘supervisor’ instead of a ‘teacher’, and the teaching process is essentially a

pre-training. The self-learning of the child model, correspondingly, is a fine-tuning.

In fact, the teaching processing (pre-training) is the same as the dark knowledge
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distillation: the teacher model is firstly trained and then is used to generate targets

for the training data. These targets are actually posterior probabilities and so are

‘soft’ compared to the original one-hot ‘hard’ targets. The soft targets are used to

train the child model. As we will see, using soft targets leads to a smoother objective

function, which makes the pre-training a much easier task than training with the

original hard targets.

Our experiments on an ASR task with the Aurora4 database demonstrated three

interesting findings: (1) the knowledge transfer pre-training can be used to train

RNNs, which is challenging with conventional methods; (2) the pre-training can

use a very weak teacher model; (3) combining the knowledge transfer pre-training

and the conventional RBM pre-training delivers additional gains.

The reset of the paper is organized as follows. Section 2 briefly discusses some

related works, and 3 presents the knowledge transfer pre-training. Section 4 presents

the experiments, and the paper is concluded by Section 5.

2 Related to prior work
This study is directly motivated by the work of dark knowledge distillation from

Hinton [19]. The important distinction is that we use simple models to teach complex

models. The teacher model in our work in fact knows not so much, but it is sufficient

to provide a rough guide that is important to train complex models, such as highly

deep DNNs or multi-layer RNNs. More precisely, the existing methods use the

teacher model as a knowledge source, while our method uses the teacher model for

pre-training.

Our work is also related to the FitNets approach proposed by Romero et al. [21],

where a teacher model is used to supervise the learning of another network which can

be in a different structure, e.g., deeper and fatter. Particularly, they learned hidden

layers instead of output layers, which is a big advantage in transferring hierarchical

knowledge into child models. Our approach focuses on learning the output layer,

which does not consider the internal structure of the teacher model, and so is truly

‘blind learning’. This offers more flexibility to pre-train complex and heterogeneous

models, though looses the advantage of learning hierarchical patterns.

Another related work is the HMM-based pre-training approach recently proposed

by Pasa and colleagues [22]. In that work, the authors train an HMM model, and

then use the trained model to generate training data. The generated data are then

used to pre-train RNN models. This approach shares the same idea of knowledge

transfer pre-training as our work. The main difference is that the knowledge transfer

in Pasa’s approach is based on some randomly sampled data, which essentially

simulates the joint distribution of the data and their target labels; whereas our

approach is based on targets predicted by the teacher model, which simulates the

conditional distribution of the targets given the data.

3 Pre-training with dark knowledge transfer
3.1 Dark knowledge distiller

The idea that a well-trained DNN model can be used as a teacher to help training

other models was proposed by Ba and Hinton [18, 19, 20]. The basic assumption

is that the teacher model learns rich knowledge from the training data and this
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knowledge can be used to guide the training of child models which are simple

and hence unable to learn many details without the teacher’s guide. To distill the

knowledge from the teacher model, the logit matching approach proposed by Ba [18]

teaches the child model by encouraging its logits (activations before softmax) close

to those generated by the teacher model in terms of square error, and the dark

knowledge distiller model proposed by Hinton [19] encourages the output of the

child model close to those of the teacher model in terms of cross entropy. This

knowledge transfer idea has been applied to learn simple models from complex

models so that the simple model can approach the performance of the complex

model [20, 23].

We focus on the dark knowledge distiller model rather than logit matching as

it showed better performance in our experiments. This model uses a well-trained

DNN as the teacher model to predict the targets of the training samples, and

these targets are used to train the child model. The predicted targets are actually

posterior probabilities of the targets associated with the DNN output, and they are

soft because the class identities with these targets are not as deterministic as with

the original one-hot hard targets. To make the targets softer, a temperature T was

introduced in [19] to scale the logits. This is formulated by pi = ezi/T∑
j ezj/T

, where

i, j indexes the target classes. As argued by Hinton [19], a larger T allows more

information of non-targets to be distilled.

3.2 Knowledge transfer pre-training

In the original proposal [19], knowledge transfer was used to train simple models

with a complex model, and the goal is to achieve a light-weighted model that can

approach to the performance of the complex model. We argue in this paper that

knowledge transfer is a general method and can be used to pre-train complex models

with a simple model.

The basic assumption is that soft targets lead to a smoother objective function,

and so training with them is easier than training with the original hard targets.

Intuitively, soft targets offer probabilistic class labels which are not as deterministic

as hard targets. This matches the real situation where uncertainty always exists

in classification tasks. For example, in speech recognition, it is often difficult to

identify the phone class of a frame due to the effect of co-articulation. Moreover,

the uncertainty associated with soft targets blurs the decision boundary of correct

and incorrect targets. The smoothness associated with soft targets has been stated

in [19], where it was argued that soft targets result in less variant gradients between

training samples. This is equal to say that the objective function is smooth. A

smooth objective function is certainly much easier to optimize, and in the case

where the targets are extremely soft (i.e., T goes to infinity), the objective function

becomes flat and the optimization is trivial.

The ease of training with soft targets can be used to simplify training complex

models. Generally speaking, complex models (e.g., very deep or with recurrent con-

nections) involve a large amount of parameters or complex dependencies among vari-

ables, which leads to twisted objective functions that are hard to optimize [24, 25].

To solve the problem, conventional layer-wise pre-training breaks a complex model

to simpler models that can be easily trained individually, and then stack them
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back to form the complex model. The smoothness on objective functions offered

by knowledge transfer learning in the form of soft targets provides a different way

to simplify complex model training: instead of breaking the complex model into

simple models, we replace the twisted objective function with a smoother one by

using soft targets when training the model. By this approach, the difficulty in com-

plex model training is greatly reduced, and the optimization can be conducted on

the entire model instead of a single layer as in layer-wise pre-training. As long as

the smoothed objective function possesses a similar trend as the original objective

function in gradients, training with the smoothed function would result in a good

initialization for the model parameters.

Note that learning soft targets is not the ultimate goal of the model training, so

a fine-tuning step is required to refine the model with the original hard targets. In

this sense, the knowledge transfer learning is a pre-training step, which initializes

the model parameters in such a way that the fine-tuning has a good starting point

to reach a better local minimum, compared to training with hard targets from the

beginning.

The knowledge transfer pre-training is related to the curriculum training approach

discussed in [21], where training samples that are easy to learn are firstly selected

in model training, while more difficult samples are selected later when the model is

strong enough. In knowledge transfer pre-training, the soft targets can be regarded

as easy samples and so are firstly used (in pre-training), and hard targets are difficult

samples and are used later (in fine-tuning).

We highlight that for knowledge transfer pre-training, the teacher model is not

necessarily very strong. The goal of the pre-training is to provide a good initializa-

tion for fine-tuning, instead of knowledge transfer from one model to another, so a

model with reasonable quality is sufficient to be a teacher, although more intelligent

teachers are generally welcome.

3.3 Comparison with layer-wise pre-training

A confirmed advantage of layer-wise pre-training is that it can discover hierarchical

patterns of the input signal by unsupervised learning. This hierarchical patterns

discovering is desirable for several reasons: it is consistent with the information

processing strategy in human brains, and it can find invariant high-level features

that are robust against noise and corruption. A potential problem of layer-wise

pre-training, however, is that the patterns are learned in an unsupervised fashion,

which means that they are purely derived by statistics without considering the task

in hand. For example in speech recognition, less frequently occurred patterns such

as rare consonant phones are difficult to discover, however they are important for

the recognition tasks.

The knowledge transfer pre-training, on the other hand, is purely supervised and

so it is high greedy towards the target task. Additionally, this approach pre-trains

the entire model and so tends to be fast. Finally, it can pre-train models without

clear multi-layer structures. The disadvantage is, it is just a functional mimic to

the teacher model without considering any internal structure of the teacher model.

Therefore, it can neither discover any hierarchical patterns, nor learn them from

the teacher model.
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An interesting idea is to combine different types of pre-training methods. For

example, we can use layer-wise pre-training to discover hierarchical patterns, and

then use knowledge transfer pre-training to promote the patterns that are most

important to the task. A simple approach investigated in this paper is to employ

the RMB pre-training and the knowledge transfer pre-training sequentially, so that

the advantages of both methods are leveraged.

4 Experiments
The proposed knowledge transfer pre-training is applied to train acoustic models

for ASR systems. In the first experiment, the knowledge transfer pre-training is

used to train RNNs with a DNN as the teacher model. In the second experiment,

the knowledge transfer pre-training is compared with RBM pre-training and layer-

by-layer supervised pre-training, and the combination of knowledge transfer pre-

training and RBM pre-training is also investigated.

4.1 Data and baseline

The experiments are conducted on the Aurora4 database in noisy conditions, and

the data profile is largely standard: 7137 utterances for model training, 4620 utter-

ances for development and 4620 utterances for testing. The Kaldi toolkit[1] is used

to conduct the model training and performance evaluation, and the process largely

follows the Aurora4 s5 recipe for GPU-based DNN training. Specifically, the train-

ing starts from constructing a system based on Gaussian mixture models (GMMs)

with the standard 13-dimensional MFCC features plus the first- and second-order

derivatives. A DNN system is then trained with the alignment provided by the

GMM system. The feature used for the DNN system is the 40-dimensional Fbanks.

A symmetric 11-frame window is applied to concatenate neighboring frames, and

an LDA transform is used to reduce the feature dimension to 200, which forms the

DNN input. The DNN architecture involves 4 hidden layers and each layer consists

of 2048 units. The output layer is composed of 2008 units, equal to the total number

of Gaussian mixtures in the GMM system. The cross entropy is used as the training

criterion, and the stochastic gradient descendent (SGD) algorithm is employed to

perform the training.

4.2 Knowledge transfer pre-training for RNN

To train the RNN acoustic models, the DNN model of the baseline system is used

as the teacher model. The RNN is based on the LSTM structure, where the input

features are the 40-dimensional Fbanks, and the output units correspond to the

Gaussian mixtures as in the DNN model. The momentum is empirically set to 0.9,

and the starting learning rate is set to 0.0001 by default.

The experimental results are reported in Table 1. The performance is evaluated

in terms of two criteria: the frame accuracy (FA) and the word error rate (WER).

While FA is more related to the training criterion (cross entropy), WER is more

important for speech recognition. In Table 1, the FAs are reported on both the

training set (TR FA) and the cross validation set (CV FA), and the WER is reported

on the test set.

[1]http://kaldi.sourceforge.net/
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In Table 1, ‘RNN [raw]’ is the RNN baseline trained with hard targets directly.

‘RNN [prt.]’ denotes systems after knowledge transfer pre-training, and ‘RNN

[prt.+ft.]’ denotes systems with both knowledge transfer pre-training and fine-

tuning. Two settings of the temperature (T ) are evaluated (T=1 and T=2), and

the performance with one and two LSTM layers are reported respectively.

Table 1 Results with RNN Models

# LSTM T TR FA% CV FA% WER%
DNN [4 hidden layers] 0 - 63.1 45.2 11.40
RNN [raw] 1 - 67.3 51.9 13.57
RNN [prt.] 1 1 59.4 49.9 11.46
RNN [prt.+ft.] 1 1 65.5 54.2 10.71
RNN [prt.] 1 2 58.2 49.5 11.32
RNN [prt.+ft.] 1 2 64.6 54.1 10.57
RNN [raw] 2 - 68.8 53.2 12.34
RNN [prt.] 2 1 60.4 50.6 11.11
RNN [prt.+ft.] 2 1 66.6 55.4 10.13
RNN [prt.] 2 2 58.6 49.7 11.26
RNN [prt.+ft.] 2 2 65.8 55.2 10.10

From the results, it can be observed that the RNN baseline (RNN [raw]) can not

beat the DNN baseline in terms of WER, although much effort has been devoted

to calibrate the training process, including various trials on different learning rates

and momentum values. This is consistent with the results published with the Kaldi

recipe. Note that this does not mean RNNs are inferior to DNNs. From the FA

results, it is clear that the RNN models are better in terms of frame accuracy.

Unfortunately, this advantage is not propagated to the WER results on the test set.

Additionally, the results shown here can not be interpreted as that RNNs are not

suitable for ASR (in terms of WER). In fact several researchers have reported better

WERs with RNNs than with DNNs, e.g., [5, 6, 7]. Our results just say that with

the Aurora4 database, the RNNs with the basic training method do not generalize

well in terms of WER.

This problem can be largely solved by the knowledge transfer pre-training. It can

be seen from Table 1 that with the pre-training only, the RNN systems obtain equal

or even better performance in comparison with the DNN baseline, which means that

the knowledge learned by DNN helps the RNN models move out of bad local min-

ima that are caused by the complex objective function. Paying attention to the FA

results, it can be seen that the pre-training does not improve FAs on the training

set, but better FAs on the CV set and better WERs on the test set are obtained.

This indicates that the pre-training leads to models that are more generalizable

with respect to both datasets and evaluation metrics. After the fine-tuning with

hard targets, the performances of RNN systems are significantly improved. Addi-

tionally, it can be found that a larger T leads to worse FAs on both the training and

CV datasets, but better WERs on the test dataset. This indicates that knowledge

transfer pre-training contributes by delivering a more generalizable model instead

of a more optimized model.

When comparing the RNNs that involve one and two LSTM layers, it can be

found that the two layers of LSTMs deliver better performance. Note that two

layers of LSTMs are rather complex in structure, and so pre-training it with layer-

wise unsupervised models (e.g., RMBs) is rather difficult. With knowledge transfer,

the pre-training is rather simple.
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Table 2 RNN Results with a Weak DNN for Pre-Training

T TR FA% CV FA% WER%
DNN [1 hidden layer] - 61.2 42.5 13.10
RNN [raw] - 68.8 53.2 12.34
RNN [prt.] 1 57.2 48.6 12.69
RNN [prt.+ft.] 1 65.3 55.0 10.72
RNN [prt.] 2 54.4 46.8 13.20
RNN [prt.+ft.] 2 64.7 54.7 10.60

Another interesting investigation is to use a very weak teacher model to conduct

the pre-training. A DNN with only 1 hidden layer of 2048 units (not deep actually)

is trained and used as the teacher model. This model is much weaker than the DNN

baseline which involves 4 hidden layers. The results presented in Table 2 show that

even with the weak model, the pre-training works fairly well, although not as well

as with the original strong teacher model. This results confirm our conjecture that

the teacher model is not necessarily very strong. The principle role of the teacher

is not to teach all the details to the student, but a correct direction with which the

student can learn by itself.

4.3 Comparison of pre-training methods

Compared to RNN, the DNN model is much simpler. After the extensive research

in recent years, training DNNs is not a problem any more. For example in speech

recognition, training a DNN model with more than 5 layers is rather simple even

without any pre-training techniques [14]. In this experiment, we apply various pre-

training methods to train DNN models. The goal is not to demonstrate the necessity

of pre-training in DNN model training, but to compare different pre-training ap-

proaches.

For a better comparison, we use a new DNN baseline which involves 4 hidden

layers and each layer involves 1024 units (it was 2048 in the RNN experiment);

further more, no LDA was employed for the input feature. This setting makes the

training a little difficult as less hidden units need to find the most discriminative

input from larger feature vectors. With the original DNN baseline, the pre-training

methods didn’t show much help, particularly with the layer-wise methods.

Table 3 DNN Results with Various Pre-Training Methods

TR FA% CV FA% WER%
DNN-4H [4 hidden layers] 57.3 44.1 12.22
DNN-1H [1 hidden layer] 54.8 41.7 13.90
RBM 58.1 45.8 11.42
Layer-by-layer Discriminative 61.1 43.8 12.16
Knowledge Transfer (DNN-4H) 60.0 45.6 11.43
Knowledge Transfer (DNN-1H) 59.6 45.1 11.65
RBM + Knowledge Transfer (DNN-4H) 59.5 46.2 11.13
RBM + Knowledge Transfer (DNN-1H) 59.4 46.1 11.25

We compare three pre-training methods: the RBM-based pre-training [9], the

layer-by-layer discriminative pre-training [13], and the proposed knowledge transfer

pre-training. For the knowledge transfer pre-training, two teacher models are tested:

one is the DNN baseline that involves 4 hidden layers (DNN-4H), and the other is

a simpler model with only 1 hidden layer (DNN-1H). Note that for the knowledge

transfer pre-training, the classification layer (the affine transform before softmax)
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needs to be re-initialized randomly after pre-training, otherwise it would be difficult

for the fine-tuning to achieve reasonable improvement.

The results are reported in Table 3. It can be observed that the RBM pre-training

and the knowledge transfer pre-training (DNN-4H as the teacher model) achieve sig-

nificant performance improvement, and their performance are rather similar (11.42

vs. 11.43). With the weak one-layer DNN as the teacher model, the result is slightly

worse than with the four-layer DNN, but it is still rather good. The layer-by-layer

discriminative pre-training does not show much contribution in this experiment.

These results demonstrate that the knowledge transfer pre-training works at least

as well as the state-of-the-art layer-wise pre-training methods.

Finally, the RBM approach and the knowledge transfer approach are combined,

where the RMB approach conducts layer-by-layer unsupervised pre-training and

after that the knowledge transfer approach conducts supervised pre-training on the

entire network. Fine tuning is finally conducted to achieve the best model. The

results are shown in Table 3 as well. It can be seen that this combination leads to

the best performance (11.13) that we can obtain on this task. This demonstrates

that the two pre-training methods are complementary, and the combination can

leverage their respective advantage.

5 Conclusion
We proposed a novel pre-training approach based on knowledge transfer learning.

Compared to conventional layer-wise pre-training methods that initialize a com-

plex network by stacking simple models layer by layer, the knowledge transfer pre-

training conducts the initialization by a smooth objective function. As a super-

vised pre-training it is more task-oriented, and as a entire-network pre-training it is

faster. The experimental results on the ASR task demonstrated that the new pre-

training approach can effectively help training complex models, even with a weak

teacher model. For example, a DNN model has been successfully used to pre-train

an RNN mode. Compared to RMB pre-training and layer-by-layer discriminative

pre-training, the new approach leads to comparable or even better performance.

Additionally, the RBM pre-training and the knowledge transfer pre-training can be

combined, which has lead to additional performance gains in our experiments. The

future work involves studying knowledge transfer between heterogeneous models,

e.g., from probabilistic models to neural models.
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